| //===-- PrologEpilogInserter.cpp - Insert Prolog/Epilog code in function --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass is responsible for finalizing the functions frame layout, saving |
| // callee saved registers, and for emitting prolog & epilog code for the |
| // function. |
| // |
| // This pass must be run after register allocation. After this pass is |
| // executed, it is illegal to construct MO_FrameIndex operands. |
| // |
| // This pass provides an optional shrink wrapping variant of prolog/epilog |
| // insertion, enabled via --shrink-wrap. See ShrinkWrapping.cpp. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PrologEpilogInserter.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegisterScavenging.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetFrameInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/ADT/IndexedMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <climits> |
| |
| using namespace llvm; |
| |
| char PEI::ID = 0; |
| |
| static RegisterPass<PEI> |
| X("prologepilog", "Prologue/Epilogue Insertion"); |
| |
| /// createPrologEpilogCodeInserter - This function returns a pass that inserts |
| /// prolog and epilog code, and eliminates abstract frame references. |
| /// |
| FunctionPass *llvm::createPrologEpilogCodeInserter() { return new PEI(); } |
| |
| /// runOnMachineFunction - Insert prolog/epilog code and replace abstract |
| /// frame indexes with appropriate references. |
| /// |
| bool PEI::runOnMachineFunction(MachineFunction &Fn) { |
| const Function* F = Fn.getFunction(); |
| const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo(); |
| RS = TRI->requiresRegisterScavenging(Fn) ? new RegScavenger() : NULL; |
| FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(Fn); |
| |
| // Get MachineModuleInfo so that we can track the construction of the |
| // frame. |
| if (MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>()) |
| Fn.getFrameInfo()->setMachineModuleInfo(MMI); |
| |
| // Calculate the MaxCallFrameSize and HasCalls variables for the function's |
| // frame information. Also eliminates call frame pseudo instructions. |
| calculateCallsInformation(Fn); |
| |
| // Allow the target machine to make some adjustments to the function |
| // e.g. UsedPhysRegs before calculateCalleeSavedRegisters. |
| TRI->processFunctionBeforeCalleeSavedScan(Fn, RS); |
| |
| // Scan the function for modified callee saved registers and insert spill code |
| // for any callee saved registers that are modified. |
| calculateCalleeSavedRegisters(Fn); |
| |
| // Determine placement of CSR spill/restore code: |
| // - with shrink wrapping, place spills and restores to tightly |
| // enclose regions in the Machine CFG of the function where |
| // they are used. Without shrink wrapping |
| // - default (no shrink wrapping), place all spills in the |
| // entry block, all restores in return blocks. |
| placeCSRSpillsAndRestores(Fn); |
| |
| // Add the code to save and restore the callee saved registers |
| if (!F->hasFnAttr(Attribute::Naked)) |
| insertCSRSpillsAndRestores(Fn); |
| |
| // Allow the target machine to make final modifications to the function |
| // before the frame layout is finalized. |
| TRI->processFunctionBeforeFrameFinalized(Fn); |
| |
| // Calculate actual frame offsets for all abstract stack objects... |
| calculateFrameObjectOffsets(Fn); |
| |
| // Add prolog and epilog code to the function. This function is required |
| // to align the stack frame as necessary for any stack variables or |
| // called functions. Because of this, calculateCalleeSavedRegisters |
| // must be called before this function in order to set the HasCalls |
| // and MaxCallFrameSize variables. |
| if (!F->hasFnAttr(Attribute::Naked)) |
| insertPrologEpilogCode(Fn); |
| |
| // Replace all MO_FrameIndex operands with physical register references |
| // and actual offsets. |
| // |
| replaceFrameIndices(Fn); |
| |
| // If register scavenging is needed, as we've enabled doing it as a |
| // post-pass, scavenge the virtual registers that frame index elimiation |
| // inserted. |
| if (TRI->requiresRegisterScavenging(Fn) && FrameIndexVirtualScavenging) |
| scavengeFrameVirtualRegs(Fn); |
| |
| delete RS; |
| clearAllSets(); |
| return true; |
| } |
| |
| #if 0 |
| void PEI::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| if (ShrinkWrapping || ShrinkWrapFunc != "") { |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<MachineDominatorTree>(); |
| } |
| AU.addPreserved<MachineLoopInfo>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| #endif |
| |
| /// calculateCallsInformation - Calculate the MaxCallFrameSize and HasCalls |
| /// variables for the function's frame information and eliminate call frame |
| /// pseudo instructions. |
| void PEI::calculateCallsInformation(MachineFunction &Fn) { |
| const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); |
| MachineFrameInfo *FFI = Fn.getFrameInfo(); |
| |
| unsigned MaxCallFrameSize = 0; |
| bool HasCalls = FFI->hasCalls(); |
| |
| // Get the function call frame set-up and tear-down instruction opcode |
| int FrameSetupOpcode = RegInfo->getCallFrameSetupOpcode(); |
| int FrameDestroyOpcode = RegInfo->getCallFrameDestroyOpcode(); |
| |
| // Early exit for targets which have no call frame setup/destroy pseudo |
| // instructions. |
| if (FrameSetupOpcode == -1 && FrameDestroyOpcode == -1) |
| return; |
| |
| std::vector<MachineBasicBlock::iterator> FrameSDOps; |
| for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) |
| for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) |
| if (I->getOpcode() == FrameSetupOpcode || |
| I->getOpcode() == FrameDestroyOpcode) { |
| assert(I->getNumOperands() >= 1 && "Call Frame Setup/Destroy Pseudo" |
| " instructions should have a single immediate argument!"); |
| unsigned Size = I->getOperand(0).getImm(); |
| if (Size > MaxCallFrameSize) MaxCallFrameSize = Size; |
| HasCalls = true; |
| FrameSDOps.push_back(I); |
| } else if (I->getOpcode() == TargetInstrInfo::INLINEASM) { |
| // An InlineAsm might be a call; assume it is to get the stack frame |
| // aligned correctly for calls. |
| HasCalls = true; |
| } |
| |
| FFI->setHasCalls(HasCalls); |
| FFI->setMaxCallFrameSize(MaxCallFrameSize); |
| |
| for (std::vector<MachineBasicBlock::iterator>::iterator |
| i = FrameSDOps.begin(), e = FrameSDOps.end(); i != e; ++i) { |
| MachineBasicBlock::iterator I = *i; |
| |
| // If call frames are not being included as part of the stack frame, and |
| // there is no dynamic allocation (therefore referencing frame slots off |
| // sp), leave the pseudo ops alone. We'll eliminate them later. |
| if (RegInfo->hasReservedCallFrame(Fn) || RegInfo->hasFP(Fn)) |
| RegInfo->eliminateCallFramePseudoInstr(Fn, *I->getParent(), I); |
| } |
| } |
| |
| |
| /// calculateCalleeSavedRegisters - Scan the function for modified callee saved |
| /// registers. |
| void PEI::calculateCalleeSavedRegisters(MachineFunction &Fn) { |
| const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); |
| const TargetFrameInfo *TFI = Fn.getTarget().getFrameInfo(); |
| MachineFrameInfo *FFI = Fn.getFrameInfo(); |
| |
| // Get the callee saved register list... |
| const unsigned *CSRegs = RegInfo->getCalleeSavedRegs(&Fn); |
| |
| // These are used to keep track the callee-save area. Initialize them. |
| MinCSFrameIndex = INT_MAX; |
| MaxCSFrameIndex = 0; |
| |
| // Early exit for targets which have no callee saved registers. |
| if (CSRegs == 0 || CSRegs[0] == 0) |
| return; |
| |
| // Figure out which *callee saved* registers are modified by the current |
| // function, thus needing to be saved and restored in the prolog/epilog. |
| const TargetRegisterClass * const *CSRegClasses = |
| RegInfo->getCalleeSavedRegClasses(&Fn); |
| |
| std::vector<CalleeSavedInfo> CSI; |
| for (unsigned i = 0; CSRegs[i]; ++i) { |
| unsigned Reg = CSRegs[i]; |
| if (Fn.getRegInfo().isPhysRegUsed(Reg)) { |
| // If the reg is modified, save it! |
| CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i])); |
| } else { |
| for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg); |
| *AliasSet; ++AliasSet) { // Check alias registers too. |
| if (Fn.getRegInfo().isPhysRegUsed(*AliasSet)) { |
| CSI.push_back(CalleeSavedInfo(Reg, CSRegClasses[i])); |
| break; |
| } |
| } |
| } |
| } |
| |
| if (CSI.empty()) |
| return; // Early exit if no callee saved registers are modified! |
| |
| unsigned NumFixedSpillSlots; |
| const TargetFrameInfo::SpillSlot *FixedSpillSlots = |
| TFI->getCalleeSavedSpillSlots(NumFixedSpillSlots); |
| |
| // Now that we know which registers need to be saved and restored, allocate |
| // stack slots for them. |
| for (std::vector<CalleeSavedInfo>::iterator |
| I = CSI.begin(), E = CSI.end(); I != E; ++I) { |
| unsigned Reg = I->getReg(); |
| const TargetRegisterClass *RC = I->getRegClass(); |
| |
| int FrameIdx; |
| if (RegInfo->hasReservedSpillSlot(Fn, Reg, FrameIdx)) { |
| I->setFrameIdx(FrameIdx); |
| continue; |
| } |
| |
| // Check to see if this physreg must be spilled to a particular stack slot |
| // on this target. |
| const TargetFrameInfo::SpillSlot *FixedSlot = FixedSpillSlots; |
| while (FixedSlot != FixedSpillSlots+NumFixedSpillSlots && |
| FixedSlot->Reg != Reg) |
| ++FixedSlot; |
| |
| if (FixedSlot == FixedSpillSlots + NumFixedSpillSlots) { |
| // Nope, just spill it anywhere convenient. |
| unsigned Align = RC->getAlignment(); |
| unsigned StackAlign = TFI->getStackAlignment(); |
| |
| // We may not be able to satisfy the desired alignment specification of |
| // the TargetRegisterClass if the stack alignment is smaller. Use the |
| // min. |
| Align = std::min(Align, StackAlign); |
| FrameIdx = FFI->CreateStackObject(RC->getSize(), Align, true); |
| if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; |
| if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; |
| } else { |
| // Spill it to the stack where we must. |
| FrameIdx = FFI->CreateFixedObject(RC->getSize(), FixedSlot->Offset, |
| true, false); |
| } |
| |
| I->setFrameIdx(FrameIdx); |
| } |
| |
| FFI->setCalleeSavedInfo(CSI); |
| } |
| |
| /// insertCSRSpillsAndRestores - Insert spill and restore code for |
| /// callee saved registers used in the function, handling shrink wrapping. |
| /// |
| void PEI::insertCSRSpillsAndRestores(MachineFunction &Fn) { |
| // Get callee saved register information. |
| MachineFrameInfo *FFI = Fn.getFrameInfo(); |
| const std::vector<CalleeSavedInfo> &CSI = FFI->getCalleeSavedInfo(); |
| |
| FFI->setCalleeSavedInfoValid(true); |
| |
| // Early exit if no callee saved registers are modified! |
| if (CSI.empty()) |
| return; |
| |
| const TargetInstrInfo &TII = *Fn.getTarget().getInstrInfo(); |
| MachineBasicBlock::iterator I; |
| |
| if (! ShrinkWrapThisFunction) { |
| // Spill using target interface. |
| I = EntryBlock->begin(); |
| if (!TII.spillCalleeSavedRegisters(*EntryBlock, I, CSI)) { |
| for (unsigned i = 0, e = CSI.size(); i != e; ++i) { |
| // Add the callee-saved register as live-in. |
| // It's killed at the spill. |
| EntryBlock->addLiveIn(CSI[i].getReg()); |
| |
| // Insert the spill to the stack frame. |
| TII.storeRegToStackSlot(*EntryBlock, I, CSI[i].getReg(), true, |
| CSI[i].getFrameIdx(), CSI[i].getRegClass()); |
| } |
| } |
| |
| // Restore using target interface. |
| for (unsigned ri = 0, re = ReturnBlocks.size(); ri != re; ++ri) { |
| MachineBasicBlock* MBB = ReturnBlocks[ri]; |
| I = MBB->end(); --I; |
| |
| // Skip over all terminator instructions, which are part of the return |
| // sequence. |
| MachineBasicBlock::iterator I2 = I; |
| while (I2 != MBB->begin() && (--I2)->getDesc().isTerminator()) |
| I = I2; |
| |
| bool AtStart = I == MBB->begin(); |
| MachineBasicBlock::iterator BeforeI = I; |
| if (!AtStart) |
| --BeforeI; |
| |
| // Restore all registers immediately before the return and any |
| // terminators that preceed it. |
| if (!TII.restoreCalleeSavedRegisters(*MBB, I, CSI)) { |
| for (unsigned i = 0, e = CSI.size(); i != e; ++i) { |
| TII.loadRegFromStackSlot(*MBB, I, CSI[i].getReg(), |
| CSI[i].getFrameIdx(), |
| CSI[i].getRegClass()); |
| assert(I != MBB->begin() && |
| "loadRegFromStackSlot didn't insert any code!"); |
| // Insert in reverse order. loadRegFromStackSlot can insert |
| // multiple instructions. |
| if (AtStart) |
| I = MBB->begin(); |
| else { |
| I = BeforeI; |
| ++I; |
| } |
| } |
| } |
| } |
| return; |
| } |
| |
| // Insert spills. |
| std::vector<CalleeSavedInfo> blockCSI; |
| for (CSRegBlockMap::iterator BI = CSRSave.begin(), |
| BE = CSRSave.end(); BI != BE; ++BI) { |
| MachineBasicBlock* MBB = BI->first; |
| CSRegSet save = BI->second; |
| |
| if (save.empty()) |
| continue; |
| |
| blockCSI.clear(); |
| for (CSRegSet::iterator RI = save.begin(), |
| RE = save.end(); RI != RE; ++RI) { |
| blockCSI.push_back(CSI[*RI]); |
| } |
| assert(blockCSI.size() > 0 && |
| "Could not collect callee saved register info"); |
| |
| I = MBB->begin(); |
| |
| // When shrink wrapping, use stack slot stores/loads. |
| for (unsigned i = 0, e = blockCSI.size(); i != e; ++i) { |
| // Add the callee-saved register as live-in. |
| // It's killed at the spill. |
| MBB->addLiveIn(blockCSI[i].getReg()); |
| |
| // Insert the spill to the stack frame. |
| TII.storeRegToStackSlot(*MBB, I, blockCSI[i].getReg(), |
| true, |
| blockCSI[i].getFrameIdx(), |
| blockCSI[i].getRegClass()); |
| } |
| } |
| |
| for (CSRegBlockMap::iterator BI = CSRRestore.begin(), |
| BE = CSRRestore.end(); BI != BE; ++BI) { |
| MachineBasicBlock* MBB = BI->first; |
| CSRegSet restore = BI->second; |
| |
| if (restore.empty()) |
| continue; |
| |
| blockCSI.clear(); |
| for (CSRegSet::iterator RI = restore.begin(), |
| RE = restore.end(); RI != RE; ++RI) { |
| blockCSI.push_back(CSI[*RI]); |
| } |
| assert(blockCSI.size() > 0 && |
| "Could not find callee saved register info"); |
| |
| // If MBB is empty and needs restores, insert at the _beginning_. |
| if (MBB->empty()) { |
| I = MBB->begin(); |
| } else { |
| I = MBB->end(); |
| --I; |
| |
| // Skip over all terminator instructions, which are part of the |
| // return sequence. |
| if (! I->getDesc().isTerminator()) { |
| ++I; |
| } else { |
| MachineBasicBlock::iterator I2 = I; |
| while (I2 != MBB->begin() && (--I2)->getDesc().isTerminator()) |
| I = I2; |
| } |
| } |
| |
| bool AtStart = I == MBB->begin(); |
| MachineBasicBlock::iterator BeforeI = I; |
| if (!AtStart) |
| --BeforeI; |
| |
| // Restore all registers immediately before the return and any |
| // terminators that preceed it. |
| for (unsigned i = 0, e = blockCSI.size(); i != e; ++i) { |
| TII.loadRegFromStackSlot(*MBB, I, blockCSI[i].getReg(), |
| blockCSI[i].getFrameIdx(), |
| blockCSI[i].getRegClass()); |
| assert(I != MBB->begin() && |
| "loadRegFromStackSlot didn't insert any code!"); |
| // Insert in reverse order. loadRegFromStackSlot can insert |
| // multiple instructions. |
| if (AtStart) |
| I = MBB->begin(); |
| else { |
| I = BeforeI; |
| ++I; |
| } |
| } |
| } |
| } |
| |
| /// AdjustStackOffset - Helper function used to adjust the stack frame offset. |
| static inline void |
| AdjustStackOffset(MachineFrameInfo *FFI, int FrameIdx, |
| bool StackGrowsDown, int64_t &Offset, |
| unsigned &MaxAlign) { |
| // If the stack grows down, add the object size to find the lowest address. |
| if (StackGrowsDown) |
| Offset += FFI->getObjectSize(FrameIdx); |
| |
| unsigned Align = FFI->getObjectAlignment(FrameIdx); |
| |
| // If the alignment of this object is greater than that of the stack, then |
| // increase the stack alignment to match. |
| MaxAlign = std::max(MaxAlign, Align); |
| |
| // Adjust to alignment boundary. |
| Offset = (Offset + Align - 1) / Align * Align; |
| |
| if (StackGrowsDown) { |
| FFI->setObjectOffset(FrameIdx, -Offset); // Set the computed offset |
| } else { |
| FFI->setObjectOffset(FrameIdx, Offset); |
| Offset += FFI->getObjectSize(FrameIdx); |
| } |
| } |
| |
| /// calculateFrameObjectOffsets - Calculate actual frame offsets for all of the |
| /// abstract stack objects. |
| /// |
| void PEI::calculateFrameObjectOffsets(MachineFunction &Fn) { |
| const TargetFrameInfo &TFI = *Fn.getTarget().getFrameInfo(); |
| |
| bool StackGrowsDown = |
| TFI.getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown; |
| |
| // Loop over all of the stack objects, assigning sequential addresses... |
| MachineFrameInfo *FFI = Fn.getFrameInfo(); |
| |
| unsigned MaxAlign = 1; |
| |
| // Start at the beginning of the local area. |
| // The Offset is the distance from the stack top in the direction |
| // of stack growth -- so it's always nonnegative. |
| int LocalAreaOffset = TFI.getOffsetOfLocalArea(); |
| if (StackGrowsDown) |
| LocalAreaOffset = -LocalAreaOffset; |
| assert(LocalAreaOffset >= 0 |
| && "Local area offset should be in direction of stack growth"); |
| int64_t Offset = LocalAreaOffset; |
| |
| // If there are fixed sized objects that are preallocated in the local area, |
| // non-fixed objects can't be allocated right at the start of local area. |
| // We currently don't support filling in holes in between fixed sized |
| // objects, so we adjust 'Offset' to point to the end of last fixed sized |
| // preallocated object. |
| for (int i = FFI->getObjectIndexBegin(); i != 0; ++i) { |
| int64_t FixedOff; |
| if (StackGrowsDown) { |
| // The maximum distance from the stack pointer is at lower address of |
| // the object -- which is given by offset. For down growing stack |
| // the offset is negative, so we negate the offset to get the distance. |
| FixedOff = -FFI->getObjectOffset(i); |
| } else { |
| // The maximum distance from the start pointer is at the upper |
| // address of the object. |
| FixedOff = FFI->getObjectOffset(i) + FFI->getObjectSize(i); |
| } |
| if (FixedOff > Offset) Offset = FixedOff; |
| } |
| |
| // First assign frame offsets to stack objects that are used to spill |
| // callee saved registers. |
| if (StackGrowsDown) { |
| for (unsigned i = MinCSFrameIndex; i <= MaxCSFrameIndex; ++i) { |
| // If stack grows down, we need to add size of find the lowest |
| // address of the object. |
| Offset += FFI->getObjectSize(i); |
| |
| unsigned Align = FFI->getObjectAlignment(i); |
| // If the alignment of this object is greater than that of the stack, |
| // then increase the stack alignment to match. |
| MaxAlign = std::max(MaxAlign, Align); |
| // Adjust to alignment boundary |
| Offset = (Offset+Align-1)/Align*Align; |
| |
| FFI->setObjectOffset(i, -Offset); // Set the computed offset |
| } |
| } else { |
| int MaxCSFI = MaxCSFrameIndex, MinCSFI = MinCSFrameIndex; |
| for (int i = MaxCSFI; i >= MinCSFI ; --i) { |
| unsigned Align = FFI->getObjectAlignment(i); |
| // If the alignment of this object is greater than that of the stack, |
| // then increase the stack alignment to match. |
| MaxAlign = std::max(MaxAlign, Align); |
| // Adjust to alignment boundary |
| Offset = (Offset+Align-1)/Align*Align; |
| |
| FFI->setObjectOffset(i, Offset); |
| Offset += FFI->getObjectSize(i); |
| } |
| } |
| |
| // Make sure the special register scavenging spill slot is closest to the |
| // frame pointer if a frame pointer is required. |
| const TargetRegisterInfo *RegInfo = Fn.getTarget().getRegisterInfo(); |
| if (RS && RegInfo->hasFP(Fn) && !RegInfo->needsStackRealignment(Fn)) { |
| int SFI = RS->getScavengingFrameIndex(); |
| if (SFI >= 0) |
| AdjustStackOffset(FFI, SFI, StackGrowsDown, Offset, MaxAlign); |
| } |
| |
| // Make sure that the stack protector comes before the local variables on the |
| // stack. |
| if (FFI->getStackProtectorIndex() >= 0) |
| AdjustStackOffset(FFI, FFI->getStackProtectorIndex(), StackGrowsDown, |
| Offset, MaxAlign); |
| |
| // Then assign frame offsets to stack objects that are not used to spill |
| // callee saved registers. |
| for (unsigned i = 0, e = FFI->getObjectIndexEnd(); i != e; ++i) { |
| if (i >= MinCSFrameIndex && i <= MaxCSFrameIndex) |
| continue; |
| if (RS && (int)i == RS->getScavengingFrameIndex()) |
| continue; |
| if (FFI->isDeadObjectIndex(i)) |
| continue; |
| if (FFI->getStackProtectorIndex() == (int)i) |
| continue; |
| |
| AdjustStackOffset(FFI, i, StackGrowsDown, Offset, MaxAlign); |
| } |
| |
| // Make sure the special register scavenging spill slot is closest to the |
| // stack pointer. |
| if (RS && (!RegInfo->hasFP(Fn) || RegInfo->needsStackRealignment(Fn))) { |
| int SFI = RS->getScavengingFrameIndex(); |
| if (SFI >= 0) |
| AdjustStackOffset(FFI, SFI, StackGrowsDown, Offset, MaxAlign); |
| } |
| |
| if (!RegInfo->targetHandlesStackFrameRounding()) { |
| // If we have reserved argument space for call sites in the function |
| // immediately on entry to the current function, count it as part of the |
| // overall stack size. |
| if (FFI->hasCalls() && RegInfo->hasReservedCallFrame(Fn)) |
| Offset += FFI->getMaxCallFrameSize(); |
| |
| // Round up the size to a multiple of the alignment. If the function has |
| // any calls or alloca's, align to the target's StackAlignment value to |
| // ensure that the callee's frame or the alloca data is suitably aligned; |
| // otherwise, for leaf functions, align to the TransientStackAlignment |
| // value. |
| unsigned StackAlign; |
| if (FFI->hasCalls() || FFI->hasVarSizedObjects() || |
| (RegInfo->needsStackRealignment(Fn) && FFI->getObjectIndexEnd() != 0)) |
| StackAlign = TFI.getStackAlignment(); |
| else |
| StackAlign = TFI.getTransientStackAlignment(); |
| // If the frame pointer is eliminated, all frame offsets will be relative |
| // to SP not FP; align to MaxAlign so this works. |
| StackAlign = std::max(StackAlign, MaxAlign); |
| unsigned AlignMask = StackAlign - 1; |
| Offset = (Offset + AlignMask) & ~uint64_t(AlignMask); |
| } |
| |
| // Update frame info to pretend that this is part of the stack... |
| FFI->setStackSize(Offset - LocalAreaOffset); |
| |
| // Remember the required stack alignment in case targets need it to perform |
| // dynamic stack alignment. |
| if (MaxAlign > FFI->getMaxAlignment()) |
| FFI->setMaxAlignment(MaxAlign); |
| } |
| |
| |
| /// insertPrologEpilogCode - Scan the function for modified callee saved |
| /// registers, insert spill code for these callee saved registers, then add |
| /// prolog and epilog code to the function. |
| /// |
| void PEI::insertPrologEpilogCode(MachineFunction &Fn) { |
| const TargetRegisterInfo *TRI = Fn.getTarget().getRegisterInfo(); |
| |
| // Add prologue to the function... |
| TRI->emitPrologue(Fn); |
| |
| // Add epilogue to restore the callee-save registers in each exiting block |
| for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { |
| // If last instruction is a return instruction, add an epilogue |
| if (!I->empty() && I->back().getDesc().isReturn()) |
| TRI->emitEpilogue(Fn, *I); |
| } |
| } |
| |
| |
| /// replaceFrameIndices - Replace all MO_FrameIndex operands with physical |
| /// register references and actual offsets. |
| /// |
| void PEI::replaceFrameIndices(MachineFunction &Fn) { |
| if (!Fn.getFrameInfo()->hasStackObjects()) return; // Nothing to do? |
| |
| const TargetMachine &TM = Fn.getTarget(); |
| assert(TM.getRegisterInfo() && "TM::getRegisterInfo() must be implemented!"); |
| const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); |
| const TargetFrameInfo *TFI = TM.getFrameInfo(); |
| bool StackGrowsDown = |
| TFI->getStackGrowthDirection() == TargetFrameInfo::StackGrowsDown; |
| int FrameSetupOpcode = TRI.getCallFrameSetupOpcode(); |
| int FrameDestroyOpcode = TRI.getCallFrameDestroyOpcode(); |
| |
| for (MachineFunction::iterator BB = Fn.begin(), |
| E = Fn.end(); BB != E; ++BB) { |
| int SPAdj = 0; // SP offset due to call frame setup / destroy. |
| if (RS && !FrameIndexVirtualScavenging) RS->enterBasicBlock(BB); |
| |
| for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) { |
| |
| if (I->getOpcode() == FrameSetupOpcode || |
| I->getOpcode() == FrameDestroyOpcode) { |
| // Remember how much SP has been adjusted to create the call |
| // frame. |
| int Size = I->getOperand(0).getImm(); |
| |
| if ((!StackGrowsDown && I->getOpcode() == FrameSetupOpcode) || |
| (StackGrowsDown && I->getOpcode() == FrameDestroyOpcode)) |
| Size = -Size; |
| |
| SPAdj += Size; |
| |
| MachineBasicBlock::iterator PrevI = BB->end(); |
| if (I != BB->begin()) PrevI = prior(I); |
| TRI.eliminateCallFramePseudoInstr(Fn, *BB, I); |
| |
| // Visit the instructions created by eliminateCallFramePseudoInstr(). |
| if (PrevI == BB->end()) |
| I = BB->begin(); // The replaced instr was the first in the block. |
| else |
| I = llvm::next(PrevI); |
| continue; |
| } |
| |
| MachineInstr *MI = I; |
| bool DoIncr = true; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) |
| if (MI->getOperand(i).isFI()) { |
| // Some instructions (e.g. inline asm instructions) can have |
| // multiple frame indices and/or cause eliminateFrameIndex |
| // to insert more than one instruction. We need the register |
| // scavenger to go through all of these instructions so that |
| // it can update its register information. We keep the |
| // iterator at the point before insertion so that we can |
| // revisit them in full. |
| bool AtBeginning = (I == BB->begin()); |
| if (!AtBeginning) --I; |
| |
| // If this instruction has a FrameIndex operand, we need to |
| // use that target machine register info object to eliminate |
| // it. |
| int Value; |
| unsigned VReg = |
| TRI.eliminateFrameIndex(MI, SPAdj, &Value, |
| FrameIndexVirtualScavenging ? NULL : RS); |
| if (VReg) { |
| assert (FrameIndexVirtualScavenging && |
| "Not scavenging, but virtual returned from " |
| "eliminateFrameIndex()!"); |
| FrameConstantRegMap[VReg] = FrameConstantEntry(Value, SPAdj); |
| } |
| |
| // Reset the iterator if we were at the beginning of the BB. |
| if (AtBeginning) { |
| I = BB->begin(); |
| DoIncr = false; |
| } |
| |
| MI = 0; |
| break; |
| } |
| |
| if (DoIncr && I != BB->end()) ++I; |
| |
| // Update register states. |
| if (RS && !FrameIndexVirtualScavenging && MI) RS->forward(MI); |
| } |
| |
| assert(SPAdj == 0 && "Unbalanced call frame setup / destroy pairs?"); |
| } |
| } |
| |
| /// findLastUseReg - find the killing use of the specified register within |
| /// the instruciton range. Return the operand number of the kill in Operand. |
| static MachineBasicBlock::iterator |
| findLastUseReg(MachineBasicBlock::iterator I, MachineBasicBlock::iterator ME, |
| unsigned Reg) { |
| // Scan forward to find the last use of this virtual register |
| for (++I; I != ME; ++I) { |
| MachineInstr *MI = I; |
| bool isDefInsn = false; |
| bool isKillInsn = false; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) |
| if (MI->getOperand(i).isReg()) { |
| unsigned OpReg = MI->getOperand(i).getReg(); |
| if (OpReg == 0 || !TargetRegisterInfo::isVirtualRegister(OpReg)) |
| continue; |
| assert (OpReg == Reg |
| && "overlapping use of scavenged index register!"); |
| // If this is the killing use, we have a candidate. |
| if (MI->getOperand(i).isKill()) |
| isKillInsn = true; |
| else if (MI->getOperand(i).isDef()) |
| isDefInsn = true; |
| } |
| if (isKillInsn && !isDefInsn) |
| return I; |
| } |
| // If we hit the end of the basic block, there was no kill of |
| // the virtual register, which is wrong. |
| assert (0 && "scavenged index register never killed!"); |
| return ME; |
| } |
| |
| /// scavengeFrameVirtualRegs - Replace all frame index virtual registers |
| /// with physical registers. Use the register scavenger to find an |
| /// appropriate register to use. |
| void PEI::scavengeFrameVirtualRegs(MachineFunction &Fn) { |
| // Run through the instructions and find any virtual registers. |
| for (MachineFunction::iterator BB = Fn.begin(), |
| E = Fn.end(); BB != E; ++BB) { |
| RS->enterBasicBlock(BB); |
| |
| // FIXME: The logic flow in this function is still too convoluted. |
| // It needs a cleanup refactoring. Do that in preparation for tracking |
| // more than one scratch register value and using ranges to find |
| // available scratch registers. |
| unsigned CurrentVirtReg = 0; |
| unsigned CurrentScratchReg = 0; |
| bool havePrevValue = false; |
| int PrevValue = 0; |
| MachineInstr *PrevLastUseMI = NULL; |
| unsigned PrevLastUseOp = 0; |
| bool trackingCurrentValue = false; |
| int SPAdj = 0; |
| int Value = 0; |
| |
| // The instruction stream may change in the loop, so check BB->end() |
| // directly. |
| for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ) { |
| MachineInstr *MI = I; |
| bool isDefInsn = false; |
| bool isKillInsn = false; |
| bool clobbersScratchReg = false; |
| bool DoIncr = true; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| if (MI->getOperand(i).isReg()) { |
| MachineOperand &MO = MI->getOperand(i); |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) |
| continue; |
| if (!TargetRegisterInfo::isVirtualRegister(Reg)) { |
| // If we have a previous scratch reg, check and see if anything |
| // here kills whatever value is in there. |
| if (Reg == CurrentScratchReg) { |
| if (MO.isUse()) { |
| // Two-address operands implicitly kill |
| if (MO.isKill() || MI->isRegTiedToDefOperand(i)) |
| clobbersScratchReg = true; |
| } else { |
| assert (MO.isDef()); |
| clobbersScratchReg = true; |
| } |
| } |
| continue; |
| } |
| // If this is a def, remember that this insn defines the value. |
| // This lets us properly consider insns which re-use the scratch |
| // register, such as r2 = sub r2, #imm, in the middle of the |
| // scratch range. |
| if (MO.isDef()) |
| isDefInsn = true; |
| |
| // Have we already allocated a scratch register for this virtual? |
| if (Reg != CurrentVirtReg) { |
| // When we first encounter a new virtual register, it |
| // must be a definition. |
| assert(MI->getOperand(i).isDef() && |
| "frame index virtual missing def!"); |
| // We can't have nested virtual register live ranges because |
| // there's only a guarantee of one scavenged register at a time. |
| assert (CurrentVirtReg == 0 && |
| "overlapping frame index virtual registers!"); |
| |
| // If the target gave us information about what's in the register, |
| // we can use that to re-use scratch regs. |
| DenseMap<unsigned, FrameConstantEntry>::iterator Entry = |
| FrameConstantRegMap.find(Reg); |
| trackingCurrentValue = Entry != FrameConstantRegMap.end(); |
| if (trackingCurrentValue) { |
| SPAdj = (*Entry).second.second; |
| Value = (*Entry).second.first; |
| } else |
| SPAdj = Value = 0; |
| |
| // If the scratch register from the last allocation is still |
| // available, see if the value matches. If it does, just re-use it. |
| if (trackingCurrentValue && havePrevValue && PrevValue == Value) { |
| // FIXME: This assumes that the instructions in the live range |
| // for the virtual register are exclusively for the purpose |
| // of populating the value in the register. That's reasonable |
| // for these frame index registers, but it's still a very, very |
| // strong assumption. rdar://7322732. Better would be to |
| // explicitly check each instruction in the range for references |
| // to the virtual register. Only delete those insns that |
| // touch the virtual register. |
| |
| // Find the last use of the new virtual register. Remove all |
| // instruction between here and there, and update the current |
| // instruction to reference the last use insn instead. |
| MachineBasicBlock::iterator LastUseMI = |
| findLastUseReg(I, BB->end(), Reg); |
| |
| // Remove all instructions up 'til the last use, since they're |
| // just calculating the value we already have. |
| BB->erase(I, LastUseMI); |
| I = LastUseMI; |
| |
| // Extend the live range of the scratch register |
| PrevLastUseMI->getOperand(PrevLastUseOp).setIsKill(false); |
| RS->setUsed(CurrentScratchReg); |
| CurrentVirtReg = Reg; |
| |
| // We deleted the instruction we were scanning the operands of. |
| // Jump back to the instruction iterator loop. Don't increment |
| // past this instruction since we updated the iterator already. |
| DoIncr = false; |
| break; |
| } |
| |
| // Scavenge a new scratch register |
| CurrentVirtReg = Reg; |
| const TargetRegisterClass *RC = Fn.getRegInfo().getRegClass(Reg); |
| CurrentScratchReg = RS->FindUnusedReg(RC); |
| if (CurrentScratchReg == 0) |
| // No register is "free". Scavenge a register. |
| CurrentScratchReg = RS->scavengeRegister(RC, I, SPAdj); |
| |
| PrevValue = Value; |
| } |
| // replace this reference to the virtual register with the |
| // scratch register. |
| assert (CurrentScratchReg && "Missing scratch register!"); |
| MI->getOperand(i).setReg(CurrentScratchReg); |
| |
| if (MI->getOperand(i).isKill()) { |
| isKillInsn = true; |
| PrevLastUseOp = i; |
| PrevLastUseMI = MI; |
| } |
| } |
| } |
| // If this is the last use of the scratch, stop tracking it. The |
| // last use will be a kill operand in an instruction that does |
| // not also define the scratch register. |
| if (isKillInsn && !isDefInsn) { |
| CurrentVirtReg = 0; |
| havePrevValue = trackingCurrentValue; |
| } |
| // Similarly, notice if instruction clobbered the value in the |
| // register we're tracking for possible later reuse. This is noted |
| // above, but enforced here since the value is still live while we |
| // process the rest of the operands of the instruction. |
| if (clobbersScratchReg) { |
| havePrevValue = false; |
| CurrentScratchReg = 0; |
| } |
| if (DoIncr) { |
| RS->forward(I); |
| ++I; |
| } |
| } |
| } |
| } |