| //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines routines for folding instructions into constants. | 
 | // | 
 | // Also, to supplement the basic VMCore ConstantExpr simplifications, | 
 | // this file defines some additional folding routines that can make use of | 
 | // TargetData information. These functions cannot go in VMCore due to library | 
 | // dependency issues. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/ConstantFolding.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/GlobalVariable.h" | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Intrinsics.h" | 
 | #include "llvm/LLVMContext.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/StringMap.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include <cerrno> | 
 | #include <cmath> | 
 | using namespace llvm; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Constant Folding internal helper functions | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// IsConstantOffsetFromGlobal - If this constant is actually a constant offset | 
 | /// from a global, return the global and the constant.  Because of | 
 | /// constantexprs, this function is recursive. | 
 | static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, | 
 |                                        int64_t &Offset, const TargetData &TD) { | 
 |   // Trivial case, constant is the global. | 
 |   if ((GV = dyn_cast<GlobalValue>(C))) { | 
 |     Offset = 0; | 
 |     return true; | 
 |   } | 
 |    | 
 |   // Otherwise, if this isn't a constant expr, bail out. | 
 |   ConstantExpr *CE = dyn_cast<ConstantExpr>(C); | 
 |   if (!CE) return false; | 
 |    | 
 |   // Look through ptr->int and ptr->ptr casts. | 
 |   if (CE->getOpcode() == Instruction::PtrToInt || | 
 |       CE->getOpcode() == Instruction::BitCast) | 
 |     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD); | 
 |    | 
 |   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)     | 
 |   if (CE->getOpcode() == Instruction::GetElementPtr) { | 
 |     // Cannot compute this if the element type of the pointer is missing size | 
 |     // info. | 
 |     if (!cast<PointerType>(CE->getOperand(0)->getType()) | 
 |                  ->getElementType()->isSized()) | 
 |       return false; | 
 |      | 
 |     // If the base isn't a global+constant, we aren't either. | 
 |     if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD)) | 
 |       return false; | 
 |      | 
 |     // Otherwise, add any offset that our operands provide. | 
 |     gep_type_iterator GTI = gep_type_begin(CE); | 
 |     for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end(); | 
 |          i != e; ++i, ++GTI) { | 
 |       ConstantInt *CI = dyn_cast<ConstantInt>(*i); | 
 |       if (!CI) return false;  // Index isn't a simple constant? | 
 |       if (CI->getZExtValue() == 0) continue;  // Not adding anything. | 
 |        | 
 |       if (const StructType *ST = dyn_cast<StructType>(*GTI)) { | 
 |         // N = N + Offset | 
 |         Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue()); | 
 |       } else { | 
 |         const SequentialType *SQT = cast<SequentialType>(*GTI); | 
 |         Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue(); | 
 |       } | 
 |     } | 
 |     return true; | 
 |   } | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | /// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression. | 
 | /// Attempt to symbolically evaluate the result of a binary operator merging | 
 | /// these together.  If target data info is available, it is provided as TD,  | 
 | /// otherwise TD is null. | 
 | static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, | 
 |                                            Constant *Op1, const TargetData *TD, | 
 |                                            LLVMContext &Context){ | 
 |   // SROA | 
 |    | 
 |   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. | 
 |   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute | 
 |   // bits. | 
 |    | 
 |    | 
 |   // If the constant expr is something like &A[123] - &A[4].f, fold this into a | 
 |   // constant.  This happens frequently when iterating over a global array. | 
 |   if (Opc == Instruction::Sub && TD) { | 
 |     GlobalValue *GV1, *GV2; | 
 |     int64_t Offs1, Offs2; | 
 |      | 
 |     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD)) | 
 |       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) && | 
 |           GV1 == GV2) { | 
 |         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. | 
 |         return ConstantInt::get(Op0->getType(), Offs1-Offs2); | 
 |       } | 
 |   } | 
 |      | 
 |   return 0; | 
 | } | 
 |  | 
 | /// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP | 
 | /// constant expression, do so. | 
 | static Constant *SymbolicallyEvaluateGEP(Constant* const* Ops, unsigned NumOps, | 
 |                                          const Type *ResultTy, | 
 |                                          LLVMContext &Context, | 
 |                                          const TargetData *TD) { | 
 |   Constant *Ptr = Ops[0]; | 
 |   if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized()) | 
 |     return 0; | 
 |  | 
 |   unsigned BitWidth = TD->getTypeSizeInBits(TD->getIntPtrType(Context)); | 
 |   APInt BasePtr(BitWidth, 0); | 
 |   bool BaseIsInt = true; | 
 |   if (!Ptr->isNullValue()) { | 
 |     // If this is a inttoptr from a constant int, we can fold this as the base, | 
 |     // otherwise we can't. | 
 |     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) | 
 |       if (CE->getOpcode() == Instruction::IntToPtr) | 
 |         if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) { | 
 |           BasePtr = Base->getValue(); | 
 |           BasePtr.zextOrTrunc(BitWidth); | 
 |         } | 
 |      | 
 |     if (BasePtr == 0) | 
 |       BaseIsInt = false; | 
 |   } | 
 |  | 
 |   // If this is a constant expr gep that is effectively computing an | 
 |   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12' | 
 |   for (unsigned i = 1; i != NumOps; ++i) | 
 |     if (!isa<ConstantInt>(Ops[i])) | 
 |       return 0; | 
 |    | 
 |   APInt Offset = APInt(BitWidth, | 
 |                        TD->getIndexedOffset(Ptr->getType(), | 
 |                                             (Value**)Ops+1, NumOps-1)); | 
 |   // If the base value for this address is a literal integer value, fold the | 
 |   // getelementptr to the resulting integer value casted to the pointer type. | 
 |   if (BaseIsInt) { | 
 |     Constant *C = ConstantInt::get(Context, Offset+BasePtr); | 
 |     return ConstantExpr::getIntToPtr(C, ResultTy); | 
 |   } | 
 |  | 
 |   // Otherwise form a regular getelementptr. Recompute the indices so that | 
 |   // we eliminate over-indexing of the notional static type array bounds. | 
 |   // This makes it easy to determine if the getelementptr is "inbounds". | 
 |   // Also, this helps GlobalOpt do SROA on GlobalVariables. | 
 |   const Type *Ty = Ptr->getType(); | 
 |   SmallVector<Constant*, 32> NewIdxs; | 
 |   do { | 
 |     if (const SequentialType *ATy = dyn_cast<SequentialType>(Ty)) { | 
 |       // The only pointer indexing we'll do is on the first index of the GEP. | 
 |       if (isa<PointerType>(ATy) && !NewIdxs.empty()) | 
 |         break; | 
 |       // Determine which element of the array the offset points into. | 
 |       APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType())); | 
 |       if (ElemSize == 0) | 
 |         return 0; | 
 |       APInt NewIdx = Offset.udiv(ElemSize); | 
 |       Offset -= NewIdx * ElemSize; | 
 |       NewIdxs.push_back(ConstantInt::get(TD->getIntPtrType(Context), NewIdx)); | 
 |       Ty = ATy->getElementType(); | 
 |     } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
 |       // Determine which field of the struct the offset points into. The | 
 |       // getZExtValue is at least as safe as the StructLayout API because we | 
 |       // know the offset is within the struct at this point. | 
 |       const StructLayout &SL = *TD->getStructLayout(STy); | 
 |       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue()); | 
 |       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Context), ElIdx)); | 
 |       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx)); | 
 |       Ty = STy->getTypeAtIndex(ElIdx); | 
 |     } else { | 
 |       // We've reached some non-indexable type. | 
 |       break; | 
 |     } | 
 |   } while (Ty != cast<PointerType>(ResultTy)->getElementType()); | 
 |  | 
 |   // If we haven't used up the entire offset by descending the static | 
 |   // type, then the offset is pointing into the middle of an indivisible | 
 |   // member, so we can't simplify it. | 
 |   if (Offset != 0) | 
 |     return 0; | 
 |  | 
 |   // Create a GEP. | 
 |   Constant *C = | 
 |     ConstantExpr::getGetElementPtr(Ptr, &NewIdxs[0], NewIdxs.size()); | 
 |   assert(cast<PointerType>(C->getType())->getElementType() == Ty && | 
 |          "Computed GetElementPtr has unexpected type!"); | 
 |  | 
 |   // If we ended up indexing a member with a type that doesn't match | 
 |   // the type of what the original indices indexed, add a cast. | 
 |   if (Ty != cast<PointerType>(ResultTy)->getElementType()) | 
 |     C = ConstantExpr::getBitCast(C, ResultTy); | 
 |  | 
 |   return C; | 
 | } | 
 |  | 
 | /// FoldBitCast - Constant fold bitcast, symbolically evaluating it with  | 
 | /// targetdata.  Return 0 if unfoldable. | 
 | static Constant *FoldBitCast(Constant *C, const Type *DestTy, | 
 |                              const TargetData &TD, LLVMContext &Context) { | 
 |   // If this is a bitcast from constant vector -> vector, fold it. | 
 |   if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) { | 
 |     if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { | 
 |       // If the element types match, VMCore can fold it. | 
 |       unsigned NumDstElt = DestVTy->getNumElements(); | 
 |       unsigned NumSrcElt = CV->getNumOperands(); | 
 |       if (NumDstElt == NumSrcElt) | 
 |         return 0; | 
 |        | 
 |       const Type *SrcEltTy = CV->getType()->getElementType(); | 
 |       const Type *DstEltTy = DestVTy->getElementType(); | 
 |        | 
 |       // Otherwise, we're changing the number of elements in a vector, which  | 
 |       // requires endianness information to do the right thing.  For example, | 
 |       //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) | 
 |       // folds to (little endian): | 
 |       //    <4 x i32> <i32 0, i32 0, i32 1, i32 0> | 
 |       // and to (big endian): | 
 |       //    <4 x i32> <i32 0, i32 0, i32 0, i32 1> | 
 |        | 
 |       // First thing is first.  We only want to think about integer here, so if | 
 |       // we have something in FP form, recast it as integer. | 
 |       if (DstEltTy->isFloatingPoint()) { | 
 |         // Fold to an vector of integers with same size as our FP type. | 
 |         unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); | 
 |         const Type *DestIVTy = VectorType::get( | 
 |                                  IntegerType::get(Context, FPWidth), NumDstElt); | 
 |         // Recursively handle this integer conversion, if possible. | 
 |         C = FoldBitCast(C, DestIVTy, TD, Context); | 
 |         if (!C) return 0; | 
 |          | 
 |         // Finally, VMCore can handle this now that #elts line up. | 
 |         return ConstantExpr::getBitCast(C, DestTy); | 
 |       } | 
 |        | 
 |       // Okay, we know the destination is integer, if the input is FP, convert | 
 |       // it to integer first. | 
 |       if (SrcEltTy->isFloatingPoint()) { | 
 |         unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); | 
 |         const Type *SrcIVTy = VectorType::get( | 
 |                                  IntegerType::get(Context, FPWidth), NumSrcElt); | 
 |         // Ask VMCore to do the conversion now that #elts line up. | 
 |         C = ConstantExpr::getBitCast(C, SrcIVTy); | 
 |         CV = dyn_cast<ConstantVector>(C); | 
 |         if (!CV) return 0;  // If VMCore wasn't able to fold it, bail out. | 
 |       } | 
 |        | 
 |       // Now we know that the input and output vectors are both integer vectors | 
 |       // of the same size, and that their #elements is not the same.  Do the | 
 |       // conversion here, which depends on whether the input or output has | 
 |       // more elements. | 
 |       bool isLittleEndian = TD.isLittleEndian(); | 
 |        | 
 |       SmallVector<Constant*, 32> Result; | 
 |       if (NumDstElt < NumSrcElt) { | 
 |         // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) | 
 |         Constant *Zero = Constant::getNullValue(DstEltTy); | 
 |         unsigned Ratio = NumSrcElt/NumDstElt; | 
 |         unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); | 
 |         unsigned SrcElt = 0; | 
 |         for (unsigned i = 0; i != NumDstElt; ++i) { | 
 |           // Build each element of the result. | 
 |           Constant *Elt = Zero; | 
 |           unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); | 
 |           for (unsigned j = 0; j != Ratio; ++j) { | 
 |             Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++)); | 
 |             if (!Src) return 0;  // Reject constantexpr elements. | 
 |              | 
 |             // Zero extend the element to the right size. | 
 |             Src = ConstantExpr::getZExt(Src, Elt->getType()); | 
 |              | 
 |             // Shift it to the right place, depending on endianness. | 
 |             Src = ConstantExpr::getShl(Src,  | 
 |                              ConstantInt::get(Src->getType(), ShiftAmt)); | 
 |             ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; | 
 |              | 
 |             // Mix it in. | 
 |             Elt = ConstantExpr::getOr(Elt, Src); | 
 |           } | 
 |           Result.push_back(Elt); | 
 |         } | 
 |       } else { | 
 |         // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) | 
 |         unsigned Ratio = NumDstElt/NumSrcElt; | 
 |         unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits(); | 
 |          | 
 |         // Loop over each source value, expanding into multiple results. | 
 |         for (unsigned i = 0; i != NumSrcElt; ++i) { | 
 |           Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i)); | 
 |           if (!Src) return 0;  // Reject constantexpr elements. | 
 |  | 
 |           unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); | 
 |           for (unsigned j = 0; j != Ratio; ++j) { | 
 |             // Shift the piece of the value into the right place, depending on | 
 |             // endianness. | 
 |             Constant *Elt = ConstantExpr::getLShr(Src,  | 
 |                             ConstantInt::get(Src->getType(), ShiftAmt)); | 
 |             ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; | 
 |  | 
 |             // Truncate and remember this piece. | 
 |             Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy)); | 
 |           } | 
 |         } | 
 |       } | 
 |        | 
 |       return ConstantVector::get(Result.data(), Result.size()); | 
 |     } | 
 |   } | 
 |    | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Constant Folding public APIs | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 |  | 
 | /// ConstantFoldInstruction - Attempt to constant fold the specified | 
 | /// instruction.  If successful, the constant result is returned, if not, null | 
 | /// is returned.  Note that this function can only fail when attempting to fold | 
 | /// instructions like loads and stores, which have no constant expression form. | 
 | /// | 
 | Constant *llvm::ConstantFoldInstruction(Instruction *I, LLVMContext &Context, | 
 |                                         const TargetData *TD) { | 
 |   if (PHINode *PN = dyn_cast<PHINode>(I)) { | 
 |     if (PN->getNumIncomingValues() == 0) | 
 |       return UndefValue::get(PN->getType()); | 
 |  | 
 |     Constant *Result = dyn_cast<Constant>(PN->getIncomingValue(0)); | 
 |     if (Result == 0) return 0; | 
 |  | 
 |     // Handle PHI nodes specially here... | 
 |     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) | 
 |       if (PN->getIncomingValue(i) != Result && PN->getIncomingValue(i) != PN) | 
 |         return 0;   // Not all the same incoming constants... | 
 |  | 
 |     // If we reach here, all incoming values are the same constant. | 
 |     return Result; | 
 |   } | 
 |  | 
 |   // Scan the operand list, checking to see if they are all constants, if so, | 
 |   // hand off to ConstantFoldInstOperands. | 
 |   SmallVector<Constant*, 8> Ops; | 
 |   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) | 
 |     if (Constant *Op = dyn_cast<Constant>(*i)) | 
 |       Ops.push_back(Op); | 
 |     else | 
 |       return 0;  // All operands not constant! | 
 |  | 
 |   if (const CmpInst *CI = dyn_cast<CmpInst>(I)) | 
 |     return ConstantFoldCompareInstOperands(CI->getPredicate(), | 
 |                                            Ops.data(), Ops.size(),  | 
 |                                            Context, TD); | 
 |    | 
 |   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), | 
 |                                   Ops.data(), Ops.size(), Context, TD); | 
 | } | 
 |  | 
 | /// ConstantFoldConstantExpression - Attempt to fold the constant expression | 
 | /// using the specified TargetData.  If successful, the constant result is | 
 | /// result is returned, if not, null is returned. | 
 | Constant *llvm::ConstantFoldConstantExpression(ConstantExpr *CE, | 
 |                                                LLVMContext &Context, | 
 |                                                const TargetData *TD) { | 
 |   SmallVector<Constant*, 8> Ops; | 
 |   for (User::op_iterator i = CE->op_begin(), e = CE->op_end(); i != e; ++i) | 
 |     Ops.push_back(cast<Constant>(*i)); | 
 |  | 
 |   if (CE->isCompare()) | 
 |     return ConstantFoldCompareInstOperands(CE->getPredicate(), | 
 |                                            Ops.data(), Ops.size(),  | 
 |                                            Context, TD); | 
 |   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), | 
 |                                   Ops.data(), Ops.size(), Context, TD); | 
 | } | 
 |  | 
 | /// ConstantFoldInstOperands - Attempt to constant fold an instruction with the | 
 | /// specified opcode and operands.  If successful, the constant result is | 
 | /// returned, if not, null is returned.  Note that this function can fail when | 
 | /// attempting to fold instructions like loads and stores, which have no | 
 | /// constant expression form. | 
 | /// | 
 | Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, const Type *DestTy,  | 
 |                                          Constant* const* Ops, unsigned NumOps, | 
 |                                          LLVMContext &Context, | 
 |                                          const TargetData *TD) { | 
 |   // Handle easy binops first. | 
 |   if (Instruction::isBinaryOp(Opcode)) { | 
 |     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) | 
 |       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD, | 
 |                                                   Context)) | 
 |         return C; | 
 |      | 
 |     return ConstantExpr::get(Opcode, Ops[0], Ops[1]); | 
 |   } | 
 |    | 
 |   switch (Opcode) { | 
 |   default: return 0; | 
 |   case Instruction::Call: | 
 |     if (Function *F = dyn_cast<Function>(Ops[0])) | 
 |       if (canConstantFoldCallTo(F)) | 
 |         return ConstantFoldCall(F, Ops+1, NumOps-1); | 
 |     return 0; | 
 |   case Instruction::ICmp: | 
 |   case Instruction::FCmp: | 
 |     llvm_unreachable("This function is invalid for compares: no predicate specified"); | 
 |   case Instruction::PtrToInt: | 
 |     // If the input is a inttoptr, eliminate the pair.  This requires knowing | 
 |     // the width of a pointer, so it can't be done in ConstantExpr::getCast. | 
 |     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) { | 
 |       if (TD && CE->getOpcode() == Instruction::IntToPtr) { | 
 |         Constant *Input = CE->getOperand(0); | 
 |         unsigned InWidth = Input->getType()->getScalarSizeInBits(); | 
 |         if (TD->getPointerSizeInBits() < InWidth) { | 
 |           Constant *Mask =  | 
 |             ConstantInt::get(Context, APInt::getLowBitsSet(InWidth, | 
 |                                                   TD->getPointerSizeInBits())); | 
 |           Input = ConstantExpr::getAnd(Input, Mask); | 
 |         } | 
 |         // Do a zext or trunc to get to the dest size. | 
 |         return ConstantExpr::getIntegerCast(Input, DestTy, false); | 
 |       } | 
 |     } | 
 |     return ConstantExpr::getCast(Opcode, Ops[0], DestTy); | 
 |   case Instruction::IntToPtr: | 
 |     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if | 
 |     // the int size is >= the ptr size.  This requires knowing the width of a | 
 |     // pointer, so it can't be done in ConstantExpr::getCast. | 
 |     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) { | 
 |       if (TD && | 
 |           TD->getPointerSizeInBits() <= | 
 |           CE->getType()->getScalarSizeInBits()) { | 
 |         if (CE->getOpcode() == Instruction::PtrToInt) { | 
 |           Constant *Input = CE->getOperand(0); | 
 |           Constant *C = FoldBitCast(Input, DestTy, *TD, Context); | 
 |           return C ? C : ConstantExpr::getBitCast(Input, DestTy); | 
 |         } | 
 |         // If there's a constant offset added to the integer value before | 
 |         // it is casted back to a pointer, see if the expression can be | 
 |         // converted into a GEP. | 
 |         if (CE->getOpcode() == Instruction::Add) | 
 |           if (ConstantInt *L = dyn_cast<ConstantInt>(CE->getOperand(0))) | 
 |             if (ConstantExpr *R = dyn_cast<ConstantExpr>(CE->getOperand(1))) | 
 |               if (R->getOpcode() == Instruction::PtrToInt) | 
 |                 if (GlobalVariable *GV = | 
 |                       dyn_cast<GlobalVariable>(R->getOperand(0))) { | 
 |                   const PointerType *GVTy = cast<PointerType>(GV->getType()); | 
 |                   if (const ArrayType *AT = | 
 |                         dyn_cast<ArrayType>(GVTy->getElementType())) { | 
 |                     const Type *ElTy = AT->getElementType(); | 
 |                     uint64_t AllocSize = TD->getTypeAllocSize(ElTy); | 
 |                     APInt PSA(L->getValue().getBitWidth(), AllocSize); | 
 |                     if (ElTy == cast<PointerType>(DestTy)->getElementType() && | 
 |                         L->getValue().urem(PSA) == 0) { | 
 |                       APInt ElemIdx = L->getValue().udiv(PSA); | 
 |                       if (ElemIdx.ult(APInt(ElemIdx.getBitWidth(), | 
 |                                             AT->getNumElements()))) { | 
 |                         Constant *Index[] = { | 
 |                           Constant::getNullValue(CE->getType()), | 
 |                           ConstantInt::get(Context, ElemIdx) | 
 |                         }; | 
 |                         return | 
 |                         ConstantExpr::getGetElementPtr(GV, &Index[0], 2); | 
 |                       } | 
 |                     } | 
 |                   } | 
 |                 } | 
 |       } | 
 |     } | 
 |     return ConstantExpr::getCast(Opcode, Ops[0], DestTy); | 
 |   case Instruction::Trunc: | 
 |   case Instruction::ZExt: | 
 |   case Instruction::SExt: | 
 |   case Instruction::FPTrunc: | 
 |   case Instruction::FPExt: | 
 |   case Instruction::UIToFP: | 
 |   case Instruction::SIToFP: | 
 |   case Instruction::FPToUI: | 
 |   case Instruction::FPToSI: | 
 |       return ConstantExpr::getCast(Opcode, Ops[0], DestTy); | 
 |   case Instruction::BitCast: | 
 |     if (TD) | 
 |       if (Constant *C = FoldBitCast(Ops[0], DestTy, *TD, Context)) | 
 |         return C; | 
 |     return ConstantExpr::getBitCast(Ops[0], DestTy); | 
 |   case Instruction::Select: | 
 |     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); | 
 |   case Instruction::ExtractElement: | 
 |     return ConstantExpr::getExtractElement(Ops[0], Ops[1]); | 
 |   case Instruction::InsertElement: | 
 |     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); | 
 |   case Instruction::ShuffleVector: | 
 |     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); | 
 |   case Instruction::GetElementPtr: | 
 |     if (Constant *C = SymbolicallyEvaluateGEP(Ops, NumOps, DestTy, Context, TD)) | 
 |       return C; | 
 |      | 
 |     return ConstantExpr::getGetElementPtr(Ops[0], Ops+1, NumOps-1); | 
 |   } | 
 | } | 
 |  | 
 | /// ConstantFoldCompareInstOperands - Attempt to constant fold a compare | 
 | /// instruction (icmp/fcmp) with the specified operands.  If it fails, it | 
 | /// returns a constant expression of the specified operands. | 
 | /// | 
 | Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate, | 
 |                                                 Constant*const * Ops,  | 
 |                                                 unsigned NumOps, | 
 |                                                 LLVMContext &Context, | 
 |                                                 const TargetData *TD) { | 
 |   // fold: icmp (inttoptr x), null         -> icmp x, 0 | 
 |   // fold: icmp (ptrtoint x), 0            -> icmp x, null | 
 |   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y | 
 |   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y | 
 |   // | 
 |   // ConstantExpr::getCompare cannot do this, because it doesn't have TD | 
 |   // around to know if bit truncation is happening. | 
 |   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops[0])) { | 
 |     if (TD && Ops[1]->isNullValue()) { | 
 |       const Type *IntPtrTy = TD->getIntPtrType(Context); | 
 |       if (CE0->getOpcode() == Instruction::IntToPtr) { | 
 |         // Convert the integer value to the right size to ensure we get the | 
 |         // proper extension or truncation. | 
 |         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0), | 
 |                                                    IntPtrTy, false); | 
 |         Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) }; | 
 |         return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, | 
 |                                                Context, TD); | 
 |       } | 
 |        | 
 |       // Only do this transformation if the int is intptrty in size, otherwise | 
 |       // there is a truncation or extension that we aren't modeling. | 
 |       if (CE0->getOpcode() == Instruction::PtrToInt &&  | 
 |           CE0->getType() == IntPtrTy) { | 
 |         Constant *C = CE0->getOperand(0); | 
 |         Constant *NewOps[] = { C, Constant::getNullValue(C->getType()) }; | 
 |         // FIXME! | 
 |         return ConstantFoldCompareInstOperands(Predicate, NewOps, 2, | 
 |                                                Context, TD); | 
 |       } | 
 |     } | 
 |      | 
 |     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops[1])) { | 
 |       if (TD && CE0->getOpcode() == CE1->getOpcode()) { | 
 |         const Type *IntPtrTy = TD->getIntPtrType(Context); | 
 |  | 
 |         if (CE0->getOpcode() == Instruction::IntToPtr) { | 
 |           // Convert the integer value to the right size to ensure we get the | 
 |           // proper extension or truncation. | 
 |           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0), | 
 |                                                       IntPtrTy, false); | 
 |           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0), | 
 |                                                       IntPtrTy, false); | 
 |           Constant *NewOps[] = { C0, C1 }; | 
 |           return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,  | 
 |                                                  Context, TD); | 
 |         } | 
 |  | 
 |         // Only do this transformation if the int is intptrty in size, otherwise | 
 |         // there is a truncation or extension that we aren't modeling. | 
 |         if ((CE0->getOpcode() == Instruction::PtrToInt && | 
 |              CE0->getType() == IntPtrTy && | 
 |              CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType())) { | 
 |           Constant *NewOps[] = {  | 
 |             CE0->getOperand(0), CE1->getOperand(0)  | 
 |           }; | 
 |           return ConstantFoldCompareInstOperands(Predicate, NewOps, 2,  | 
 |                                                  Context, TD); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   return ConstantExpr::getCompare(Predicate, Ops[0], Ops[1]); | 
 | } | 
 |  | 
 |  | 
 | /// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a | 
 | /// getelementptr constantexpr, return the constant value being addressed by the | 
 | /// constant expression, or null if something is funny and we can't decide. | 
 | Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,  | 
 |                                                        ConstantExpr *CE) { | 
 |   if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType())) | 
 |     return 0;  // Do not allow stepping over the value! | 
 |    | 
 |   // Loop over all of the operands, tracking down which value we are | 
 |   // addressing... | 
 |   gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); | 
 |   for (++I; I != E; ++I) | 
 |     if (const StructType *STy = dyn_cast<StructType>(*I)) { | 
 |       ConstantInt *CU = cast<ConstantInt>(I.getOperand()); | 
 |       assert(CU->getZExtValue() < STy->getNumElements() && | 
 |              "Struct index out of range!"); | 
 |       unsigned El = (unsigned)CU->getZExtValue(); | 
 |       if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) { | 
 |         C = CS->getOperand(El); | 
 |       } else if (isa<ConstantAggregateZero>(C)) { | 
 |         C = Constant::getNullValue(STy->getElementType(El)); | 
 |       } else if (isa<UndefValue>(C)) { | 
 |         C = UndefValue::get(STy->getElementType(El)); | 
 |       } else { | 
 |         return 0; | 
 |       } | 
 |     } else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) { | 
 |       if (const ArrayType *ATy = dyn_cast<ArrayType>(*I)) { | 
 |         if (CI->getZExtValue() >= ATy->getNumElements()) | 
 |          return 0; | 
 |         if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) | 
 |           C = CA->getOperand(CI->getZExtValue()); | 
 |         else if (isa<ConstantAggregateZero>(C)) | 
 |           C = Constant::getNullValue(ATy->getElementType()); | 
 |         else if (isa<UndefValue>(C)) | 
 |           C = UndefValue::get(ATy->getElementType()); | 
 |         else | 
 |           return 0; | 
 |       } else if (const VectorType *PTy = dyn_cast<VectorType>(*I)) { | 
 |         if (CI->getZExtValue() >= PTy->getNumElements()) | 
 |           return 0; | 
 |         if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) | 
 |           C = CP->getOperand(CI->getZExtValue()); | 
 |         else if (isa<ConstantAggregateZero>(C)) | 
 |           C = Constant::getNullValue(PTy->getElementType()); | 
 |         else if (isa<UndefValue>(C)) | 
 |           C = UndefValue::get(PTy->getElementType()); | 
 |         else | 
 |           return 0; | 
 |       } else { | 
 |         return 0; | 
 |       } | 
 |     } else { | 
 |       return 0; | 
 |     } | 
 |   return C; | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Constant Folding for Calls | 
 | // | 
 |  | 
 | /// canConstantFoldCallTo - Return true if its even possible to fold a call to | 
 | /// the specified function. | 
 | bool | 
 | llvm::canConstantFoldCallTo(const Function *F) { | 
 |   switch (F->getIntrinsicID()) { | 
 |   case Intrinsic::sqrt: | 
 |   case Intrinsic::powi: | 
 |   case Intrinsic::bswap: | 
 |   case Intrinsic::ctpop: | 
 |   case Intrinsic::ctlz: | 
 |   case Intrinsic::cttz: | 
 |   case Intrinsic::uadd_with_overflow: | 
 |   case Intrinsic::usub_with_overflow: | 
 |   case Intrinsic::sadd_with_overflow: | 
 |   case Intrinsic::ssub_with_overflow: | 
 |     return true; | 
 |   default: | 
 |     return false; | 
 |   case 0: break; | 
 |   } | 
 |  | 
 |   if (!F->hasName()) return false; | 
 |   StringRef Name = F->getName(); | 
 |    | 
 |   // In these cases, the check of the length is required.  We don't want to | 
 |   // return true for a name like "cos\0blah" which strcmp would return equal to | 
 |   // "cos", but has length 8. | 
 |   switch (Name[0]) { | 
 |   default: return false; | 
 |   case 'a': | 
 |     return Name == "acos" || Name == "asin" ||  | 
 |       Name == "atan" || Name == "atan2"; | 
 |   case 'c': | 
 |     return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh"; | 
 |   case 'e': | 
 |     return Name == "exp"; | 
 |   case 'f': | 
 |     return Name == "fabs" || Name == "fmod" || Name == "floor"; | 
 |   case 'l': | 
 |     return Name == "log" || Name == "log10"; | 
 |   case 'p': | 
 |     return Name == "pow"; | 
 |   case 's': | 
 |     return Name == "sin" || Name == "sinh" || Name == "sqrt" || | 
 |       Name == "sinf" || Name == "sqrtf"; | 
 |   case 't': | 
 |     return Name == "tan" || Name == "tanh"; | 
 |   } | 
 | } | 
 |  | 
 | static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,  | 
 |                                 const Type *Ty, LLVMContext &Context) { | 
 |   errno = 0; | 
 |   V = NativeFP(V); | 
 |   if (errno != 0) { | 
 |     errno = 0; | 
 |     return 0; | 
 |   } | 
 |    | 
 |   if (Ty->isFloatTy()) | 
 |     return ConstantFP::get(Context, APFloat((float)V)); | 
 |   if (Ty->isDoubleTy()) | 
 |     return ConstantFP::get(Context, APFloat(V)); | 
 |   llvm_unreachable("Can only constant fold float/double"); | 
 |   return 0; // dummy return to suppress warning | 
 | } | 
 |  | 
 | static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), | 
 |                                       double V, double W, | 
 |                                       const Type *Ty, | 
 |                                       LLVMContext &Context) { | 
 |   errno = 0; | 
 |   V = NativeFP(V, W); | 
 |   if (errno != 0) { | 
 |     errno = 0; | 
 |     return 0; | 
 |   } | 
 |    | 
 |   if (Ty->isFloatTy()) | 
 |     return ConstantFP::get(Context, APFloat((float)V)); | 
 |   if (Ty->isDoubleTy()) | 
 |     return ConstantFP::get(Context, APFloat(V)); | 
 |   llvm_unreachable("Can only constant fold float/double"); | 
 |   return 0; // dummy return to suppress warning | 
 | } | 
 |  | 
 | /// ConstantFoldCall - Attempt to constant fold a call to the specified function | 
 | /// with the specified arguments, returning null if unsuccessful. | 
 | Constant * | 
 | llvm::ConstantFoldCall(Function *F,  | 
 |                        Constant *const *Operands, unsigned NumOperands) { | 
 |   if (!F->hasName()) return 0; | 
 |   LLVMContext &Context = F->getContext(); | 
 |   StringRef Name = F->getName(); | 
 |  | 
 |   const Type *Ty = F->getReturnType(); | 
 |   if (NumOperands == 1) { | 
 |     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) { | 
 |       if (!Ty->isFloatTy() && !Ty->isDoubleTy()) | 
 |         return 0; | 
 |       /// Currently APFloat versions of these functions do not exist, so we use | 
 |       /// the host native double versions.  Float versions are not called | 
 |       /// directly but for all these it is true (float)(f((double)arg)) == | 
 |       /// f(arg).  Long double not supported yet. | 
 |       double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() : | 
 |                                      Op->getValueAPF().convertToDouble(); | 
 |       switch (Name[0]) { | 
 |       case 'a': | 
 |         if (Name == "acos") | 
 |           return ConstantFoldFP(acos, V, Ty, Context); | 
 |         else if (Name == "asin") | 
 |           return ConstantFoldFP(asin, V, Ty, Context); | 
 |         else if (Name == "atan") | 
 |           return ConstantFoldFP(atan, V, Ty, Context); | 
 |         break; | 
 |       case 'c': | 
 |         if (Name == "ceil") | 
 |           return ConstantFoldFP(ceil, V, Ty, Context); | 
 |         else if (Name == "cos") | 
 |           return ConstantFoldFP(cos, V, Ty, Context); | 
 |         else if (Name == "cosh") | 
 |           return ConstantFoldFP(cosh, V, Ty, Context); | 
 |         else if (Name == "cosf") | 
 |           return ConstantFoldFP(cos, V, Ty, Context); | 
 |         break; | 
 |       case 'e': | 
 |         if (Name == "exp") | 
 |           return ConstantFoldFP(exp, V, Ty, Context); | 
 |         break; | 
 |       case 'f': | 
 |         if (Name == "fabs") | 
 |           return ConstantFoldFP(fabs, V, Ty, Context); | 
 |         else if (Name == "floor") | 
 |           return ConstantFoldFP(floor, V, Ty, Context); | 
 |         break; | 
 |       case 'l': | 
 |         if (Name == "log" && V > 0) | 
 |           return ConstantFoldFP(log, V, Ty, Context); | 
 |         else if (Name == "log10" && V > 0) | 
 |           return ConstantFoldFP(log10, V, Ty, Context); | 
 |         else if (Name == "llvm.sqrt.f32" || | 
 |                  Name == "llvm.sqrt.f64") { | 
 |           if (V >= -0.0) | 
 |             return ConstantFoldFP(sqrt, V, Ty, Context); | 
 |           else // Undefined | 
 |             return Constant::getNullValue(Ty); | 
 |         } | 
 |         break; | 
 |       case 's': | 
 |         if (Name == "sin") | 
 |           return ConstantFoldFP(sin, V, Ty, Context); | 
 |         else if (Name == "sinh") | 
 |           return ConstantFoldFP(sinh, V, Ty, Context); | 
 |         else if (Name == "sqrt" && V >= 0) | 
 |           return ConstantFoldFP(sqrt, V, Ty, Context); | 
 |         else if (Name == "sqrtf" && V >= 0) | 
 |           return ConstantFoldFP(sqrt, V, Ty, Context); | 
 |         else if (Name == "sinf") | 
 |           return ConstantFoldFP(sin, V, Ty, Context); | 
 |         break; | 
 |       case 't': | 
 |         if (Name == "tan") | 
 |           return ConstantFoldFP(tan, V, Ty, Context); | 
 |         else if (Name == "tanh") | 
 |           return ConstantFoldFP(tanh, V, Ty, Context); | 
 |         break; | 
 |       default: | 
 |         break; | 
 |       } | 
 |       return 0; | 
 |     } | 
 |      | 
 |      | 
 |     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) { | 
 |       if (Name.startswith("llvm.bswap")) | 
 |         return ConstantInt::get(Context, Op->getValue().byteSwap()); | 
 |       else if (Name.startswith("llvm.ctpop")) | 
 |         return ConstantInt::get(Ty, Op->getValue().countPopulation()); | 
 |       else if (Name.startswith("llvm.cttz")) | 
 |         return ConstantInt::get(Ty, Op->getValue().countTrailingZeros()); | 
 |       else if (Name.startswith("llvm.ctlz")) | 
 |         return ConstantInt::get(Ty, Op->getValue().countLeadingZeros()); | 
 |       return 0; | 
 |     } | 
 |      | 
 |     return 0; | 
 |   } | 
 |    | 
 |   if (NumOperands == 2) { | 
 |     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) { | 
 |       if (!Ty->isFloatTy() && !Ty->isDoubleTy()) | 
 |         return 0; | 
 |       double Op1V = Ty->isFloatTy() ?  | 
 |                       (double)Op1->getValueAPF().convertToFloat() : | 
 |                       Op1->getValueAPF().convertToDouble(); | 
 |       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) { | 
 |         if (Op2->getType() != Op1->getType()) | 
 |           return 0; | 
 |          | 
 |         double Op2V = Ty->isFloatTy() ?  | 
 |                       (double)Op2->getValueAPF().convertToFloat(): | 
 |                       Op2->getValueAPF().convertToDouble(); | 
 |  | 
 |         if (Name == "pow") | 
 |           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty, Context); | 
 |         if (Name == "fmod") | 
 |           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty, Context); | 
 |         if (Name == "atan2") | 
 |           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty, Context); | 
 |       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) { | 
 |         if (Name == "llvm.powi.f32") | 
 |           return ConstantFP::get(Context, APFloat((float)std::pow((float)Op1V, | 
 |                                                  (int)Op2C->getZExtValue()))); | 
 |         if (Name == "llvm.powi.f64") | 
 |           return ConstantFP::get(Context, APFloat((double)std::pow((double)Op1V, | 
 |                                                  (int)Op2C->getZExtValue()))); | 
 |       } | 
 |       return 0; | 
 |     } | 
 |      | 
 |      | 
 |     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) { | 
 |       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) { | 
 |         switch (F->getIntrinsicID()) { | 
 |         default: break; | 
 |         case Intrinsic::uadd_with_overflow: { | 
 |           Constant *Res = ConstantExpr::getAdd(Op1, Op2);           // result. | 
 |           Constant *Ops[] = { | 
 |             Res, ConstantExpr::getICmp(CmpInst::ICMP_ULT, Res, Op1) // overflow. | 
 |           }; | 
 |           return ConstantStruct::get(F->getContext(), Ops, 2, false); | 
 |         } | 
 |         case Intrinsic::usub_with_overflow: { | 
 |           Constant *Res = ConstantExpr::getSub(Op1, Op2);           // result. | 
 |           Constant *Ops[] = { | 
 |             Res, ConstantExpr::getICmp(CmpInst::ICMP_UGT, Res, Op1) // overflow. | 
 |           }; | 
 |           return ConstantStruct::get(F->getContext(), Ops, 2, false); | 
 |         } | 
 |         case Intrinsic::sadd_with_overflow: { | 
 |           Constant *Res = ConstantExpr::getAdd(Op1, Op2);           // result. | 
 |           Constant *Overflow = ConstantExpr::getSelect( | 
 |               ConstantExpr::getICmp(CmpInst::ICMP_SGT, | 
 |                 ConstantInt::get(Op1->getType(), 0), Op1), | 
 |               ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op2),  | 
 |               ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op2)); // overflow. | 
 |  | 
 |           Constant *Ops[] = { Res, Overflow }; | 
 |           return ConstantStruct::get(F->getContext(), Ops, 2, false); | 
 |         } | 
 |         case Intrinsic::ssub_with_overflow: { | 
 |           Constant *Res = ConstantExpr::getSub(Op1, Op2);           // result. | 
 |           Constant *Overflow = ConstantExpr::getSelect( | 
 |               ConstantExpr::getICmp(CmpInst::ICMP_SGT, | 
 |                 ConstantInt::get(Op2->getType(), 0), Op2), | 
 |               ConstantExpr::getICmp(CmpInst::ICMP_SLT, Res, Op1),  | 
 |               ConstantExpr::getICmp(CmpInst::ICMP_SGT, Res, Op1)); // overflow. | 
 |  | 
 |           Constant *Ops[] = { Res, Overflow }; | 
 |           return ConstantStruct::get(F->getContext(), Ops, 2, false); | 
 |         } | 
 |         } | 
 |       } | 
 |        | 
 |       return 0; | 
 |     } | 
 |     return 0; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  |