| //===-- Writer.cpp - Library for converting LLVM code to C ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This library converts LLVM code to C code, compilable by GCC and other C |
| // compilers. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CTargetMachine.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/SymbolTable.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Analysis/ConstantsScanner.h" |
| #include "llvm/Analysis/FindUsedTypes.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Target/TargetMachineRegistry.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "llvm/Support/Mangler.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Config/config.h" |
| #include <algorithm> |
| #include <iostream> |
| #include <sstream> |
| using namespace llvm; |
| |
| namespace { |
| // Register the target. |
| RegisterTarget<CTargetMachine> X("c", " C backend"); |
| |
| /// NameAllUsedStructs - This pass inserts names for any unnamed structure |
| /// types that are used by the program. |
| /// |
| class CBackendNameAllUsedStructs : public ModulePass { |
| void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<FindUsedTypes>(); |
| } |
| |
| virtual const char *getPassName() const { |
| return "C backend type canonicalizer"; |
| } |
| |
| virtual bool runOnModule(Module &M); |
| }; |
| |
| /// CWriter - This class is the main chunk of code that converts an LLVM |
| /// module to a C translation unit. |
| class CWriter : public FunctionPass, public InstVisitor<CWriter> { |
| std::ostream &Out; |
| IntrinsicLowering &IL; |
| Mangler *Mang; |
| LoopInfo *LI; |
| const Module *TheModule; |
| std::map<const Type *, std::string> TypeNames; |
| |
| std::map<const ConstantFP *, unsigned> FPConstantMap; |
| public: |
| CWriter(std::ostream &o, IntrinsicLowering &il) : Out(o), IL(il) {} |
| |
| virtual const char *getPassName() const { return "C backend"; } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<LoopInfo>(); |
| AU.setPreservesAll(); |
| } |
| |
| virtual bool doInitialization(Module &M); |
| |
| bool runOnFunction(Function &F) { |
| LI = &getAnalysis<LoopInfo>(); |
| |
| // Get rid of intrinsics we can't handle. |
| lowerIntrinsics(F); |
| |
| // Output all floating point constants that cannot be printed accurately. |
| printFloatingPointConstants(F); |
| |
| // Ensure that no local symbols conflict with global symbols. |
| F.renameLocalSymbols(); |
| |
| printFunction(F); |
| FPConstantMap.clear(); |
| return false; |
| } |
| |
| virtual bool doFinalization(Module &M) { |
| // Free memory... |
| delete Mang; |
| TypeNames.clear(); |
| return false; |
| } |
| |
| std::ostream &printType(std::ostream &Out, const Type *Ty, |
| const std::string &VariableName = "", |
| bool IgnoreName = false); |
| |
| void writeOperand(Value *Operand); |
| void writeOperandInternal(Value *Operand); |
| |
| private : |
| void lowerIntrinsics(Function &F); |
| |
| bool nameAllUsedStructureTypes(Module &M); |
| void printModule(Module *M); |
| void printModuleTypes(const SymbolTable &ST); |
| void printContainedStructs(const Type *Ty, std::set<const StructType *> &); |
| void printFloatingPointConstants(Function &F); |
| void printFunctionSignature(const Function *F, bool Prototype); |
| |
| void printFunction(Function &); |
| void printBasicBlock(BasicBlock *BB); |
| void printLoop(Loop *L); |
| |
| void printConstant(Constant *CPV); |
| void printConstantArray(ConstantArray *CPA); |
| |
| // isInlinableInst - Attempt to inline instructions into their uses to build |
| // trees as much as possible. To do this, we have to consistently decide |
| // what is acceptable to inline, so that variable declarations don't get |
| // printed and an extra copy of the expr is not emitted. |
| // |
| static bool isInlinableInst(const Instruction &I) { |
| // Always inline setcc instructions, even if they are shared by multiple |
| // expressions. GCC generates horrible code if we don't. |
| if (isa<SetCondInst>(I)) return true; |
| |
| // Must be an expression, must be used exactly once. If it is dead, we |
| // emit it inline where it would go. |
| if (I.getType() == Type::VoidTy || !I.hasOneUse() || |
| isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) || |
| isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<VANextInst>(I)) |
| // Don't inline a load across a store or other bad things! |
| return false; |
| |
| // Only inline instruction it it's use is in the same BB as the inst. |
| return I.getParent() == cast<Instruction>(I.use_back())->getParent(); |
| } |
| |
| // isDirectAlloca - Define fixed sized allocas in the entry block as direct |
| // variables which are accessed with the & operator. This causes GCC to |
| // generate significantly better code than to emit alloca calls directly. |
| // |
| static const AllocaInst *isDirectAlloca(const Value *V) { |
| const AllocaInst *AI = dyn_cast<AllocaInst>(V); |
| if (!AI) return false; |
| if (AI->isArrayAllocation()) |
| return 0; // FIXME: we can also inline fixed size array allocas! |
| if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock()) |
| return 0; |
| return AI; |
| } |
| |
| // Instruction visitation functions |
| friend class InstVisitor<CWriter>; |
| |
| void visitReturnInst(ReturnInst &I); |
| void visitBranchInst(BranchInst &I); |
| void visitSwitchInst(SwitchInst &I); |
| void visitInvokeInst(InvokeInst &I) { |
| assert(0 && "Lowerinvoke pass didn't work!"); |
| } |
| |
| void visitUnwindInst(UnwindInst &I) { |
| assert(0 && "Lowerinvoke pass didn't work!"); |
| } |
| void visitUnreachableInst(UnreachableInst &I); |
| |
| void visitPHINode(PHINode &I); |
| void visitBinaryOperator(Instruction &I); |
| |
| void visitCastInst (CastInst &I); |
| void visitSelectInst(SelectInst &I); |
| void visitCallInst (CallInst &I); |
| void visitShiftInst(ShiftInst &I) { visitBinaryOperator(I); } |
| |
| void visitMallocInst(MallocInst &I); |
| void visitAllocaInst(AllocaInst &I); |
| void visitFreeInst (FreeInst &I); |
| void visitLoadInst (LoadInst &I); |
| void visitStoreInst (StoreInst &I); |
| void visitGetElementPtrInst(GetElementPtrInst &I); |
| void visitVANextInst(VANextInst &I); |
| void visitVAArgInst (VAArgInst &I); |
| |
| void visitInstruction(Instruction &I) { |
| std::cerr << "C Writer does not know about " << I; |
| abort(); |
| } |
| |
| void outputLValue(Instruction *I) { |
| Out << " " << Mang->getValueName(I) << " = "; |
| } |
| |
| bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To); |
| void printPHICopiesForSuccessor(BasicBlock *CurBlock, |
| BasicBlock *Successor, unsigned Indent); |
| void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock, |
| unsigned Indent); |
| void printIndexingExpression(Value *Ptr, gep_type_iterator I, |
| gep_type_iterator E); |
| void printCodeForMain(); |
| }; |
| } |
| |
| /// This method inserts names for any unnamed structure types that are used by |
| /// the program, and removes names from structure types that are not used by the |
| /// program. |
| /// |
| bool CBackendNameAllUsedStructs::runOnModule(Module &M) { |
| // Get a set of types that are used by the program... |
| std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes(); |
| |
| // Loop over the module symbol table, removing types from UT that are |
| // already named, and removing names for structure types that are not used. |
| // |
| SymbolTable &MST = M.getSymbolTable(); |
| for (SymbolTable::type_iterator TI = MST.type_begin(), TE = MST.type_end(); |
| TI != TE; ) { |
| SymbolTable::type_iterator I = TI++; |
| if (const StructType *STy = dyn_cast<StructType>(I->second)) { |
| // If this is not used, remove it from the symbol table. |
| std::set<const Type *>::iterator UTI = UT.find(STy); |
| if (UTI == UT.end()) |
| MST.remove(I); |
| else |
| UT.erase(UTI); |
| } |
| } |
| |
| // UT now contains types that are not named. Loop over it, naming |
| // structure types. |
| // |
| bool Changed = false; |
| unsigned RenameCounter = 0; |
| for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end(); |
| I != E; ++I) |
| if (const StructType *ST = dyn_cast<StructType>(*I)) { |
| while (M.addTypeName("unnamed"+utostr(RenameCounter), ST)) |
| ++RenameCounter; |
| Changed = true; |
| } |
| return Changed; |
| } |
| |
| |
| // Pass the Type* and the variable name and this prints out the variable |
| // declaration. |
| // |
| std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty, |
| const std::string &NameSoFar, |
| bool IgnoreName) { |
| if (Ty->isPrimitiveType()) |
| switch (Ty->getTypeID()) { |
| case Type::VoidTyID: return Out << "void " << NameSoFar; |
| case Type::BoolTyID: return Out << "bool " << NameSoFar; |
| case Type::UByteTyID: return Out << "unsigned char " << NameSoFar; |
| case Type::SByteTyID: return Out << "signed char " << NameSoFar; |
| case Type::UShortTyID: return Out << "unsigned short " << NameSoFar; |
| case Type::ShortTyID: return Out << "short " << NameSoFar; |
| case Type::UIntTyID: return Out << "unsigned " << NameSoFar; |
| case Type::IntTyID: return Out << "int " << NameSoFar; |
| case Type::ULongTyID: return Out << "unsigned long long " << NameSoFar; |
| case Type::LongTyID: return Out << "signed long long " << NameSoFar; |
| case Type::FloatTyID: return Out << "float " << NameSoFar; |
| case Type::DoubleTyID: return Out << "double " << NameSoFar; |
| default : |
| std::cerr << "Unknown primitive type: " << *Ty << "\n"; |
| abort(); |
| } |
| |
| // Check to see if the type is named. |
| if (!IgnoreName || isa<OpaqueType>(Ty)) { |
| std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty); |
| if (I != TypeNames.end()) return Out << I->second << " " << NameSoFar; |
| } |
| |
| switch (Ty->getTypeID()) { |
| case Type::FunctionTyID: { |
| const FunctionType *MTy = cast<FunctionType>(Ty); |
| std::stringstream FunctionInnards; |
| FunctionInnards << " (" << NameSoFar << ") ("; |
| for (FunctionType::param_iterator I = MTy->param_begin(), |
| E = MTy->param_end(); I != E; ++I) { |
| if (I != MTy->param_begin()) |
| FunctionInnards << ", "; |
| printType(FunctionInnards, *I, ""); |
| } |
| if (MTy->isVarArg()) { |
| if (MTy->getNumParams()) |
| FunctionInnards << ", ..."; |
| } else if (!MTy->getNumParams()) { |
| FunctionInnards << "void"; |
| } |
| FunctionInnards << ")"; |
| std::string tstr = FunctionInnards.str(); |
| printType(Out, MTy->getReturnType(), tstr); |
| return Out; |
| } |
| case Type::StructTyID: { |
| const StructType *STy = cast<StructType>(Ty); |
| Out << NameSoFar + " {\n"; |
| unsigned Idx = 0; |
| for (StructType::element_iterator I = STy->element_begin(), |
| E = STy->element_end(); I != E; ++I) { |
| Out << " "; |
| printType(Out, *I, "field" + utostr(Idx++)); |
| Out << ";\n"; |
| } |
| return Out << "}"; |
| } |
| |
| case Type::PointerTyID: { |
| const PointerType *PTy = cast<PointerType>(Ty); |
| std::string ptrName = "*" + NameSoFar; |
| |
| if (isa<ArrayType>(PTy->getElementType())) |
| ptrName = "(" + ptrName + ")"; |
| |
| return printType(Out, PTy->getElementType(), ptrName); |
| } |
| |
| case Type::ArrayTyID: { |
| const ArrayType *ATy = cast<ArrayType>(Ty); |
| unsigned NumElements = ATy->getNumElements(); |
| return printType(Out, ATy->getElementType(), |
| NameSoFar + "[" + utostr(NumElements) + "]"); |
| } |
| |
| case Type::OpaqueTyID: { |
| static int Count = 0; |
| std::string TyName = "struct opaque_" + itostr(Count++); |
| assert(TypeNames.find(Ty) == TypeNames.end()); |
| TypeNames[Ty] = TyName; |
| return Out << TyName << " " << NameSoFar; |
| } |
| default: |
| assert(0 && "Unhandled case in getTypeProps!"); |
| abort(); |
| } |
| |
| return Out; |
| } |
| |
| void CWriter::printConstantArray(ConstantArray *CPA) { |
| |
| // As a special case, print the array as a string if it is an array of |
| // ubytes or an array of sbytes with positive values. |
| // |
| const Type *ETy = CPA->getType()->getElementType(); |
| bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy); |
| |
| // Make sure the last character is a null char, as automatically added by C |
| if (isString && (CPA->getNumOperands() == 0 || |
| !cast<Constant>(*(CPA->op_end()-1))->isNullValue())) |
| isString = false; |
| |
| if (isString) { |
| Out << "\""; |
| // Keep track of whether the last number was a hexadecimal escape |
| bool LastWasHex = false; |
| |
| // Do not include the last character, which we know is null |
| for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) { |
| unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getRawValue(); |
| |
| // Print it out literally if it is a printable character. The only thing |
| // to be careful about is when the last letter output was a hex escape |
| // code, in which case we have to be careful not to print out hex digits |
| // explicitly (the C compiler thinks it is a continuation of the previous |
| // character, sheesh...) |
| // |
| if (isprint(C) && (!LastWasHex || !isxdigit(C))) { |
| LastWasHex = false; |
| if (C == '"' || C == '\\') |
| Out << "\\" << C; |
| else |
| Out << C; |
| } else { |
| LastWasHex = false; |
| switch (C) { |
| case '\n': Out << "\\n"; break; |
| case '\t': Out << "\\t"; break; |
| case '\r': Out << "\\r"; break; |
| case '\v': Out << "\\v"; break; |
| case '\a': Out << "\\a"; break; |
| case '\"': Out << "\\\""; break; |
| case '\'': Out << "\\\'"; break; |
| default: |
| Out << "\\x"; |
| Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A')); |
| Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A')); |
| LastWasHex = true; |
| break; |
| } |
| } |
| } |
| Out << "\""; |
| } else { |
| Out << "{"; |
| if (CPA->getNumOperands()) { |
| Out << " "; |
| printConstant(cast<Constant>(CPA->getOperand(0))); |
| for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) { |
| Out << ", "; |
| printConstant(cast<Constant>(CPA->getOperand(i))); |
| } |
| } |
| Out << " }"; |
| } |
| } |
| |
| // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out |
| // textually as a double (rather than as a reference to a stack-allocated |
| // variable). We decide this by converting CFP to a string and back into a |
| // double, and then checking whether the conversion results in a bit-equal |
| // double to the original value of CFP. This depends on us and the target C |
| // compiler agreeing on the conversion process (which is pretty likely since we |
| // only deal in IEEE FP). |
| // |
| static bool isFPCSafeToPrint(const ConstantFP *CFP) { |
| #if HAVE_PRINTF_A |
| char Buffer[100]; |
| sprintf(Buffer, "%a", CFP->getValue()); |
| |
| if (!strncmp(Buffer, "0x", 2) || |
| !strncmp(Buffer, "-0x", 3) || |
| !strncmp(Buffer, "+0x", 3)) |
| return atof(Buffer) == CFP->getValue(); |
| return false; |
| #else |
| std::string StrVal = ftostr(CFP->getValue()); |
| |
| while (StrVal[0] == ' ') |
| StrVal.erase(StrVal.begin()); |
| |
| // Check to make sure that the stringized number is not some string like "Inf" |
| // or NaN. Check that the string matches the "[-+]?[0-9]" regex. |
| if ((StrVal[0] >= '0' && StrVal[0] <= '9') || |
| ((StrVal[0] == '-' || StrVal[0] == '+') && |
| (StrVal[1] >= '0' && StrVal[1] <= '9'))) |
| // Reparse stringized version! |
| return atof(StrVal.c_str()) == CFP->getValue(); |
| return false; |
| #endif |
| } |
| |
| // printConstant - The LLVM Constant to C Constant converter. |
| void CWriter::printConstant(Constant *CPV) { |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { |
| switch (CE->getOpcode()) { |
| case Instruction::Cast: |
| Out << "(("; |
| printType(Out, CPV->getType()); |
| Out << ")"; |
| printConstant(CE->getOperand(0)); |
| Out << ")"; |
| return; |
| |
| case Instruction::GetElementPtr: |
| Out << "(&("; |
| printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV), |
| gep_type_end(CPV)); |
| Out << "))"; |
| return; |
| case Instruction::Select: |
| Out << "("; |
| printConstant(CE->getOperand(0)); |
| Out << "?"; |
| printConstant(CE->getOperand(1)); |
| Out << ":"; |
| printConstant(CE->getOperand(2)); |
| Out << ")"; |
| return; |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::Div: |
| case Instruction::Rem: |
| case Instruction::SetEQ: |
| case Instruction::SetNE: |
| case Instruction::SetLT: |
| case Instruction::SetLE: |
| case Instruction::SetGT: |
| case Instruction::SetGE: |
| case Instruction::Shl: |
| case Instruction::Shr: |
| Out << "("; |
| printConstant(CE->getOperand(0)); |
| switch (CE->getOpcode()) { |
| case Instruction::Add: Out << " + "; break; |
| case Instruction::Sub: Out << " - "; break; |
| case Instruction::Mul: Out << " * "; break; |
| case Instruction::Div: Out << " / "; break; |
| case Instruction::Rem: Out << " % "; break; |
| case Instruction::SetEQ: Out << " == "; break; |
| case Instruction::SetNE: Out << " != "; break; |
| case Instruction::SetLT: Out << " < "; break; |
| case Instruction::SetLE: Out << " <= "; break; |
| case Instruction::SetGT: Out << " > "; break; |
| case Instruction::SetGE: Out << " >= "; break; |
| case Instruction::Shl: Out << " << "; break; |
| case Instruction::Shr: Out << " >> "; break; |
| default: assert(0 && "Illegal opcode here!"); |
| } |
| printConstant(CE->getOperand(1)); |
| Out << ")"; |
| return; |
| |
| default: |
| std::cerr << "CWriter Error: Unhandled constant expression: " |
| << *CE << "\n"; |
| abort(); |
| } |
| } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) { |
| Out << "(("; |
| printType(Out, CPV->getType()); |
| Out << ")/*UNDEF*/0)"; |
| return; |
| } |
| |
| switch (CPV->getType()->getTypeID()) { |
| case Type::BoolTyID: |
| Out << (CPV == ConstantBool::False ? "0" : "1"); break; |
| case Type::SByteTyID: |
| case Type::ShortTyID: |
| Out << cast<ConstantSInt>(CPV)->getValue(); break; |
| case Type::IntTyID: |
| if ((int)cast<ConstantSInt>(CPV)->getValue() == (int)0x80000000) |
| Out << "((int)0x80000000U)"; // Handle MININT specially to avoid warning |
| else |
| Out << cast<ConstantSInt>(CPV)->getValue(); |
| break; |
| |
| case Type::LongTyID: |
| if (cast<ConstantSInt>(CPV)->isMinValue()) |
| Out << "(/*INT64_MIN*/(-9223372036854775807LL)-1)"; |
| else |
| Out << cast<ConstantSInt>(CPV)->getValue() << "ll"; break; |
| |
| case Type::UByteTyID: |
| case Type::UShortTyID: |
| Out << cast<ConstantUInt>(CPV)->getValue(); break; |
| case Type::UIntTyID: |
| Out << cast<ConstantUInt>(CPV)->getValue() << "u"; break; |
| case Type::ULongTyID: |
| Out << cast<ConstantUInt>(CPV)->getValue() << "ull"; break; |
| |
| case Type::FloatTyID: |
| case Type::DoubleTyID: { |
| ConstantFP *FPC = cast<ConstantFP>(CPV); |
| std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC); |
| if (I != FPConstantMap.end()) { |
| // Because of FP precision problems we must load from a stack allocated |
| // value that holds the value in hex. |
| Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" : "double") |
| << "*)&FPConstant" << I->second << ")"; |
| } else { |
| if (IsNAN(FPC->getValue())) { |
| // The value is NaN |
| |
| // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN, |
| // it's 0x7ff4. |
| const unsigned long QuietNaN = 0x7ff8UL; |
| const unsigned long SignalNaN = 0x7ff4UL; |
| |
| // We need to grab the first part of the FP # |
| union { |
| double d; |
| uint64_t ll; |
| } DHex; |
| char Buffer[100]; |
| |
| DHex.d = FPC->getValue(); |
| sprintf(Buffer, "0x%llx", (unsigned long long)DHex.ll); |
| |
| std::string Num(&Buffer[0], &Buffer[6]); |
| unsigned long Val = strtoul(Num.c_str(), 0, 16); |
| |
| if (FPC->getType() == Type::FloatTy) |
| Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\"" |
| << Buffer << "\") /*nan*/ "; |
| else |
| Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\"" |
| << Buffer << "\") /*nan*/ "; |
| } else if (IsInf(FPC->getValue())) { |
| // The value is Inf |
| if (FPC->getValue() < 0) Out << "-"; |
| Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "") |
| << " /*inf*/ "; |
| } else { |
| std::string Num; |
| #if HAVE_PRINTF_A |
| // Print out the constant as a floating point number. |
| char Buffer[100]; |
| sprintf(Buffer, "%a", FPC->getValue()); |
| Num = Buffer; |
| #else |
| Num = ftostr(FPC->getValue()); |
| #endif |
| Out << Num; |
| } |
| } |
| break; |
| } |
| |
| case Type::ArrayTyID: |
| if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { |
| const ArrayType *AT = cast<ArrayType>(CPV->getType()); |
| Out << "{"; |
| if (AT->getNumElements()) { |
| Out << " "; |
| Constant *CZ = Constant::getNullValue(AT->getElementType()); |
| printConstant(CZ); |
| for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) { |
| Out << ", "; |
| printConstant(CZ); |
| } |
| } |
| Out << " }"; |
| } else { |
| printConstantArray(cast<ConstantArray>(CPV)); |
| } |
| break; |
| |
| case Type::StructTyID: |
| if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) { |
| const StructType *ST = cast<StructType>(CPV->getType()); |
| Out << "{"; |
| if (ST->getNumElements()) { |
| Out << " "; |
| printConstant(Constant::getNullValue(ST->getElementType(0))); |
| for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) { |
| Out << ", "; |
| printConstant(Constant::getNullValue(ST->getElementType(i))); |
| } |
| } |
| Out << " }"; |
| } else { |
| Out << "{"; |
| if (CPV->getNumOperands()) { |
| Out << " "; |
| printConstant(cast<Constant>(CPV->getOperand(0))); |
| for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) { |
| Out << ", "; |
| printConstant(cast<Constant>(CPV->getOperand(i))); |
| } |
| } |
| Out << " }"; |
| } |
| break; |
| |
| case Type::PointerTyID: |
| if (isa<ConstantPointerNull>(CPV)) { |
| Out << "(("; |
| printType(Out, CPV->getType()); |
| Out << ")/*NULL*/0)"; |
| break; |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) { |
| writeOperand(GV); |
| break; |
| } |
| // FALL THROUGH |
| default: |
| std::cerr << "Unknown constant type: " << *CPV << "\n"; |
| abort(); |
| } |
| } |
| |
| void CWriter::writeOperandInternal(Value *Operand) { |
| if (Instruction *I = dyn_cast<Instruction>(Operand)) |
| if (isInlinableInst(*I) && !isDirectAlloca(I)) { |
| // Should we inline this instruction to build a tree? |
| Out << "("; |
| visit(*I); |
| Out << ")"; |
| return; |
| } |
| |
| Constant* CPV = dyn_cast<Constant>(Operand); |
| if (CPV && !isa<GlobalValue>(CPV)) { |
| printConstant(CPV); |
| } else { |
| Out << Mang->getValueName(Operand); |
| } |
| } |
| |
| void CWriter::writeOperand(Value *Operand) { |
| if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand)) |
| Out << "(&"; // Global variables are references as their addresses by llvm |
| |
| writeOperandInternal(Operand); |
| |
| if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand)) |
| Out << ")"; |
| } |
| |
| // generateCompilerSpecificCode - This is where we add conditional compilation |
| // directives to cater to specific compilers as need be. |
| // |
| static void generateCompilerSpecificCode(std::ostream& Out) { |
| // Alloca is hard to get, and we don't want to include stdlib.h here... |
| Out << "/* get a declaration for alloca */\n" |
| << "#if defined(__CYGWIN__) || defined(__APPLE__)\n" |
| << "extern void *__builtin_alloca(unsigned long);\n" |
| << "#define alloca(x) __builtin_alloca(x)\n" |
| << "#elif defined(__sun__)\n" |
| << "#if defined(__sparcv9)\n" |
| << "extern void *__builtin_alloca(unsigned long);\n" |
| << "#else\n" |
| << "extern void *__builtin_alloca(unsigned int);\n" |
| << "#endif\n" |
| << "#define alloca(x) __builtin_alloca(x)\n" |
| << "#elif defined(__FreeBSD__)\n" |
| << "#define alloca(x) __builtin_alloca(x)\n" |
| << "#else\n" |
| << "#include <alloca.h>\n" |
| << "#endif\n\n"; |
| |
| // We output GCC specific attributes to preserve 'linkonce'ness on globals. |
| // If we aren't being compiled with GCC, just drop these attributes. |
| Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n" |
| << "#define __attribute__(X)\n" |
| << "#endif\n\n"; |
| |
| #if 0 |
| // At some point, we should support "external weak" vs. "weak" linkages. |
| // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))". |
| Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" |
| << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n" |
| << "#elif defined(__GNUC__)\n" |
| << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n" |
| << "#else\n" |
| << "#define __EXTERNAL_WEAK__\n" |
| << "#endif\n\n"; |
| #endif |
| |
| // For now, turn off the weak linkage attribute on Mac OS X. (See above.) |
| Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n" |
| << "#define __ATTRIBUTE_WEAK__\n" |
| << "#elif defined(__GNUC__)\n" |
| << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n" |
| << "#else\n" |
| << "#define __ATTRIBUTE_WEAK__\n" |
| << "#endif\n\n"; |
| |
| // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise |
| // From the GCC documentation: |
| // |
| // double __builtin_nan (const char *str) |
| // |
| // This is an implementation of the ISO C99 function nan. |
| // |
| // Since ISO C99 defines this function in terms of strtod, which we do |
| // not implement, a description of the parsing is in order. The string is |
| // parsed as by strtol; that is, the base is recognized by leading 0 or |
| // 0x prefixes. The number parsed is placed in the significand such that |
| // the least significant bit of the number is at the least significant |
| // bit of the significand. The number is truncated to fit the significand |
| // field provided. The significand is forced to be a quiet NaN. |
| // |
| // This function, if given a string literal, is evaluated early enough |
| // that it is considered a compile-time constant. |
| // |
| // float __builtin_nanf (const char *str) |
| // |
| // Similar to __builtin_nan, except the return type is float. |
| // |
| // double __builtin_inf (void) |
| // |
| // Similar to __builtin_huge_val, except a warning is generated if the |
| // target floating-point format does not support infinities. This |
| // function is suitable for implementing the ISO C99 macro INFINITY. |
| // |
| // float __builtin_inff (void) |
| // |
| // Similar to __builtin_inf, except the return type is float. |
| Out << "#ifdef __GNUC__\n" |
| << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n" |
| << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n" |
| << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n" |
| << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n" |
| << "#define LLVM_INF __builtin_inf() /* Double */\n" |
| << "#define LLVM_INFF __builtin_inff() /* Float */\n" |
| << "#else\n" |
| << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n" |
| << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n" |
| << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n" |
| << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n" |
| << "#define LLVM_INF ((double)0.0) /* Double */\n" |
| << "#define LLVM_INFF 0.0F /* Float */\n" |
| << "#endif\n"; |
| } |
| |
| bool CWriter::doInitialization(Module &M) { |
| // Initialize |
| TheModule = &M; |
| |
| IL.AddPrototypes(M); |
| |
| // Ensure that all structure types have names... |
| Mang = new Mangler(M); |
| |
| // get declaration for alloca |
| Out << "/* Provide Declarations */\n"; |
| Out << "#include <stdarg.h>\n"; // Varargs support |
| Out << "#include <setjmp.h>\n"; // Unwind support |
| generateCompilerSpecificCode(Out); |
| |
| // Provide a definition for `bool' if not compiling with a C++ compiler. |
| Out << "\n" |
| << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n" |
| |
| << "\n\n/* Support for floating point constants */\n" |
| << "typedef unsigned long long ConstantDoubleTy;\n" |
| << "typedef unsigned int ConstantFloatTy;\n" |
| |
| << "\n\n/* Global Declarations */\n"; |
| |
| // First output all the declarations for the program, because C requires |
| // Functions & globals to be declared before they are used. |
| // |
| |
| // Loop over the symbol table, emitting all named constants... |
| printModuleTypes(M.getSymbolTable()); |
| |
| // Global variable declarations... |
| if (!M.gempty()) { |
| Out << "\n/* External Global Variable Declarations */\n"; |
| for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) { |
| if (I->hasExternalLinkage()) { |
| Out << "extern "; |
| printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); |
| Out << ";\n"; |
| } |
| } |
| } |
| |
| // Function declarations |
| if (!M.empty()) { |
| Out << "\n/* Function Declarations */\n"; |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) { |
| // Don't print declarations for intrinsic functions. |
| if (!I->getIntrinsicID() && |
| I->getName() != "setjmp" && I->getName() != "longjmp") { |
| printFunctionSignature(I, true); |
| if (I->hasWeakLinkage()) Out << " __ATTRIBUTE_WEAK__"; |
| if (I->hasLinkOnceLinkage()) Out << " __ATTRIBUTE_WEAK__"; |
| Out << ";\n"; |
| } |
| } |
| } |
| |
| // Output the global variable declarations |
| if (!M.gempty()) { |
| Out << "\n\n/* Global Variable Declarations */\n"; |
| for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) |
| if (!I->isExternal()) { |
| if (I->hasInternalLinkage()) |
| Out << "static "; |
| else |
| Out << "extern "; |
| printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); |
| |
| if (I->hasLinkOnceLinkage()) |
| Out << " __attribute__((common))"; |
| else if (I->hasWeakLinkage()) |
| Out << " __ATTRIBUTE_WEAK__"; |
| Out << ";\n"; |
| } |
| } |
| |
| // Output the global variable definitions and contents... |
| if (!M.gempty()) { |
| Out << "\n\n/* Global Variable Definitions and Initialization */\n"; |
| for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I) |
| if (!I->isExternal()) { |
| if (I->hasInternalLinkage()) |
| Out << "static "; |
| printType(Out, I->getType()->getElementType(), Mang->getValueName(I)); |
| if (I->hasLinkOnceLinkage()) |
| Out << " __attribute__((common))"; |
| else if (I->hasWeakLinkage()) |
| Out << " __ATTRIBUTE_WEAK__"; |
| |
| // If the initializer is not null, emit the initializer. If it is null, |
| // we try to avoid emitting large amounts of zeros. The problem with |
| // this, however, occurs when the variable has weak linkage. In this |
| // case, the assembler will complain about the variable being both weak |
| // and common, so we disable this optimization. |
| if (!I->getInitializer()->isNullValue()) { |
| Out << " = " ; |
| writeOperand(I->getInitializer()); |
| } else if (I->hasWeakLinkage()) { |
| // We have to specify an initializer, but it doesn't have to be |
| // complete. If the value is an aggregate, print out { 0 }, and let |
| // the compiler figure out the rest of the zeros. |
| Out << " = " ; |
| if (isa<StructType>(I->getInitializer()->getType()) || |
| isa<ArrayType>(I->getInitializer()->getType())) { |
| Out << "{ 0 }"; |
| } else { |
| // Just print it out normally. |
| writeOperand(I->getInitializer()); |
| } |
| } |
| Out << ";\n"; |
| } |
| } |
| |
| if (!M.empty()) |
| Out << "\n\n/* Function Bodies */\n"; |
| return false; |
| } |
| |
| |
| /// Output all floating point constants that cannot be printed accurately... |
| void CWriter::printFloatingPointConstants(Function &F) { |
| union { |
| double D; |
| uint64_t U; |
| } DBLUnion; |
| |
| union { |
| float F; |
| unsigned U; |
| } FLTUnion; |
| |
| // Scan the module for floating point constants. If any FP constant is used |
| // in the function, we want to redirect it here so that we do not depend on |
| // the precision of the printed form, unless the printed form preserves |
| // precision. |
| // |
| static unsigned FPCounter = 0; |
| for (constant_iterator I = constant_begin(&F), E = constant_end(&F); |
| I != E; ++I) |
| if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I)) |
| if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe. |
| !FPConstantMap.count(FPC)) { |
| double Val = FPC->getValue(); |
| |
| FPConstantMap[FPC] = FPCounter; // Number the FP constants |
| |
| if (FPC->getType() == Type::DoubleTy) { |
| DBLUnion.D = Val; |
| Out << "static const ConstantDoubleTy FPConstant" << FPCounter++ |
| << " = 0x" << std::hex << DBLUnion.U << std::dec |
| << "ULL; /* " << Val << " */\n"; |
| } else if (FPC->getType() == Type::FloatTy) { |
| FLTUnion.F = Val; |
| Out << "static const ConstantFloatTy FPConstant" << FPCounter++ |
| << " = 0x" << std::hex << FLTUnion.U << std::dec |
| << "U; /* " << Val << " */\n"; |
| } else |
| assert(0 && "Unknown float type!"); |
| } |
| |
| Out << "\n"; |
| } |
| |
| |
| /// printSymbolTable - Run through symbol table looking for type names. If a |
| /// type name is found, emit it's declaration... |
| /// |
| void CWriter::printModuleTypes(const SymbolTable &ST) { |
| // If there are no type names, exit early. |
| if ( ! ST.hasTypes() ) |
| return; |
| |
| // We are only interested in the type plane of the symbol table... |
| SymbolTable::type_const_iterator I = ST.type_begin(); |
| SymbolTable::type_const_iterator End = ST.type_end(); |
| |
| // Print out forward declarations for structure types before anything else! |
| Out << "/* Structure forward decls */\n"; |
| for (; I != End; ++I) |
| if (const Type *STy = dyn_cast<StructType>(I->second)) { |
| std::string Name = "struct l_" + Mangler::makeNameProper(I->first); |
| Out << Name << ";\n"; |
| TypeNames.insert(std::make_pair(STy, Name)); |
| } |
| |
| Out << "\n"; |
| |
| // Now we can print out typedefs... |
| Out << "/* Typedefs */\n"; |
| for (I = ST.type_begin(); I != End; ++I) { |
| const Type *Ty = cast<Type>(I->second); |
| std::string Name = "l_" + Mangler::makeNameProper(I->first); |
| Out << "typedef "; |
| printType(Out, Ty, Name); |
| Out << ";\n"; |
| } |
| |
| Out << "\n"; |
| |
| // Keep track of which structures have been printed so far... |
| std::set<const StructType *> StructPrinted; |
| |
| // Loop over all structures then push them into the stack so they are |
| // printed in the correct order. |
| // |
| Out << "/* Structure contents */\n"; |
| for (I = ST.type_begin(); I != End; ++I) |
| if (const StructType *STy = dyn_cast<StructType>(I->second)) |
| // Only print out used types! |
| printContainedStructs(STy, StructPrinted); |
| } |
| |
| // Push the struct onto the stack and recursively push all structs |
| // this one depends on. |
| void CWriter::printContainedStructs(const Type *Ty, |
| std::set<const StructType*> &StructPrinted){ |
| if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| //Check to see if we have already printed this struct |
| if (StructPrinted.count(STy) == 0) { |
| // Print all contained types first... |
| for (StructType::element_iterator I = STy->element_begin(), |
| E = STy->element_end(); I != E; ++I) { |
| const Type *Ty1 = I->get(); |
| if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1)) |
| printContainedStructs(*I, StructPrinted); |
| } |
| |
| //Print structure type out.. |
| StructPrinted.insert(STy); |
| std::string Name = TypeNames[STy]; |
| printType(Out, STy, Name, true); |
| Out << ";\n\n"; |
| } |
| |
| // If it is an array, check contained types and continue |
| } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)){ |
| const Type *Ty1 = ATy->getElementType(); |
| if (isa<StructType>(Ty1) || isa<ArrayType>(Ty1)) |
| printContainedStructs(Ty1, StructPrinted); |
| } |
| } |
| |
| |
| void CWriter::printFunctionSignature(const Function *F, bool Prototype) { |
| if (F->hasInternalLinkage()) Out << "static "; |
| |
| // Loop over the arguments, printing them... |
| const FunctionType *FT = cast<FunctionType>(F->getFunctionType()); |
| |
| std::stringstream FunctionInnards; |
| |
| // Print out the name... |
| FunctionInnards << Mang->getValueName(F) << "("; |
| |
| if (!F->isExternal()) { |
| if (!F->aempty()) { |
| std::string ArgName; |
| if (F->abegin()->hasName() || !Prototype) |
| ArgName = Mang->getValueName(F->abegin()); |
| printType(FunctionInnards, F->afront().getType(), ArgName); |
| for (Function::const_aiterator I = ++F->abegin(), E = F->aend(); |
| I != E; ++I) { |
| FunctionInnards << ", "; |
| if (I->hasName() || !Prototype) |
| ArgName = Mang->getValueName(I); |
| else |
| ArgName = ""; |
| printType(FunctionInnards, I->getType(), ArgName); |
| } |
| } |
| } else { |
| // Loop over the arguments, printing them... |
| for (FunctionType::param_iterator I = FT->param_begin(), |
| E = FT->param_end(); I != E; ++I) { |
| if (I != FT->param_begin()) FunctionInnards << ", "; |
| printType(FunctionInnards, *I); |
| } |
| } |
| |
| // Finish printing arguments... if this is a vararg function, print the ..., |
| // unless there are no known types, in which case, we just emit (). |
| // |
| if (FT->isVarArg() && FT->getNumParams()) { |
| if (FT->getNumParams()) FunctionInnards << ", "; |
| FunctionInnards << "..."; // Output varargs portion of signature! |
| } else if (!FT->isVarArg() && FT->getNumParams() == 0) { |
| FunctionInnards << "void"; // ret() -> ret(void) in C. |
| } |
| FunctionInnards << ")"; |
| // Print out the return type and the entire signature for that matter |
| printType(Out, F->getReturnType(), FunctionInnards.str()); |
| } |
| |
| void CWriter::printFunction(Function &F) { |
| printFunctionSignature(&F, false); |
| Out << " {\n"; |
| |
| // print local variable information for the function |
| for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) |
| if (const AllocaInst *AI = isDirectAlloca(&*I)) { |
| Out << " "; |
| printType(Out, AI->getAllocatedType(), Mang->getValueName(AI)); |
| Out << "; /* Address exposed local */\n"; |
| } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) { |
| Out << " "; |
| printType(Out, I->getType(), Mang->getValueName(&*I)); |
| Out << ";\n"; |
| |
| if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well... |
| Out << " "; |
| printType(Out, I->getType(), |
| Mang->getValueName(&*I)+"__PHI_TEMPORARY"); |
| Out << ";\n"; |
| } |
| } |
| |
| Out << "\n"; |
| |
| if (F.hasExternalLinkage() && F.getName() == "main") |
| printCodeForMain(); |
| |
| // print the basic blocks |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { |
| if (Loop *L = LI->getLoopFor(BB)) { |
| if (L->getHeader() == BB && L->getParentLoop() == 0) |
| printLoop(L); |
| } else { |
| printBasicBlock(BB); |
| } |
| } |
| |
| Out << "}\n\n"; |
| } |
| |
| void CWriter::printCodeForMain() { |
| // On X86, set the FP control word to 64-bits of precision instead of 80 bits. |
| Out << "#if defined(__GNUC__) && !defined(__llvm__)\n" |
| << "#if defined(i386) || defined(__i386__) || defined(__i386)\n" |
| << "{short FPCW;__asm__ (\"fnstcw %0\" : \"=m\" (*&FPCW));\n" |
| << "FPCW=(FPCW&~0x300)|0x200;__asm__(\"fldcw %0\" :: \"m\" (*&FPCW));}\n" |
| << "#endif\n#endif\n"; |
| } |
| |
| void CWriter::printLoop(Loop *L) { |
| Out << " do { /* Syntactic loop '" << L->getHeader()->getName() |
| << "' to make GCC happy */\n"; |
| for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) { |
| BasicBlock *BB = L->getBlocks()[i]; |
| Loop *BBLoop = LI->getLoopFor(BB); |
| if (BBLoop == L) |
| printBasicBlock(BB); |
| else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L) |
| printLoop(BBLoop); |
| } |
| Out << " } while (1); /* end of syntactic loop '" |
| << L->getHeader()->getName() << "' */\n"; |
| } |
| |
| void CWriter::printBasicBlock(BasicBlock *BB) { |
| |
| // Don't print the label for the basic block if there are no uses, or if |
| // the only terminator use is the predecessor basic block's terminator. |
| // We have to scan the use list because PHI nodes use basic blocks too but |
| // do not require a label to be generated. |
| // |
| bool NeedsLabel = false; |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) |
| if (isGotoCodeNecessary(*PI, BB)) { |
| NeedsLabel = true; |
| break; |
| } |
| |
| if (NeedsLabel) Out << Mang->getValueName(BB) << ":\n"; |
| |
| // Output all of the instructions in the basic block... |
| for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E; |
| ++II) { |
| if (!isInlinableInst(*II) && !isDirectAlloca(II)) { |
| if (II->getType() != Type::VoidTy) |
| outputLValue(II); |
| else |
| Out << " "; |
| visit(*II); |
| Out << ";\n"; |
| } |
| } |
| |
| // Don't emit prefix or suffix for the terminator... |
| visit(*BB->getTerminator()); |
| } |
| |
| |
| // Specific Instruction type classes... note that all of the casts are |
| // necessary because we use the instruction classes as opaque types... |
| // |
| void CWriter::visitReturnInst(ReturnInst &I) { |
| // Don't output a void return if this is the last basic block in the function |
| if (I.getNumOperands() == 0 && |
| &*--I.getParent()->getParent()->end() == I.getParent() && |
| !I.getParent()->size() == 1) { |
| return; |
| } |
| |
| Out << " return"; |
| if (I.getNumOperands()) { |
| Out << " "; |
| writeOperand(I.getOperand(0)); |
| } |
| Out << ";\n"; |
| } |
| |
| void CWriter::visitSwitchInst(SwitchInst &SI) { |
| |
| Out << " switch ("; |
| writeOperand(SI.getOperand(0)); |
| Out << ") {\n default:\n"; |
| printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2); |
| printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2); |
| Out << ";\n"; |
| for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) { |
| Out << " case "; |
| writeOperand(SI.getOperand(i)); |
| Out << ":\n"; |
| BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1)); |
| printPHICopiesForSuccessor (SI.getParent(), Succ, 2); |
| printBranchToBlock(SI.getParent(), Succ, 2); |
| if (Succ == SI.getParent()->getNext()) |
| Out << " break;\n"; |
| } |
| Out << " }\n"; |
| } |
| |
| void CWriter::visitUnreachableInst(UnreachableInst &I) { |
| Out << " /*UNREACHABLE*/;\n"; |
| } |
| |
| bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) { |
| /// FIXME: This should be reenabled, but loop reordering safe!! |
| return true; |
| |
| if (From->getNext() != To) // Not the direct successor, we need a goto |
| return true; |
| |
| //isa<SwitchInst>(From->getTerminator()) |
| |
| |
| if (LI->getLoopFor(From) != LI->getLoopFor(To)) |
| return true; |
| return false; |
| } |
| |
| void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock, |
| BasicBlock *Successor, |
| unsigned Indent) { |
| for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| // Now we have to do the printing. |
| Value *IV = PN->getIncomingValueForBlock(CurBlock); |
| if (!isa<UndefValue>(IV)) { |
| Out << std::string(Indent, ' '); |
| Out << " " << Mang->getValueName(I) << "__PHI_TEMPORARY = "; |
| writeOperand(IV); |
| Out << "; /* for PHI node */\n"; |
| } |
| } |
| } |
| |
| void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ, |
| unsigned Indent) { |
| if (isGotoCodeNecessary(CurBB, Succ)) { |
| Out << std::string(Indent, ' ') << " goto "; |
| writeOperand(Succ); |
| Out << ";\n"; |
| } |
| } |
| |
| // Branch instruction printing - Avoid printing out a branch to a basic block |
| // that immediately succeeds the current one. |
| // |
| void CWriter::visitBranchInst(BranchInst &I) { |
| |
| if (I.isConditional()) { |
| if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) { |
| Out << " if ("; |
| writeOperand(I.getCondition()); |
| Out << ") {\n"; |
| |
| printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2); |
| printBranchToBlock(I.getParent(), I.getSuccessor(0), 2); |
| |
| if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) { |
| Out << " } else {\n"; |
| printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); |
| printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); |
| } |
| } else { |
| // First goto not necessary, assume second one is... |
| Out << " if (!"; |
| writeOperand(I.getCondition()); |
| Out << ") {\n"; |
| |
| printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2); |
| printBranchToBlock(I.getParent(), I.getSuccessor(1), 2); |
| } |
| |
| Out << " }\n"; |
| } else { |
| printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0); |
| printBranchToBlock(I.getParent(), I.getSuccessor(0), 0); |
| } |
| Out << "\n"; |
| } |
| |
| // PHI nodes get copied into temporary values at the end of predecessor basic |
| // blocks. We now need to copy these temporary values into the REAL value for |
| // the PHI. |
| void CWriter::visitPHINode(PHINode &I) { |
| writeOperand(&I); |
| Out << "__PHI_TEMPORARY"; |
| } |
| |
| |
| void CWriter::visitBinaryOperator(Instruction &I) { |
| // binary instructions, shift instructions, setCond instructions. |
| assert(!isa<PointerType>(I.getType())); |
| |
| // We must cast the results of binary operations which might be promoted. |
| bool needsCast = false; |
| if ((I.getType() == Type::UByteTy) || (I.getType() == Type::SByteTy) |
| || (I.getType() == Type::UShortTy) || (I.getType() == Type::ShortTy) |
| || (I.getType() == Type::FloatTy)) { |
| needsCast = true; |
| Out << "(("; |
| printType(Out, I.getType()); |
| Out << ")("; |
| } |
| |
| writeOperand(I.getOperand(0)); |
| |
| switch (I.getOpcode()) { |
| case Instruction::Add: Out << " + "; break; |
| case Instruction::Sub: Out << " - "; break; |
| case Instruction::Mul: Out << "*"; break; |
| case Instruction::Div: Out << "/"; break; |
| case Instruction::Rem: Out << "%"; break; |
| case Instruction::And: Out << " & "; break; |
| case Instruction::Or: Out << " | "; break; |
| case Instruction::Xor: Out << " ^ "; break; |
| case Instruction::SetEQ: Out << " == "; break; |
| case Instruction::SetNE: Out << " != "; break; |
| case Instruction::SetLE: Out << " <= "; break; |
| case Instruction::SetGE: Out << " >= "; break; |
| case Instruction::SetLT: Out << " < "; break; |
| case Instruction::SetGT: Out << " > "; break; |
| case Instruction::Shl : Out << " << "; break; |
| case Instruction::Shr : Out << " >> "; break; |
| default: std::cerr << "Invalid operator type!" << I; abort(); |
| } |
| |
| writeOperand(I.getOperand(1)); |
| |
| if (needsCast) { |
| Out << "))"; |
| } |
| } |
| |
| void CWriter::visitCastInst(CastInst &I) { |
| if (I.getType() == Type::BoolTy) { |
| Out << "("; |
| writeOperand(I.getOperand(0)); |
| Out << " != 0)"; |
| return; |
| } |
| Out << "("; |
| printType(Out, I.getType()); |
| Out << ")"; |
| if (isa<PointerType>(I.getType())&&I.getOperand(0)->getType()->isIntegral() || |
| isa<PointerType>(I.getOperand(0)->getType())&&I.getType()->isIntegral()) { |
| // Avoid "cast to pointer from integer of different size" warnings |
| Out << "(long)"; |
| } |
| |
| writeOperand(I.getOperand(0)); |
| } |
| |
| void CWriter::visitSelectInst(SelectInst &I) { |
| Out << "(("; |
| writeOperand(I.getCondition()); |
| Out << ") ? ("; |
| writeOperand(I.getTrueValue()); |
| Out << ") : ("; |
| writeOperand(I.getFalseValue()); |
| Out << "))"; |
| } |
| |
| |
| void CWriter::lowerIntrinsics(Function &F) { |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) |
| if (CallInst *CI = dyn_cast<CallInst>(I++)) |
| if (Function *F = CI->getCalledFunction()) |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::not_intrinsic: |
| case Intrinsic::vastart: |
| case Intrinsic::vacopy: |
| case Intrinsic::vaend: |
| case Intrinsic::returnaddress: |
| case Intrinsic::frameaddress: |
| case Intrinsic::setjmp: |
| case Intrinsic::longjmp: |
| // We directly implement these intrinsics |
| break; |
| default: |
| // All other intrinsic calls we must lower. |
| Instruction *Before = CI->getPrev(); |
| IL.LowerIntrinsicCall(CI); |
| if (Before) { // Move iterator to instruction after call |
| I = Before; ++I; |
| } else { |
| I = BB->begin(); |
| } |
| } |
| } |
| |
| |
| |
| void CWriter::visitCallInst(CallInst &I) { |
| // Handle intrinsic function calls first... |
| if (Function *F = I.getCalledFunction()) |
| if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { |
| switch (ID) { |
| default: assert(0 && "Unknown LLVM intrinsic!"); |
| case Intrinsic::vastart: |
| Out << "0; "; |
| |
| Out << "va_start(*(va_list*)&" << Mang->getValueName(&I) << ", "; |
| // Output the last argument to the enclosing function... |
| if (I.getParent()->getParent()->aempty()) { |
| std::cerr << "The C backend does not currently support zero " |
| << "argument varargs functions, such as '" |
| << I.getParent()->getParent()->getName() << "'!\n"; |
| abort(); |
| } |
| writeOperand(&I.getParent()->getParent()->aback()); |
| Out << ")"; |
| return; |
| case Intrinsic::vaend: |
| if (!isa<ConstantPointerNull>(I.getOperand(1))) { |
| Out << "va_end(*(va_list*)&"; |
| writeOperand(I.getOperand(1)); |
| Out << ")"; |
| } else { |
| Out << "va_end(*(va_list*)0)"; |
| } |
| return; |
| case Intrinsic::vacopy: |
| Out << "0;"; |
| Out << "va_copy(*(va_list*)&" << Mang->getValueName(&I) << ", "; |
| Out << "*(va_list*)&"; |
| writeOperand(I.getOperand(1)); |
| Out << ")"; |
| return; |
| case Intrinsic::returnaddress: |
| Out << "__builtin_return_address("; |
| writeOperand(I.getOperand(1)); |
| Out << ")"; |
| return; |
| case Intrinsic::frameaddress: |
| Out << "__builtin_frame_address("; |
| writeOperand(I.getOperand(1)); |
| Out << ")"; |
| return; |
| case Intrinsic::setjmp: |
| Out << "setjmp(*(jmp_buf*)"; |
| writeOperand(I.getOperand(1)); |
| Out << ")"; |
| return; |
| case Intrinsic::longjmp: |
| Out << "longjmp(*(jmp_buf*)"; |
| writeOperand(I.getOperand(1)); |
| Out << ", "; |
| writeOperand(I.getOperand(2)); |
| Out << ")"; |
| return; |
| } |
| } |
| |
| Value *Callee = I.getCalledValue(); |
| |
| // GCC is really a PITA. It does not permit codegening casts of functions to |
| // function pointers if they are in a call (it generates a trap instruction |
| // instead!). We work around this by inserting a cast to void* in between the |
| // function and the function pointer cast. Unfortunately, we can't just form |
| // the constant expression here, because the folder will immediately nuke it. |
| // |
| // Note finally, that this is completely unsafe. ANSI C does not guarantee |
| // that void* and function pointers have the same size. :( To deal with this |
| // in the common case, we handle casts where the number of arguments passed |
| // match exactly. |
| // |
| bool WroteCallee = false; |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee)) |
| if (CE->getOpcode() == Instruction::Cast) |
| if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) { |
| const FunctionType *RFTy = RF->getFunctionType(); |
| if (RFTy->getNumParams() == I.getNumOperands()-1) { |
| // If the call site expects a value, and the actual callee doesn't |
| // provide one, return 0. |
| if (I.getType() != Type::VoidTy && |
| RFTy->getReturnType() == Type::VoidTy) |
| Out << "0 /*actual callee doesn't return value*/; "; |
| Callee = RF; |
| } else { |
| // Ok, just cast the pointer type. |
| Out << "(("; |
| printType(Out, CE->getType()); |
| Out << ")(void*)"; |
| printConstant(RF); |
| Out << ")"; |
| WroteCallee = true; |
| } |
| } |
| |
| const PointerType *PTy = cast<PointerType>(Callee->getType()); |
| const FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); |
| const Type *RetTy = FTy->getReturnType(); |
| |
| if (!WroteCallee) writeOperand(Callee); |
| Out << "("; |
| |
| unsigned NumDeclaredParams = FTy->getNumParams(); |
| |
| if (I.getNumOperands() != 1) { |
| CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end(); |
| if (NumDeclaredParams && (*AI)->getType() != FTy->getParamType(0)) { |
| Out << "("; |
| printType(Out, FTy->getParamType(0)); |
| Out << ")"; |
| } |
| |
| writeOperand(*AI); |
| |
| unsigned ArgNo; |
| for (ArgNo = 1, ++AI; AI != AE; ++AI, ++ArgNo) { |
| Out << ", "; |
| if (ArgNo < NumDeclaredParams && |
| (*AI)->getType() != FTy->getParamType(ArgNo)) { |
| Out << "("; |
| printType(Out, FTy->getParamType(ArgNo)); |
| Out << ")"; |
| } |
| writeOperand(*AI); |
| } |
| } |
| Out << ")"; |
| } |
| |
| void CWriter::visitMallocInst(MallocInst &I) { |
| assert(0 && "lowerallocations pass didn't work!"); |
| } |
| |
| void CWriter::visitAllocaInst(AllocaInst &I) { |
| Out << "("; |
| printType(Out, I.getType()); |
| Out << ") alloca(sizeof("; |
| printType(Out, I.getType()->getElementType()); |
| Out << ")"; |
| if (I.isArrayAllocation()) { |
| Out << " * " ; |
| writeOperand(I.getOperand(0)); |
| } |
| Out << ")"; |
| } |
| |
| void CWriter::visitFreeInst(FreeInst &I) { |
| assert(0 && "lowerallocations pass didn't work!"); |
| } |
| |
| void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I, |
| gep_type_iterator E) { |
| bool HasImplicitAddress = false; |
| // If accessing a global value with no indexing, avoid *(&GV) syndrome |
| if (GlobalValue *V = dyn_cast<GlobalValue>(Ptr)) { |
| HasImplicitAddress = true; |
| } else if (isDirectAlloca(Ptr)) { |
| HasImplicitAddress = true; |
| } |
| |
| if (I == E) { |
| if (!HasImplicitAddress) |
| Out << "*"; // Implicit zero first argument: '*x' is equivalent to 'x[0]' |
| |
| writeOperandInternal(Ptr); |
| return; |
| } |
| |
| const Constant *CI = dyn_cast<Constant>(I.getOperand()); |
| if (HasImplicitAddress && (!CI || !CI->isNullValue())) |
| Out << "(&"; |
| |
| writeOperandInternal(Ptr); |
| |
| if (HasImplicitAddress && (!CI || !CI->isNullValue())) { |
| Out << ")"; |
| HasImplicitAddress = false; // HIA is only true if we haven't addressed yet |
| } |
| |
| assert(!HasImplicitAddress || (CI && CI->isNullValue()) && |
| "Can only have implicit address with direct accessing"); |
| |
| if (HasImplicitAddress) { |
| ++I; |
| } else if (CI && CI->isNullValue()) { |
| gep_type_iterator TmpI = I; ++TmpI; |
| |
| // Print out the -> operator if possible... |
| if (TmpI != E && isa<StructType>(*TmpI)) { |
| Out << (HasImplicitAddress ? "." : "->"); |
| Out << "field" << cast<ConstantUInt>(TmpI.getOperand())->getValue(); |
| I = ++TmpI; |
| } |
| } |
| |
| for (; I != E; ++I) |
| if (isa<StructType>(*I)) { |
| Out << ".field" << cast<ConstantUInt>(I.getOperand())->getValue(); |
| } else { |
| Out << "["; |
| writeOperand(I.getOperand()); |
| Out << "]"; |
| } |
| } |
| |
| void CWriter::visitLoadInst(LoadInst &I) { |
| Out << "*"; |
| writeOperand(I.getOperand(0)); |
| } |
| |
| void CWriter::visitStoreInst(StoreInst &I) { |
| Out << "*"; |
| writeOperand(I.getPointerOperand()); |
| Out << " = "; |
| writeOperand(I.getOperand(0)); |
| } |
| |
| void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) { |
| Out << "&"; |
| printIndexingExpression(I.getPointerOperand(), gep_type_begin(I), |
| gep_type_end(I)); |
| } |
| |
| void CWriter::visitVANextInst(VANextInst &I) { |
| Out << Mang->getValueName(I.getOperand(0)); |
| Out << "; va_arg(*(va_list*)&" << Mang->getValueName(&I) << ", "; |
| printType(Out, I.getArgType()); |
| Out << ")"; |
| } |
| |
| void CWriter::visitVAArgInst(VAArgInst &I) { |
| Out << "0;\n"; |
| Out << "{ va_list Tmp; va_copy(Tmp, *(va_list*)&"; |
| writeOperand(I.getOperand(0)); |
| Out << ");\n " << Mang->getValueName(&I) << " = va_arg(Tmp, "; |
| printType(Out, I.getType()); |
| Out << ");\n va_end(Tmp); }"; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // External Interface declaration |
| //===----------------------------------------------------------------------===// |
| |
| bool CTargetMachine::addPassesToEmitAssembly(PassManager &PM, std::ostream &o) { |
| PM.add(createLowerGCPass()); |
| PM.add(createLowerAllocationsPass()); |
| PM.add(createLowerInvokePass()); |
| PM.add(new CBackendNameAllUsedStructs()); |
| PM.add(new CWriter(o, getIntrinsicLowering())); |
| return false; |
| } |
| |
| // vim: sw=2 |