| //===-- Writer.cpp - Library for writing LLVM bytecode files --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This library implements the functionality defined in llvm/Bytecode/Writer.h |
| // |
| // Note that this file uses an unusual technique of outputting all the bytecode |
| // to a vector of unsigned char, then copies the vector to an ostream. The |
| // reason for this is that we must do "seeking" in the stream to do back- |
| // patching, and some very important ostreams that we want to support (like |
| // pipes) do not support seeking. :( :( :( |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "WriterInternals.h" |
| #include "llvm/Bytecode/WriteBytecodePass.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Module.h" |
| #include "llvm/SymbolTable.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "Support/STLExtras.h" |
| #include "Support/Statistic.h" |
| #include <cstring> |
| #include <algorithm> |
| using namespace llvm; |
| |
| /// This value needs to be incremented every time the bytecode format changes |
| /// so that the reader can distinguish which format of the bytecode file has |
| /// been written. |
| /// @brief The bytecode version number |
| const unsigned BCVersionNum = 4; |
| |
| static RegisterPass<WriteBytecodePass> X("emitbytecode", "Bytecode Writer"); |
| |
| static Statistic<> |
| BytesWritten("bytecodewriter", "Number of bytecode bytes written"); |
| |
| //===----------------------------------------------------------------------===// |
| //=== Output Primitives ===// |
| //===----------------------------------------------------------------------===// |
| |
| // output - If a position is specified, it must be in the valid portion of the |
| // string... note that this should be inlined always so only the relevant IF |
| // body should be included. |
| inline void BytecodeWriter::output(unsigned i, int pos) { |
| if (pos == -1) { // Be endian clean, little endian is our friend |
| Out.push_back((unsigned char)i); |
| Out.push_back((unsigned char)(i >> 8)); |
| Out.push_back((unsigned char)(i >> 16)); |
| Out.push_back((unsigned char)(i >> 24)); |
| } else { |
| Out[pos ] = (unsigned char)i; |
| Out[pos+1] = (unsigned char)(i >> 8); |
| Out[pos+2] = (unsigned char)(i >> 16); |
| Out[pos+3] = (unsigned char)(i >> 24); |
| } |
| } |
| |
| inline void BytecodeWriter::output(int i) { |
| output((unsigned)i); |
| } |
| |
| /// output_vbr - Output an unsigned value, by using the least number of bytes |
| /// possible. This is useful because many of our "infinite" values are really |
| /// very small most of the time; but can be large a few times. |
| /// Data format used: If you read a byte with the high bit set, use the low |
| /// seven bits as data and then read another byte. |
| inline void BytecodeWriter::output_vbr(uint64_t i) { |
| while (1) { |
| if (i < 0x80) { // done? |
| Out.push_back((unsigned char)i); // We know the high bit is clear... |
| return; |
| } |
| |
| // Nope, we are bigger than a character, output the next 7 bits and set the |
| // high bit to say that there is more coming... |
| Out.push_back(0x80 | ((unsigned char)i & 0x7F)); |
| i >>= 7; // Shift out 7 bits now... |
| } |
| } |
| |
| inline void BytecodeWriter::output_vbr(unsigned i) { |
| while (1) { |
| if (i < 0x80) { // done? |
| Out.push_back((unsigned char)i); // We know the high bit is clear... |
| return; |
| } |
| |
| // Nope, we are bigger than a character, output the next 7 bits and set the |
| // high bit to say that there is more coming... |
| Out.push_back(0x80 | ((unsigned char)i & 0x7F)); |
| i >>= 7; // Shift out 7 bits now... |
| } |
| } |
| |
| inline void BytecodeWriter::output_typeid(unsigned i) { |
| if (i <= 0x00FFFFFF) |
| this->output_vbr(i); |
| else { |
| this->output_vbr(0x00FFFFFF); |
| this->output_vbr(i); |
| } |
| } |
| |
| inline void BytecodeWriter::output_vbr(int64_t i) { |
| if (i < 0) |
| output_vbr(((uint64_t)(-i) << 1) | 1); // Set low order sign bit... |
| else |
| output_vbr((uint64_t)i << 1); // Low order bit is clear. |
| } |
| |
| |
| inline void BytecodeWriter::output_vbr(int i) { |
| if (i < 0) |
| output_vbr(((unsigned)(-i) << 1) | 1); // Set low order sign bit... |
| else |
| output_vbr((unsigned)i << 1); // Low order bit is clear. |
| } |
| |
| inline void BytecodeWriter::output(const std::string &s) { |
| unsigned Len = s.length(); |
| output_vbr(Len ); // Strings may have an arbitrary length... |
| Out.insert(Out.end(), s.begin(), s.end()); |
| } |
| |
| inline void BytecodeWriter::output_data(const void *Ptr, const void *End) { |
| Out.insert(Out.end(), (const unsigned char*)Ptr, (const unsigned char*)End); |
| } |
| |
| inline void BytecodeWriter::output_float(float& FloatVal) { |
| /// FIXME: This isn't optimal, it has size problems on some platforms |
| /// where FP is not IEEE. |
| union { |
| float f; |
| uint32_t i; |
| } FloatUnion; |
| FloatUnion.f = FloatVal; |
| Out.push_back( static_cast<unsigned char>( (FloatUnion.i & 0xFF ))); |
| Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 8) & 0xFF)); |
| Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 16) & 0xFF)); |
| Out.push_back( static_cast<unsigned char>( (FloatUnion.i >> 24) & 0xFF)); |
| } |
| |
| inline void BytecodeWriter::output_double(double& DoubleVal) { |
| /// FIXME: This isn't optimal, it has size problems on some platforms |
| /// where FP is not IEEE. |
| union { |
| double d; |
| uint64_t i; |
| } DoubleUnion; |
| DoubleUnion.d = DoubleVal; |
| Out.push_back( static_cast<unsigned char>( (DoubleUnion.i & 0xFF ))); |
| Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 8) & 0xFF)); |
| Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 16) & 0xFF)); |
| Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 24) & 0xFF)); |
| Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 32) & 0xFF)); |
| Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 40) & 0xFF)); |
| Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 48) & 0xFF)); |
| Out.push_back( static_cast<unsigned char>( (DoubleUnion.i >> 56) & 0xFF)); |
| } |
| |
| inline BytecodeBlock::BytecodeBlock(unsigned ID, BytecodeWriter& w, |
| bool elideIfEmpty, bool hasLongFormat ) |
| : Id(ID), Writer(w), ElideIfEmpty(elideIfEmpty), HasLongFormat(hasLongFormat){ |
| |
| if (HasLongFormat) { |
| w.output(ID); |
| w.output(0U); // For length in long format |
| } else { |
| w.output(0U); /// Place holder for ID and length for this block |
| } |
| Loc = w.size(); |
| } |
| |
| inline BytecodeBlock::~BytecodeBlock() { // Do backpatch when block goes out |
| // of scope... |
| if (Loc == Writer.size() && ElideIfEmpty) { |
| // If the block is empty, and we are allowed to, do not emit the block at |
| // all! |
| Writer.resize(Writer.size()-(HasLongFormat?8:4)); |
| return; |
| } |
| |
| //cerr << "OldLoc = " << Loc << " NewLoc = " << NewLoc << " diff = " |
| // << (NewLoc-Loc) << endl; |
| if (HasLongFormat) |
| Writer.output(unsigned(Writer.size()-Loc), int(Loc-4)); |
| else |
| Writer.output(unsigned(Writer.size()-Loc) << 5 | (Id & 0x1F), int(Loc-4)); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| //=== Constant Output ===// |
| //===----------------------------------------------------------------------===// |
| |
| void BytecodeWriter::outputType(const Type *T) { |
| output_vbr((unsigned)T->getTypeID()); |
| |
| // That's all there is to handling primitive types... |
| if (T->isPrimitiveType()) { |
| return; // We might do this if we alias a prim type: %x = type int |
| } |
| |
| switch (T->getTypeID()) { // Handle derived types now. |
| case Type::FunctionTyID: { |
| const FunctionType *MT = cast<FunctionType>(T); |
| int Slot = Table.getSlot(MT->getReturnType()); |
| assert(Slot != -1 && "Type used but not available!!"); |
| output_typeid((unsigned)Slot); |
| |
| // Output the number of arguments to function (+1 if varargs): |
| output_vbr((unsigned)MT->getNumParams()+MT->isVarArg()); |
| |
| // Output all of the arguments... |
| FunctionType::param_iterator I = MT->param_begin(); |
| for (; I != MT->param_end(); ++I) { |
| Slot = Table.getSlot(*I); |
| assert(Slot != -1 && "Type used but not available!!"); |
| output_typeid((unsigned)Slot); |
| } |
| |
| // Terminate list with VoidTy if we are a varargs function... |
| if (MT->isVarArg()) |
| output_typeid((unsigned)Type::VoidTyID); |
| break; |
| } |
| |
| case Type::ArrayTyID: { |
| const ArrayType *AT = cast<ArrayType>(T); |
| int Slot = Table.getSlot(AT->getElementType()); |
| assert(Slot != -1 && "Type used but not available!!"); |
| output_typeid((unsigned)Slot); |
| //std::cerr << "Type slot = " << Slot << " Type = " << T->getName() << endl; |
| |
| output_vbr(AT->getNumElements()); |
| break; |
| } |
| |
| case Type::StructTyID: { |
| const StructType *ST = cast<StructType>(T); |
| |
| // Output all of the element types... |
| for (StructType::element_iterator I = ST->element_begin(), |
| E = ST->element_end(); I != E; ++I) { |
| int Slot = Table.getSlot(*I); |
| assert(Slot != -1 && "Type used but not available!!"); |
| output_typeid((unsigned)Slot); |
| } |
| |
| // Terminate list with VoidTy |
| output_typeid((unsigned)Type::VoidTyID); |
| break; |
| } |
| |
| case Type::PointerTyID: { |
| const PointerType *PT = cast<PointerType>(T); |
| int Slot = Table.getSlot(PT->getElementType()); |
| assert(Slot != -1 && "Type used but not available!!"); |
| output_typeid((unsigned)Slot); |
| break; |
| } |
| |
| case Type::OpaqueTyID: { |
| // No need to emit anything, just the count of opaque types is enough. |
| break; |
| } |
| |
| //case Type::PackedTyID: |
| default: |
| std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize" |
| << " Type '" << T->getDescription() << "'\n"; |
| break; |
| } |
| } |
| |
| void BytecodeWriter::outputConstant(const Constant *CPV) { |
| assert((CPV->getType()->isPrimitiveType() || !CPV->isNullValue()) && |
| "Shouldn't output null constants!"); |
| |
| // We must check for a ConstantExpr before switching by type because |
| // a ConstantExpr can be of any type, and has no explicit value. |
| // |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { |
| // FIXME: Encoding of constant exprs could be much more compact! |
| assert(CE->getNumOperands() > 0 && "ConstantExpr with 0 operands"); |
| output_vbr(CE->getNumOperands()); // flags as an expr |
| output_vbr(CE->getOpcode()); // flags as an expr |
| |
| for (User::const_op_iterator OI = CE->op_begin(); OI != CE->op_end(); ++OI){ |
| int Slot = Table.getSlot(*OI); |
| assert(Slot != -1 && "Unknown constant used in ConstantExpr!!"); |
| output_vbr((unsigned)Slot); |
| Slot = Table.getSlot((*OI)->getType()); |
| output_typeid((unsigned)Slot); |
| } |
| return; |
| } else { |
| output_vbr(0U); // flag as not a ConstantExpr |
| } |
| |
| switch (CPV->getType()->getTypeID()) { |
| case Type::BoolTyID: // Boolean Types |
| if (cast<ConstantBool>(CPV)->getValue()) |
| output_vbr(1U); |
| else |
| output_vbr(0U); |
| break; |
| |
| case Type::UByteTyID: // Unsigned integer types... |
| case Type::UShortTyID: |
| case Type::UIntTyID: |
| case Type::ULongTyID: |
| output_vbr(cast<ConstantUInt>(CPV)->getValue()); |
| break; |
| |
| case Type::SByteTyID: // Signed integer types... |
| case Type::ShortTyID: |
| case Type::IntTyID: |
| case Type::LongTyID: |
| output_vbr(cast<ConstantSInt>(CPV)->getValue()); |
| break; |
| |
| case Type::ArrayTyID: { |
| const ConstantArray *CPA = cast<ConstantArray>(CPV); |
| assert(!CPA->isString() && "Constant strings should be handled specially!"); |
| |
| for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) { |
| int Slot = Table.getSlot(CPA->getOperand(i)); |
| assert(Slot != -1 && "Constant used but not available!!"); |
| output_vbr((unsigned)Slot); |
| } |
| break; |
| } |
| |
| case Type::StructTyID: { |
| const ConstantStruct *CPS = cast<ConstantStruct>(CPV); |
| |
| for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) { |
| int Slot = Table.getSlot(CPS->getOperand(i)); |
| assert(Slot != -1 && "Constant used but not available!!"); |
| output_vbr((unsigned)Slot); |
| } |
| break; |
| } |
| |
| case Type::PointerTyID: |
| assert(0 && "No non-null, non-constant-expr constants allowed!"); |
| abort(); |
| |
| case Type::FloatTyID: { // Floating point types... |
| float Tmp = (float)cast<ConstantFP>(CPV)->getValue(); |
| output_float(Tmp); |
| break; |
| } |
| case Type::DoubleTyID: { |
| double Tmp = cast<ConstantFP>(CPV)->getValue(); |
| output_double(Tmp); |
| break; |
| } |
| |
| case Type::VoidTyID: |
| case Type::LabelTyID: |
| default: |
| std::cerr << __FILE__ << ":" << __LINE__ << ": Don't know how to serialize" |
| << " type '" << *CPV->getType() << "'\n"; |
| break; |
| } |
| return; |
| } |
| |
| void BytecodeWriter::outputConstantStrings() { |
| SlotCalculator::string_iterator I = Table.string_begin(); |
| SlotCalculator::string_iterator E = Table.string_end(); |
| if (I == E) return; // No strings to emit |
| |
| // If we have != 0 strings to emit, output them now. Strings are emitted into |
| // the 'void' type plane. |
| output_vbr(unsigned(E-I)); |
| output_typeid(Type::VoidTyID); |
| |
| // Emit all of the strings. |
| for (I = Table.string_begin(); I != E; ++I) { |
| const ConstantArray *Str = *I; |
| int Slot = Table.getSlot(Str->getType()); |
| assert(Slot != -1 && "Constant string of unknown type?"); |
| output_typeid((unsigned)Slot); |
| |
| // Now that we emitted the type (which indicates the size of the string), |
| // emit all of the characters. |
| std::string Val = Str->getAsString(); |
| output_data(Val.c_str(), Val.c_str()+Val.size()); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| //=== Instruction Output ===// |
| //===----------------------------------------------------------------------===// |
| typedef unsigned char uchar; |
| |
| // outputInstructionFormat0 - Output those wierd instructions that have a large |
| // number of operands or have large operands themselves... |
| // |
| // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] |
| // |
| void BytecodeWriter::outputInstructionFormat0(const Instruction *I, unsigned Opcode, |
| const SlotCalculator &Table, |
| unsigned Type) { |
| // Opcode must have top two bits clear... |
| output_vbr(Opcode << 2); // Instruction Opcode ID |
| output_typeid(Type); // Result type |
| |
| unsigned NumArgs = I->getNumOperands(); |
| output_vbr(NumArgs + (isa<CastInst>(I) || isa<VANextInst>(I) || |
| isa<VAArgInst>(I))); |
| |
| if (!isa<GetElementPtrInst>(&I)) { |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| int Slot = Table.getSlot(I->getOperand(i)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot); |
| } |
| |
| if (isa<CastInst>(I) || isa<VAArgInst>(I)) { |
| int Slot = Table.getSlot(I->getType()); |
| assert(Slot != -1 && "Cast return type unknown?"); |
| output_typeid((unsigned)Slot); |
| } else if (const VANextInst *VAI = dyn_cast<VANextInst>(I)) { |
| int Slot = Table.getSlot(VAI->getArgType()); |
| assert(Slot != -1 && "VarArg argument type unknown?"); |
| output_typeid((unsigned)Slot); |
| } |
| |
| } else { |
| int Slot = Table.getSlot(I->getOperand(0)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr(unsigned(Slot)); |
| |
| // We need to encode the type of sequential type indices into their slot # |
| unsigned Idx = 1; |
| for (gep_type_iterator TI = gep_type_begin(I), E = gep_type_end(I); |
| Idx != NumArgs; ++TI, ++Idx) { |
| Slot = Table.getSlot(I->getOperand(Idx)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| |
| if (isa<SequentialType>(*TI)) { |
| unsigned IdxId; |
| switch (I->getOperand(Idx)->getType()->getTypeID()) { |
| default: assert(0 && "Unknown index type!"); |
| case Type::UIntTyID: IdxId = 0; break; |
| case Type::IntTyID: IdxId = 1; break; |
| case Type::ULongTyID: IdxId = 2; break; |
| case Type::LongTyID: IdxId = 3; break; |
| } |
| Slot = (Slot << 2) | IdxId; |
| } |
| output_vbr(unsigned(Slot)); |
| } |
| } |
| } |
| |
| |
| // outputInstrVarArgsCall - Output the absurdly annoying varargs function calls. |
| // This are more annoying than most because the signature of the call does not |
| // tell us anything about the types of the arguments in the varargs portion. |
| // Because of this, we encode (as type 0) all of the argument types explicitly |
| // before the argument value. This really sucks, but you shouldn't be using |
| // varargs functions in your code! *death to printf*! |
| // |
| // Format: [opcode] [type] [numargs] [arg0] [arg1] ... [arg<numargs-1>] |
| // |
| void BytecodeWriter::outputInstrVarArgsCall(const Instruction *I, |
| unsigned Opcode, |
| const SlotCalculator &Table, |
| unsigned Type) { |
| assert(isa<CallInst>(I) || isa<InvokeInst>(I)); |
| // Opcode must have top two bits clear... |
| output_vbr(Opcode << 2); // Instruction Opcode ID |
| output_typeid(Type); // Result type (varargs type) |
| |
| const PointerType *PTy = cast<PointerType>(I->getOperand(0)->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| unsigned NumParams = FTy->getNumParams(); |
| |
| unsigned NumFixedOperands; |
| if (isa<CallInst>(I)) { |
| // Output an operand for the callee and each fixed argument, then two for |
| // each variable argument. |
| NumFixedOperands = 1+NumParams; |
| } else { |
| assert(isa<InvokeInst>(I) && "Not call or invoke??"); |
| // Output an operand for the callee and destinations, then two for each |
| // variable argument. |
| NumFixedOperands = 3+NumParams; |
| } |
| output_vbr(2 * I->getNumOperands()-NumFixedOperands); |
| |
| // The type for the function has already been emitted in the type field of the |
| // instruction. Just emit the slot # now. |
| for (unsigned i = 0; i != NumFixedOperands; ++i) { |
| int Slot = Table.getSlot(I->getOperand(i)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot); |
| } |
| |
| for (unsigned i = NumFixedOperands, e = I->getNumOperands(); i != e; ++i) { |
| // Output Arg Type ID |
| int Slot = Table.getSlot(I->getOperand(i)->getType()); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_typeid((unsigned)Slot); |
| |
| // Output arg ID itself |
| Slot = Table.getSlot(I->getOperand(i)); |
| assert(Slot >= 0 && "No slot number for value!?!?"); |
| output_vbr((unsigned)Slot); |
| } |
| } |
| |
| |
| // outputInstructionFormat1 - Output one operand instructions, knowing that no |
| // operand index is >= 2^12. |
| // |
| inline void BytecodeWriter::outputInstructionFormat1(const Instruction *I, |
| unsigned Opcode, |
| unsigned *Slots, |
| unsigned Type) { |
| // bits Instruction format: |
| // -------------------------- |
| // 01-00: Opcode type, fixed to 1. |
| // 07-02: Opcode |
| // 19-08: Resulting type plane |
| // 31-20: Operand #1 (if set to (2^12-1), then zero operands) |
| // |
| unsigned Bits = 1 | (Opcode << 2) | (Type << 8) | (Slots[0] << 20); |
| // cerr << "1 " << IType << " " << Type << " " << Slots[0] << endl; |
| output(Bits); |
| } |
| |
| |
| // outputInstructionFormat2 - Output two operand instructions, knowing that no |
| // operand index is >= 2^8. |
| // |
| inline void BytecodeWriter::outputInstructionFormat2(const Instruction *I, |
| unsigned Opcode, |
| unsigned *Slots, |
| unsigned Type) { |
| // bits Instruction format: |
| // -------------------------- |
| // 01-00: Opcode type, fixed to 2. |
| // 07-02: Opcode |
| // 15-08: Resulting type plane |
| // 23-16: Operand #1 |
| // 31-24: Operand #2 |
| // |
| unsigned Bits = 2 | (Opcode << 2) | (Type << 8) | |
| (Slots[0] << 16) | (Slots[1] << 24); |
| // cerr << "2 " << IType << " " << Type << " " << Slots[0] << " " |
| // << Slots[1] << endl; |
| output(Bits); |
| } |
| |
| |
| // outputInstructionFormat3 - Output three operand instructions, knowing that no |
| // operand index is >= 2^6. |
| // |
| inline void BytecodeWriter::outputInstructionFormat3(const Instruction *I, |
| unsigned Opcode, |
| unsigned *Slots, |
| unsigned Type) { |
| // bits Instruction format: |
| // -------------------------- |
| // 01-00: Opcode type, fixed to 3. |
| // 07-02: Opcode |
| // 13-08: Resulting type plane |
| // 19-14: Operand #1 |
| // 25-20: Operand #2 |
| // 31-26: Operand #3 |
| // |
| unsigned Bits = 3 | (Opcode << 2) | (Type << 8) | |
| (Slots[0] << 14) | (Slots[1] << 20) | (Slots[2] << 26); |
| //cerr << "3 " << IType << " " << Type << " " << Slots[0] << " " |
| // << Slots[1] << " " << Slots[2] << endl; |
| output(Bits); |
| } |
| |
| void BytecodeWriter::outputInstruction(const Instruction &I) { |
| assert(I.getOpcode() < 62 && "Opcode too big???"); |
| unsigned Opcode = I.getOpcode(); |
| unsigned NumOperands = I.getNumOperands(); |
| |
| // Encode 'volatile load' as 62 and 'volatile store' as 63. |
| if (isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) |
| Opcode = 62; |
| if (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) |
| Opcode = 63; |
| |
| // Figure out which type to encode with the instruction. Typically we want |
| // the type of the first parameter, as opposed to the type of the instruction |
| // (for example, with setcc, we always know it returns bool, but the type of |
| // the first param is actually interesting). But if we have no arguments |
| // we take the type of the instruction itself. |
| // |
| const Type *Ty; |
| switch (I.getOpcode()) { |
| case Instruction::Select: |
| case Instruction::Malloc: |
| case Instruction::Alloca: |
| Ty = I.getType(); // These ALWAYS want to encode the return type |
| break; |
| case Instruction::Store: |
| Ty = I.getOperand(1)->getType(); // Encode the pointer type... |
| assert(isa<PointerType>(Ty) && "Store to nonpointer type!?!?"); |
| break; |
| default: // Otherwise use the default behavior... |
| Ty = NumOperands ? I.getOperand(0)->getType() : I.getType(); |
| break; |
| } |
| |
| unsigned Type; |
| int Slot = Table.getSlot(Ty); |
| assert(Slot != -1 && "Type not available!!?!"); |
| Type = (unsigned)Slot; |
| |
| // Varargs calls and invokes are encoded entirely different from any other |
| // instructions. |
| if (const CallInst *CI = dyn_cast<CallInst>(&I)){ |
| const PointerType *Ty =cast<PointerType>(CI->getCalledValue()->getType()); |
| if (cast<FunctionType>(Ty->getElementType())->isVarArg()) { |
| outputInstrVarArgsCall(CI, Opcode, Table, Type); |
| return; |
| } |
| } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) { |
| const PointerType *Ty =cast<PointerType>(II->getCalledValue()->getType()); |
| if (cast<FunctionType>(Ty->getElementType())->isVarArg()) { |
| outputInstrVarArgsCall(II, Opcode, Table, Type); |
| return; |
| } |
| } |
| |
| if (NumOperands <= 3) { |
| // Make sure that we take the type number into consideration. We don't want |
| // to overflow the field size for the instruction format we select. |
| // |
| unsigned MaxOpSlot = Type; |
| unsigned Slots[3]; Slots[0] = (1 << 12)-1; // Marker to signify 0 operands |
| |
| for (unsigned i = 0; i != NumOperands; ++i) { |
| int slot = Table.getSlot(I.getOperand(i)); |
| assert(slot != -1 && "Broken bytecode!"); |
| if (unsigned(slot) > MaxOpSlot) MaxOpSlot = unsigned(slot); |
| Slots[i] = unsigned(slot); |
| } |
| |
| // Handle the special cases for various instructions... |
| if (isa<CastInst>(I) || isa<VAArgInst>(I)) { |
| // Cast has to encode the destination type as the second argument in the |
| // packet, or else we won't know what type to cast to! |
| Slots[1] = Table.getSlot(I.getType()); |
| assert(Slots[1] != ~0U && "Cast return type unknown?"); |
| if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; |
| NumOperands++; |
| } else if (const VANextInst *VANI = dyn_cast<VANextInst>(&I)) { |
| Slots[1] = Table.getSlot(VANI->getArgType()); |
| assert(Slots[1] != ~0U && "va_next return type unknown?"); |
| if (Slots[1] > MaxOpSlot) MaxOpSlot = Slots[1]; |
| NumOperands++; |
| } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { |
| // We need to encode the type of sequential type indices into their slot # |
| unsigned Idx = 1; |
| for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP); |
| I != E; ++I, ++Idx) |
| if (isa<SequentialType>(*I)) { |
| unsigned IdxId; |
| switch (GEP->getOperand(Idx)->getType()->getTypeID()) { |
| default: assert(0 && "Unknown index type!"); |
| case Type::UIntTyID: IdxId = 0; break; |
| case Type::IntTyID: IdxId = 1; break; |
| case Type::ULongTyID: IdxId = 2; break; |
| case Type::LongTyID: IdxId = 3; break; |
| } |
| Slots[Idx] = (Slots[Idx] << 2) | IdxId; |
| if (Slots[Idx] > MaxOpSlot) MaxOpSlot = Slots[Idx]; |
| } |
| } |
| |
| // Decide which instruction encoding to use. This is determined primarily |
| // by the number of operands, and secondarily by whether or not the max |
| // operand will fit into the instruction encoding. More operands == fewer |
| // bits per operand. |
| // |
| switch (NumOperands) { |
| case 0: |
| case 1: |
| if (MaxOpSlot < (1 << 12)-1) { // -1 because we use 4095 to indicate 0 ops |
| outputInstructionFormat1(&I, Opcode, Slots, Type); |
| return; |
| } |
| break; |
| |
| case 2: |
| if (MaxOpSlot < (1 << 8)) { |
| outputInstructionFormat2(&I, Opcode, Slots, Type); |
| return; |
| } |
| break; |
| |
| case 3: |
| if (MaxOpSlot < (1 << 6)) { |
| outputInstructionFormat3(&I, Opcode, Slots, Type); |
| return; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // If we weren't handled before here, we either have a large number of |
| // operands or a large operand index that we are referring to. |
| outputInstructionFormat0(&I, Opcode, Table, Type); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| //=== Block Output ===// |
| //===----------------------------------------------------------------------===// |
| |
| BytecodeWriter::BytecodeWriter(std::vector<unsigned char> &o, const Module *M) |
| : Out(o), Table(M) { |
| |
| // Emit the signature... |
| static const unsigned char *Sig = (const unsigned char*)"llvm"; |
| output_data(Sig, Sig+4); |
| |
| // Emit the top level CLASS block. |
| BytecodeBlock ModuleBlock(BytecodeFormat::ModuleBlockID, *this, false, true); |
| |
| bool isBigEndian = M->getEndianness() == Module::BigEndian; |
| bool hasLongPointers = M->getPointerSize() == Module::Pointer64; |
| bool hasNoEndianness = M->getEndianness() == Module::AnyEndianness; |
| bool hasNoPointerSize = M->getPointerSize() == Module::AnyPointerSize; |
| |
| // Output the version identifier... we are currently on bytecode version #2, |
| // which corresponds to LLVM v1.3. |
| unsigned Version = (BCVersionNum << 4) | |
| (unsigned)isBigEndian | (hasLongPointers << 1) | |
| (hasNoEndianness << 2) | |
| (hasNoPointerSize << 3); |
| output_vbr(Version); |
| |
| // The Global type plane comes first |
| { |
| BytecodeBlock CPool(BytecodeFormat::GlobalTypePlaneBlockID, *this ); |
| outputTypes(Type::FirstDerivedTyID); |
| } |
| |
| // The ModuleInfoBlock follows directly after the type information |
| outputModuleInfoBlock(M); |
| |
| // Output module level constants, used for global variable initializers |
| outputConstants(false); |
| |
| // Do the whole module now! Process each function at a time... |
| for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) |
| outputFunction(I); |
| |
| // If needed, output the symbol table for the module... |
| outputSymbolTable(M->getSymbolTable()); |
| } |
| |
| void BytecodeWriter::outputTypes(unsigned TypeNum) |
| { |
| // Write the type plane for types first because earlier planes (e.g. for a |
| // primitive type like float) may have constants constructed using types |
| // coming later (e.g., via getelementptr from a pointer type). The type |
| // plane is needed before types can be fwd or bkwd referenced. |
| const std::vector<const Type*>& Types = Table.getTypes(); |
| assert(!Types.empty() && "No types at all?"); |
| assert(TypeNum <= Types.size() && "Invalid TypeNo index"); |
| |
| unsigned NumEntries = Types.size() - TypeNum; |
| |
| // Output type header: [num entries] |
| output_vbr(NumEntries); |
| |
| for (unsigned i = TypeNum; i < TypeNum+NumEntries; ++i) |
| outputType(Types[i]); |
| } |
| |
| // Helper function for outputConstants(). |
| // Writes out all the constants in the plane Plane starting at entry StartNo. |
| // |
| void BytecodeWriter::outputConstantsInPlane(const std::vector<const Value*> |
| &Plane, unsigned StartNo) { |
| unsigned ValNo = StartNo; |
| |
| // Scan through and ignore function arguments, global values, and constant |
| // strings. |
| for (; ValNo < Plane.size() && |
| (isa<Argument>(Plane[ValNo]) || isa<GlobalValue>(Plane[ValNo]) || |
| (isa<ConstantArray>(Plane[ValNo]) && |
| cast<ConstantArray>(Plane[ValNo])->isString())); ValNo++) |
| /*empty*/; |
| |
| unsigned NC = ValNo; // Number of constants |
| for (; NC < Plane.size() && (isa<Constant>(Plane[NC])); NC++) |
| /*empty*/; |
| NC -= ValNo; // Convert from index into count |
| if (NC == 0) return; // Skip empty type planes... |
| |
| // FIXME: Most slabs only have 1 or 2 entries! We should encode this much |
| // more compactly. |
| |
| // Output type header: [num entries][type id number] |
| // |
| output_vbr(NC); |
| |
| // Output the Type ID Number... |
| int Slot = Table.getSlot(Plane.front()->getType()); |
| assert (Slot != -1 && "Type in constant pool but not in function!!"); |
| output_typeid((unsigned)Slot); |
| |
| for (unsigned i = ValNo; i < ValNo+NC; ++i) { |
| const Value *V = Plane[i]; |
| if (const Constant *C = dyn_cast<Constant>(V)) { |
| outputConstant(C); |
| } |
| } |
| } |
| |
| static inline bool hasNullValue(unsigned TyID) { |
| return TyID != Type::LabelTyID && TyID != Type::VoidTyID; |
| } |
| |
| void BytecodeWriter::outputConstants(bool isFunction) { |
| BytecodeBlock CPool(BytecodeFormat::ConstantPoolBlockID, *this, |
| true /* Elide block if empty */); |
| |
| unsigned NumPlanes = Table.getNumPlanes(); |
| |
| if (isFunction) |
| // Output the type plane before any constants! |
| outputTypes( Table.getModuleTypeLevel() ); |
| else |
| // Output module-level string constants before any other constants.x |
| outputConstantStrings(); |
| |
| for (unsigned pno = 0; pno != NumPlanes; pno++) { |
| const std::vector<const Value*> &Plane = Table.getPlane(pno); |
| if (!Plane.empty()) { // Skip empty type planes... |
| unsigned ValNo = 0; |
| if (isFunction) // Don't re-emit module constants |
| ValNo += Table.getModuleLevel(pno); |
| |
| if (hasNullValue(pno)) { |
| // Skip zero initializer |
| if (ValNo == 0) |
| ValNo = 1; |
| } |
| |
| // Write out constants in the plane |
| outputConstantsInPlane(Plane, ValNo); |
| } |
| } |
| } |
| |
| static unsigned getEncodedLinkage(const GlobalValue *GV) { |
| switch (GV->getLinkage()) { |
| default: assert(0 && "Invalid linkage!"); |
| case GlobalValue::ExternalLinkage: return 0; |
| case GlobalValue::WeakLinkage: return 1; |
| case GlobalValue::AppendingLinkage: return 2; |
| case GlobalValue::InternalLinkage: return 3; |
| case GlobalValue::LinkOnceLinkage: return 4; |
| } |
| } |
| |
| void BytecodeWriter::outputModuleInfoBlock(const Module *M) { |
| BytecodeBlock ModuleInfoBlock(BytecodeFormat::ModuleGlobalInfoBlockID, *this); |
| |
| // Output the types for the global variables in the module... |
| for (Module::const_giterator I = M->gbegin(), End = M->gend(); I != End;++I) { |
| int Slot = Table.getSlot(I->getType()); |
| assert(Slot != -1 && "Module global vars is broken!"); |
| |
| // Fields: bit0 = isConstant, bit1 = hasInitializer, bit2-4=Linkage, |
| // bit5+ = Slot # for type |
| unsigned oSlot = ((unsigned)Slot << 5) | (getEncodedLinkage(I) << 2) | |
| (I->hasInitializer() << 1) | (unsigned)I->isConstant(); |
| output_vbr(oSlot ); |
| |
| // If we have an initializer, output it now. |
| if (I->hasInitializer()) { |
| Slot = Table.getSlot((Value*)I->getInitializer()); |
| assert(Slot != -1 && "No slot for global var initializer!"); |
| output_vbr((unsigned)Slot); |
| } |
| } |
| output_typeid((unsigned)Table.getSlot(Type::VoidTy)); |
| |
| // Output the types of the functions in this module... |
| for (Module::const_iterator I = M->begin(), End = M->end(); I != End; ++I) { |
| int Slot = Table.getSlot(I->getType()); |
| assert(Slot != -1 && "Module const pool is broken!"); |
| assert(Slot >= Type::FirstDerivedTyID && "Derived type not in range!"); |
| output_typeid((unsigned)Slot); |
| } |
| output_typeid((unsigned)Table.getSlot(Type::VoidTy)); |
| |
| // Put out the list of dependent libraries for the Module |
| Module::lib_iterator LI = M->lib_begin(); |
| Module::lib_iterator LE = M->lib_end(); |
| output_vbr( unsigned(LE - LI) ); // Put out the number of dependent libraries |
| for ( ; LI != LE; ++LI ) { |
| output(*LI); |
| } |
| |
| // Output the target triple from the module |
| output(M->getTargetTriple()); |
| } |
| |
| void BytecodeWriter::outputInstructions(const Function *F) { |
| BytecodeBlock ILBlock(BytecodeFormat::InstructionListBlockID, *this); |
| for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) |
| outputInstruction(*I); |
| } |
| |
| void BytecodeWriter::outputFunction(const Function *F) { |
| BytecodeBlock FunctionBlock(BytecodeFormat::FunctionBlockID, *this); |
| output_vbr(getEncodedLinkage(F)); |
| |
| // If this is an external function, there is nothing else to emit! |
| if (F->isExternal()) return; |
| |
| // Get slot information about the function... |
| Table.incorporateFunction(F); |
| |
| if (Table.getCompactionTable().empty()) { |
| // Output information about the constants in the function if the compaction |
| // table is not being used. |
| outputConstants(true); |
| } else { |
| // Otherwise, emit the compaction table. |
| outputCompactionTable(); |
| } |
| |
| // Output all of the instructions in the body of the function |
| outputInstructions(F); |
| |
| // If needed, output the symbol table for the function... |
| outputSymbolTable(F->getSymbolTable()); |
| |
| Table.purgeFunction(); |
| } |
| |
| void BytecodeWriter::outputCompactionTablePlane(unsigned PlaneNo, |
| const std::vector<const Value*> &Plane, |
| unsigned StartNo) { |
| unsigned End = Table.getModuleLevel(PlaneNo); |
| if (Plane.empty() || StartNo == End || End == 0) return; // Nothing to emit |
| assert(StartNo < End && "Cannot emit negative range!"); |
| assert(StartNo < Plane.size() && End <= Plane.size()); |
| |
| // Do not emit the null initializer! |
| ++StartNo; |
| |
| // Figure out which encoding to use. By far the most common case we have is |
| // to emit 0-2 entries in a compaction table plane. |
| switch (End-StartNo) { |
| case 0: // Avoid emitting two vbr's if possible. |
| case 1: |
| case 2: |
| output_vbr((PlaneNo << 2) | End-StartNo); |
| break; |
| default: |
| // Output the number of things. |
| output_vbr((unsigned(End-StartNo) << 2) | 3); |
| output_typeid(PlaneNo); // Emit the type plane this is |
| break; |
| } |
| |
| for (unsigned i = StartNo; i != End; ++i) |
| output_vbr(Table.getGlobalSlot(Plane[i])); |
| } |
| |
| void BytecodeWriter::outputCompactionTypes(unsigned StartNo) { |
| // Get the compaction type table from the slot calculator |
| const std::vector<const Type*> &CTypes = Table.getCompactionTypes(); |
| |
| // The compaction types may have been uncompactified back to the |
| // global types. If so, we just write an empty table |
| if (CTypes.size() == 0 ) { |
| output_vbr(0U); |
| return; |
| } |
| |
| assert(CTypes.size() >= StartNo && "Invalid compaction types start index"); |
| |
| // Determine how many types to write |
| unsigned NumTypes = CTypes.size() - StartNo; |
| |
| // Output the number of types. |
| output_vbr(NumTypes); |
| |
| for (unsigned i = StartNo; i < StartNo+NumTypes; ++i) |
| output_typeid(Table.getGlobalSlot(CTypes[i])); |
| } |
| |
| void BytecodeWriter::outputCompactionTable() { |
| BytecodeBlock CTB(BytecodeFormat::CompactionTableBlockID, *this, |
| true/*ElideIfEmpty*/); |
| const std::vector<std::vector<const Value*> > &CT =Table.getCompactionTable(); |
| |
| // First thing is first, emit the type compaction table if there is one. |
| outputCompactionTypes(Type::FirstDerivedTyID); |
| |
| for (unsigned i = 0, e = CT.size(); i != e; ++i) |
| outputCompactionTablePlane(i, CT[i], 0); |
| } |
| |
| void BytecodeWriter::outputSymbolTable(const SymbolTable &MST) { |
| // Do not output the Bytecode block for an empty symbol table, it just wastes |
| // space! |
| if ( MST.isEmpty() ) return; |
| |
| BytecodeBlock SymTabBlock(BytecodeFormat::SymbolTableBlockID, *this, |
| true/* ElideIfEmpty*/); |
| |
| // Write the number of types |
| output_vbr(MST.num_types()); |
| |
| // Write each of the types |
| for (SymbolTable::type_const_iterator TI = MST.type_begin(), |
| TE = MST.type_end(); TI != TE; ++TI ) { |
| // Symtab entry:[def slot #][name] |
| output_typeid((unsigned)Table.getSlot(TI->second)); |
| output(TI->first); |
| } |
| |
| // Now do each of the type planes in order. |
| for (SymbolTable::plane_const_iterator PI = MST.plane_begin(), |
| PE = MST.plane_end(); PI != PE; ++PI) { |
| SymbolTable::value_const_iterator I = MST.value_begin(PI->first); |
| SymbolTable::value_const_iterator End = MST.value_end(PI->first); |
| int Slot; |
| |
| if (I == End) continue; // Don't mess with an absent type... |
| |
| // Write the number of values in this plane |
| output_vbr(MST.type_size(PI->first)); |
| |
| // Write the slot number of the type for this plane |
| Slot = Table.getSlot(PI->first); |
| assert(Slot != -1 && "Type in symtab, but not in table!"); |
| output_typeid((unsigned)Slot); |
| |
| // Write each of the values in this plane |
| for (; I != End; ++I) { |
| // Symtab entry: [def slot #][name] |
| Slot = Table.getSlot(I->second); |
| assert(Slot != -1 && "Value in symtab but has no slot number!!"); |
| output_vbr((unsigned)Slot); |
| output(I->first); |
| } |
| } |
| } |
| |
| void llvm::WriteBytecodeToFile(const Module *M, std::ostream &Out) { |
| assert(M && "You can't write a null module!!"); |
| |
| std::vector<unsigned char> Buffer; |
| Buffer.reserve(64 * 1024); // avoid lots of little reallocs |
| |
| // This object populates buffer for us... |
| BytecodeWriter BCW(Buffer, M); |
| |
| // Keep track of how much we've written... |
| BytesWritten += Buffer.size(); |
| |
| // Okay, write the deque out to the ostream now... the deque is not |
| // sequential in memory, however, so write out as much as possible in big |
| // chunks, until we're done. |
| // |
| |
| std::vector<unsigned char>::const_iterator I = Buffer.begin(),E = Buffer.end(); |
| while (I != E) { // Loop until it's all written |
| // Scan to see how big this chunk is... |
| const unsigned char *ChunkPtr = &*I; |
| const unsigned char *LastPtr = ChunkPtr; |
| while (I != E) { |
| const unsigned char *ThisPtr = &*++I; |
| if (++LastPtr != ThisPtr) // Advanced by more than a byte of memory? |
| break; |
| } |
| |
| // Write out the chunk... |
| Out.write((char*)ChunkPtr, unsigned(LastPtr-ChunkPtr)); |
| } |
| Out.flush(); |
| } |
| |
| // vim: sw=2 ai |