| //===-- ToolRunner.cpp ----------------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the interfaces described in the ToolRunner.h file. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "toolrunner" |
| #include "ToolRunner.h" |
| #include "llvm/Config/config.h" // for HAVE_LINK_R |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/FileUtilities.h" |
| #include "llvm/Support/PathV1.h" |
| #include "llvm/Support/Program.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <fstream> |
| #include <sstream> |
| using namespace llvm; |
| |
| namespace llvm { |
| cl::opt<bool> |
| SaveTemps("save-temps", cl::init(false), cl::desc("Save temporary files")); |
| } |
| |
| namespace { |
| cl::opt<std::string> |
| RemoteClient("remote-client", |
| cl::desc("Remote execution client (rsh/ssh)")); |
| |
| cl::opt<std::string> |
| RemoteHost("remote-host", |
| cl::desc("Remote execution (rsh/ssh) host")); |
| |
| cl::opt<std::string> |
| RemotePort("remote-port", |
| cl::desc("Remote execution (rsh/ssh) port")); |
| |
| cl::opt<std::string> |
| RemoteUser("remote-user", |
| cl::desc("Remote execution (rsh/ssh) user id")); |
| |
| cl::opt<std::string> |
| RemoteExtra("remote-extra-options", |
| cl::desc("Remote execution (rsh/ssh) extra options")); |
| } |
| |
| /// RunProgramWithTimeout - This function provides an alternate interface |
| /// to the sys::Program::ExecuteAndWait interface. |
| /// @see sys::Program::ExecuteAndWait |
| static int RunProgramWithTimeout(StringRef ProgramPath, |
| const char **Args, |
| StringRef StdInFile, |
| StringRef StdOutFile, |
| StringRef StdErrFile, |
| unsigned NumSeconds = 0, |
| unsigned MemoryLimit = 0, |
| std::string *ErrMsg = 0) { |
| const StringRef *Redirects[3] = { &StdInFile, &StdOutFile, &StdErrFile }; |
| |
| #if 0 // For debug purposes |
| { |
| errs() << "RUN:"; |
| for (unsigned i = 0; Args[i]; ++i) |
| errs() << " " << Args[i]; |
| errs() << "\n"; |
| } |
| #endif |
| |
| return sys::ExecuteAndWait(ProgramPath, Args, 0, Redirects, |
| NumSeconds, MemoryLimit, ErrMsg); |
| } |
| |
| /// RunProgramRemotelyWithTimeout - This function runs the given program |
| /// remotely using the given remote client and the sys::Program::ExecuteAndWait. |
| /// Returns the remote program exit code or reports a remote client error if it |
| /// fails. Remote client is required to return 255 if it failed or program exit |
| /// code otherwise. |
| /// @see sys::Program::ExecuteAndWait |
| static int RunProgramRemotelyWithTimeout(StringRef RemoteClientPath, |
| const char **Args, |
| StringRef StdInFile, |
| StringRef StdOutFile, |
| StringRef StdErrFile, |
| unsigned NumSeconds = 0, |
| unsigned MemoryLimit = 0) { |
| const StringRef *Redirects[3] = { &StdInFile, &StdOutFile, &StdErrFile }; |
| |
| #if 0 // For debug purposes |
| { |
| errs() << "RUN:"; |
| for (unsigned i = 0; Args[i]; ++i) |
| errs() << " " << Args[i]; |
| errs() << "\n"; |
| } |
| #endif |
| |
| // Run the program remotely with the remote client |
| int ReturnCode = sys::ExecuteAndWait(RemoteClientPath, Args, 0, |
| Redirects, NumSeconds, MemoryLimit); |
| |
| // Has the remote client fail? |
| if (255 == ReturnCode) { |
| std::ostringstream OS; |
| OS << "\nError running remote client:\n "; |
| for (const char **Arg = Args; *Arg; ++Arg) |
| OS << " " << *Arg; |
| OS << "\n"; |
| |
| // The error message is in the output file, let's print it out from there. |
| std::string StdOutFileName = StdOutFile.str(); |
| std::ifstream ErrorFile(StdOutFileName.c_str()); |
| if (ErrorFile) { |
| std::copy(std::istreambuf_iterator<char>(ErrorFile), |
| std::istreambuf_iterator<char>(), |
| std::ostreambuf_iterator<char>(OS)); |
| ErrorFile.close(); |
| } |
| |
| errs() << OS.str(); |
| } |
| |
| return ReturnCode; |
| } |
| |
| static std::string ProcessFailure(StringRef ProgPath, const char** Args, |
| unsigned Timeout = 0, |
| unsigned MemoryLimit = 0) { |
| std::ostringstream OS; |
| OS << "\nError running tool:\n "; |
| for (const char **Arg = Args; *Arg; ++Arg) |
| OS << " " << *Arg; |
| OS << "\n"; |
| |
| // Rerun the compiler, capturing any error messages to print them. |
| SmallString<128> ErrorFilename; |
| int ErrorFD; |
| error_code EC = sys::fs::unique_file("bugpoint.program_error_messages", |
| ErrorFD, ErrorFilename); |
| if (EC) { |
| errs() << "Error making unique filename: " << EC.message() << "\n"; |
| exit(1); |
| } |
| RunProgramWithTimeout(ProgPath, Args, "", ErrorFilename.str(), |
| ErrorFilename.str(), Timeout, MemoryLimit); |
| // FIXME: check return code ? |
| |
| // Print out the error messages generated by GCC if possible... |
| std::ifstream ErrorFile(ErrorFilename.c_str()); |
| if (ErrorFile) { |
| std::copy(std::istreambuf_iterator<char>(ErrorFile), |
| std::istreambuf_iterator<char>(), |
| std::ostreambuf_iterator<char>(OS)); |
| ErrorFile.close(); |
| } |
| |
| sys::fs::remove(ErrorFilename.c_str()); |
| return OS.str(); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // LLI Implementation of AbstractIntepreter interface |
| // |
| namespace { |
| class LLI : public AbstractInterpreter { |
| std::string LLIPath; // The path to the LLI executable |
| std::vector<std::string> ToolArgs; // Args to pass to LLI |
| public: |
| LLI(const std::string &Path, const std::vector<std::string> *Args) |
| : LLIPath(Path) { |
| ToolArgs.clear (); |
| if (Args) { ToolArgs = *Args; } |
| } |
| |
| virtual int ExecuteProgram(const std::string &Bitcode, |
| const std::vector<std::string> &Args, |
| const std::string &InputFile, |
| const std::string &OutputFile, |
| std::string *Error, |
| const std::vector<std::string> &GCCArgs, |
| const std::vector<std::string> &SharedLibs = |
| std::vector<std::string>(), |
| unsigned Timeout = 0, |
| unsigned MemoryLimit = 0); |
| }; |
| } |
| |
| int LLI::ExecuteProgram(const std::string &Bitcode, |
| const std::vector<std::string> &Args, |
| const std::string &InputFile, |
| const std::string &OutputFile, |
| std::string *Error, |
| const std::vector<std::string> &GCCArgs, |
| const std::vector<std::string> &SharedLibs, |
| unsigned Timeout, |
| unsigned MemoryLimit) { |
| std::vector<const char*> LLIArgs; |
| LLIArgs.push_back(LLIPath.c_str()); |
| LLIArgs.push_back("-force-interpreter=true"); |
| |
| for (std::vector<std::string>::const_iterator i = SharedLibs.begin(), |
| e = SharedLibs.end(); i != e; ++i) { |
| LLIArgs.push_back("-load"); |
| LLIArgs.push_back((*i).c_str()); |
| } |
| |
| // Add any extra LLI args. |
| for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i) |
| LLIArgs.push_back(ToolArgs[i].c_str()); |
| |
| LLIArgs.push_back(Bitcode.c_str()); |
| // Add optional parameters to the running program from Argv |
| for (unsigned i=0, e = Args.size(); i != e; ++i) |
| LLIArgs.push_back(Args[i].c_str()); |
| LLIArgs.push_back(0); |
| |
| outs() << "<lli>"; outs().flush(); |
| DEBUG(errs() << "\nAbout to run:\t"; |
| for (unsigned i=0, e = LLIArgs.size()-1; i != e; ++i) |
| errs() << " " << LLIArgs[i]; |
| errs() << "\n"; |
| ); |
| return RunProgramWithTimeout(LLIPath, &LLIArgs[0], |
| InputFile, OutputFile, OutputFile, |
| Timeout, MemoryLimit, Error); |
| } |
| |
| void AbstractInterpreter::anchor() { } |
| |
| /// Prepend the path to the program being executed |
| /// to \p ExeName, given the value of argv[0] and the address of main() |
| /// itself. This allows us to find another LLVM tool if it is built in the same |
| /// directory. An empty string is returned on error; note that this function |
| /// just mainpulates the path and doesn't check for executability. |
| /// @brief Find a named executable. |
| static std::string PrependMainExecutablePath(const std::string &ExeName, |
| const char *Argv0, |
| void *MainAddr) { |
| // Check the directory that the calling program is in. We can do |
| // this if ProgramPath contains at least one / character, indicating that it |
| // is a relative path to the executable itself. |
| sys::Path Main = sys::Path::GetMainExecutable(Argv0, MainAddr); |
| StringRef Result = sys::path::parent_path(Main.str()); |
| |
| if (!Result.empty()) { |
| SmallString<128> Storage = Result; |
| sys::path::append(Storage, ExeName); |
| sys::path::replace_extension(Storage, sys::Path::GetEXESuffix()); |
| return Storage.str(); |
| } |
| |
| return Result.str(); |
| } |
| |
| // LLI create method - Try to find the LLI executable |
| AbstractInterpreter *AbstractInterpreter::createLLI(const char *Argv0, |
| std::string &Message, |
| const std::vector<std::string> *ToolArgs) { |
| std::string LLIPath = |
| PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t) & createLLI); |
| if (!LLIPath.empty()) { |
| Message = "Found lli: " + LLIPath + "\n"; |
| return new LLI(LLIPath, ToolArgs); |
| } |
| |
| Message = "Cannot find `lli' in executable directory!\n"; |
| return 0; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // Custom compiler command implementation of AbstractIntepreter interface |
| // |
| // Allows using a custom command for compiling the bitcode, thus allows, for |
| // example, to compile a bitcode fragment without linking or executing, then |
| // using a custom wrapper script to check for compiler errors. |
| namespace { |
| class CustomCompiler : public AbstractInterpreter { |
| std::string CompilerCommand; |
| std::vector<std::string> CompilerArgs; |
| public: |
| CustomCompiler( |
| const std::string &CompilerCmd, std::vector<std::string> CompArgs) : |
| CompilerCommand(CompilerCmd), CompilerArgs(CompArgs) {} |
| |
| virtual void compileProgram(const std::string &Bitcode, |
| std::string *Error, |
| unsigned Timeout = 0, |
| unsigned MemoryLimit = 0); |
| |
| virtual int ExecuteProgram(const std::string &Bitcode, |
| const std::vector<std::string> &Args, |
| const std::string &InputFile, |
| const std::string &OutputFile, |
| std::string *Error, |
| const std::vector<std::string> &GCCArgs = |
| std::vector<std::string>(), |
| const std::vector<std::string> &SharedLibs = |
| std::vector<std::string>(), |
| unsigned Timeout = 0, |
| unsigned MemoryLimit = 0) { |
| *Error = "Execution not supported with -compile-custom"; |
| return -1; |
| } |
| }; |
| } |
| |
| void CustomCompiler::compileProgram(const std::string &Bitcode, |
| std::string *Error, |
| unsigned Timeout, |
| unsigned MemoryLimit) { |
| |
| std::vector<const char*> ProgramArgs; |
| ProgramArgs.push_back(CompilerCommand.c_str()); |
| |
| for (std::size_t i = 0; i < CompilerArgs.size(); ++i) |
| ProgramArgs.push_back(CompilerArgs.at(i).c_str()); |
| ProgramArgs.push_back(Bitcode.c_str()); |
| ProgramArgs.push_back(0); |
| |
| // Add optional parameters to the running program from Argv |
| for (unsigned i = 0, e = CompilerArgs.size(); i != e; ++i) |
| ProgramArgs.push_back(CompilerArgs[i].c_str()); |
| |
| if (RunProgramWithTimeout(CompilerCommand, &ProgramArgs[0], |
| "", "", "", |
| Timeout, MemoryLimit, Error)) |
| *Error = ProcessFailure(CompilerCommand, &ProgramArgs[0], |
| Timeout, MemoryLimit); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // Custom execution command implementation of AbstractIntepreter interface |
| // |
| // Allows using a custom command for executing the bitcode, thus allows, |
| // for example, to invoke a cross compiler for code generation followed by |
| // a simulator that executes the generated binary. |
| namespace { |
| class CustomExecutor : public AbstractInterpreter { |
| std::string ExecutionCommand; |
| std::vector<std::string> ExecutorArgs; |
| public: |
| CustomExecutor( |
| const std::string &ExecutionCmd, std::vector<std::string> ExecArgs) : |
| ExecutionCommand(ExecutionCmd), ExecutorArgs(ExecArgs) {} |
| |
| virtual int ExecuteProgram(const std::string &Bitcode, |
| const std::vector<std::string> &Args, |
| const std::string &InputFile, |
| const std::string &OutputFile, |
| std::string *Error, |
| const std::vector<std::string> &GCCArgs, |
| const std::vector<std::string> &SharedLibs = |
| std::vector<std::string>(), |
| unsigned Timeout = 0, |
| unsigned MemoryLimit = 0); |
| }; |
| } |
| |
| int CustomExecutor::ExecuteProgram(const std::string &Bitcode, |
| const std::vector<std::string> &Args, |
| const std::string &InputFile, |
| const std::string &OutputFile, |
| std::string *Error, |
| const std::vector<std::string> &GCCArgs, |
| const std::vector<std::string> &SharedLibs, |
| unsigned Timeout, |
| unsigned MemoryLimit) { |
| |
| std::vector<const char*> ProgramArgs; |
| ProgramArgs.push_back(ExecutionCommand.c_str()); |
| |
| for (std::size_t i = 0; i < ExecutorArgs.size(); ++i) |
| ProgramArgs.push_back(ExecutorArgs.at(i).c_str()); |
| ProgramArgs.push_back(Bitcode.c_str()); |
| ProgramArgs.push_back(0); |
| |
| // Add optional parameters to the running program from Argv |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| ProgramArgs.push_back(Args[i].c_str()); |
| |
| return RunProgramWithTimeout( |
| ExecutionCommand, |
| &ProgramArgs[0], InputFile, OutputFile, |
| OutputFile, Timeout, MemoryLimit, Error); |
| } |
| |
| // Tokenize the CommandLine to the command and the args to allow |
| // defining a full command line as the command instead of just the |
| // executed program. We cannot just pass the whole string after the command |
| // as a single argument because then program sees only a single |
| // command line argument (with spaces in it: "foo bar" instead |
| // of "foo" and "bar"). |
| // |
| // code borrowed from: |
| // http://oopweb.com/CPP/Documents/CPPHOWTO/Volume/C++Programming-HOWTO-7.html |
| static void lexCommand(std::string &Message, const std::string &CommandLine, |
| std::string &CmdPath, std::vector<std::string> Args) { |
| |
| std::string Command = ""; |
| std::string delimiters = " "; |
| |
| std::string::size_type lastPos = CommandLine.find_first_not_of(delimiters, 0); |
| std::string::size_type pos = CommandLine.find_first_of(delimiters, lastPos); |
| |
| while (std::string::npos != pos || std::string::npos != lastPos) { |
| std::string token = CommandLine.substr(lastPos, pos - lastPos); |
| if (Command == "") |
| Command = token; |
| else |
| Args.push_back(token); |
| // Skip delimiters. Note the "not_of" |
| lastPos = CommandLine.find_first_not_of(delimiters, pos); |
| // Find next "non-delimiter" |
| pos = CommandLine.find_first_of(delimiters, lastPos); |
| } |
| |
| CmdPath = sys::FindProgramByName(Command); |
| if (CmdPath.empty()) { |
| Message = |
| std::string("Cannot find '") + Command + |
| "' in PATH!\n"; |
| return; |
| } |
| |
| Message = "Found command in: " + CmdPath + "\n"; |
| } |
| |
| // Custom execution environment create method, takes the execution command |
| // as arguments |
| AbstractInterpreter *AbstractInterpreter::createCustomCompiler( |
| std::string &Message, |
| const std::string &CompileCommandLine) { |
| |
| std::string CmdPath; |
| std::vector<std::string> Args; |
| lexCommand(Message, CompileCommandLine, CmdPath, Args); |
| if (CmdPath.empty()) |
| return 0; |
| |
| return new CustomCompiler(CmdPath, Args); |
| } |
| |
| // Custom execution environment create method, takes the execution command |
| // as arguments |
| AbstractInterpreter *AbstractInterpreter::createCustomExecutor( |
| std::string &Message, |
| const std::string &ExecCommandLine) { |
| |
| |
| std::string CmdPath; |
| std::vector<std::string> Args; |
| lexCommand(Message, ExecCommandLine, CmdPath, Args); |
| if (CmdPath.empty()) |
| return 0; |
| |
| return new CustomExecutor(CmdPath, Args); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // LLC Implementation of AbstractIntepreter interface |
| // |
| GCC::FileType LLC::OutputCode(const std::string &Bitcode, |
| std::string &OutputAsmFile, std::string &Error, |
| unsigned Timeout, unsigned MemoryLimit) { |
| const char *Suffix = (UseIntegratedAssembler ? ".llc.o" : ".llc.s"); |
| |
| SmallString<128> UniqueFile; |
| error_code EC = |
| sys::fs::unique_file(Bitcode + "-%%%%%%%" + Suffix, UniqueFile); |
| if (EC) { |
| errs() << "Error making unique filename: " << EC.message() << "\n"; |
| exit(1); |
| } |
| OutputAsmFile = UniqueFile.str(); |
| std::vector<const char *> LLCArgs; |
| LLCArgs.push_back(LLCPath.c_str()); |
| |
| // Add any extra LLC args. |
| for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i) |
| LLCArgs.push_back(ToolArgs[i].c_str()); |
| |
| LLCArgs.push_back("-o"); |
| LLCArgs.push_back(OutputAsmFile.c_str()); // Output to the Asm file |
| LLCArgs.push_back(Bitcode.c_str()); // This is the input bitcode |
| |
| if (UseIntegratedAssembler) |
| LLCArgs.push_back("-filetype=obj"); |
| |
| LLCArgs.push_back (0); |
| |
| outs() << (UseIntegratedAssembler ? "<llc-ia>" : "<llc>"); |
| outs().flush(); |
| DEBUG(errs() << "\nAbout to run:\t"; |
| for (unsigned i = 0, e = LLCArgs.size()-1; i != e; ++i) |
| errs() << " " << LLCArgs[i]; |
| errs() << "\n"; |
| ); |
| if (RunProgramWithTimeout(LLCPath, &LLCArgs[0], |
| "", "", "", |
| Timeout, MemoryLimit)) |
| Error = ProcessFailure(LLCPath, &LLCArgs[0], |
| Timeout, MemoryLimit); |
| return UseIntegratedAssembler ? GCC::ObjectFile : GCC::AsmFile; |
| } |
| |
| void LLC::compileProgram(const std::string &Bitcode, std::string *Error, |
| unsigned Timeout, unsigned MemoryLimit) { |
| std::string OutputAsmFile; |
| OutputCode(Bitcode, OutputAsmFile, *Error, Timeout, MemoryLimit); |
| sys::fs::remove(OutputAsmFile); |
| } |
| |
| int LLC::ExecuteProgram(const std::string &Bitcode, |
| const std::vector<std::string> &Args, |
| const std::string &InputFile, |
| const std::string &OutputFile, |
| std::string *Error, |
| const std::vector<std::string> &ArgsForGCC, |
| const std::vector<std::string> &SharedLibs, |
| unsigned Timeout, |
| unsigned MemoryLimit) { |
| |
| std::string OutputAsmFile; |
| GCC::FileType FileKind = OutputCode(Bitcode, OutputAsmFile, *Error, Timeout, |
| MemoryLimit); |
| FileRemover OutFileRemover(OutputAsmFile, !SaveTemps); |
| |
| std::vector<std::string> GCCArgs(ArgsForGCC); |
| GCCArgs.insert(GCCArgs.end(), SharedLibs.begin(), SharedLibs.end()); |
| |
| // Assuming LLC worked, compile the result with GCC and run it. |
| return gcc->ExecuteProgram(OutputAsmFile, Args, FileKind, |
| InputFile, OutputFile, Error, GCCArgs, |
| Timeout, MemoryLimit); |
| } |
| |
| /// createLLC - Try to find the LLC executable |
| /// |
| LLC *AbstractInterpreter::createLLC(const char *Argv0, |
| std::string &Message, |
| const std::string &GCCBinary, |
| const std::vector<std::string> *Args, |
| const std::vector<std::string> *GCCArgs, |
| bool UseIntegratedAssembler) { |
| std::string LLCPath = |
| PrependMainExecutablePath("llc", Argv0, (void *)(intptr_t) & createLLC); |
| if (LLCPath.empty()) { |
| Message = "Cannot find `llc' in executable directory!\n"; |
| return 0; |
| } |
| |
| GCC *gcc = GCC::create(Message, GCCBinary, GCCArgs); |
| if (!gcc) { |
| errs() << Message << "\n"; |
| exit(1); |
| } |
| Message = "Found llc: " + LLCPath + "\n"; |
| return new LLC(LLCPath, gcc, Args, UseIntegratedAssembler); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // JIT Implementation of AbstractIntepreter interface |
| // |
| namespace { |
| class JIT : public AbstractInterpreter { |
| std::string LLIPath; // The path to the LLI executable |
| std::vector<std::string> ToolArgs; // Args to pass to LLI |
| public: |
| JIT(const std::string &Path, const std::vector<std::string> *Args) |
| : LLIPath(Path) { |
| ToolArgs.clear (); |
| if (Args) { ToolArgs = *Args; } |
| } |
| |
| virtual int ExecuteProgram(const std::string &Bitcode, |
| const std::vector<std::string> &Args, |
| const std::string &InputFile, |
| const std::string &OutputFile, |
| std::string *Error, |
| const std::vector<std::string> &GCCArgs = |
| std::vector<std::string>(), |
| const std::vector<std::string> &SharedLibs = |
| std::vector<std::string>(), |
| unsigned Timeout = 0, |
| unsigned MemoryLimit = 0); |
| }; |
| } |
| |
| int JIT::ExecuteProgram(const std::string &Bitcode, |
| const std::vector<std::string> &Args, |
| const std::string &InputFile, |
| const std::string &OutputFile, |
| std::string *Error, |
| const std::vector<std::string> &GCCArgs, |
| const std::vector<std::string> &SharedLibs, |
| unsigned Timeout, |
| unsigned MemoryLimit) { |
| // Construct a vector of parameters, incorporating those from the command-line |
| std::vector<const char*> JITArgs; |
| JITArgs.push_back(LLIPath.c_str()); |
| JITArgs.push_back("-force-interpreter=false"); |
| |
| // Add any extra LLI args. |
| for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i) |
| JITArgs.push_back(ToolArgs[i].c_str()); |
| |
| for (unsigned i = 0, e = SharedLibs.size(); i != e; ++i) { |
| JITArgs.push_back("-load"); |
| JITArgs.push_back(SharedLibs[i].c_str()); |
| } |
| JITArgs.push_back(Bitcode.c_str()); |
| // Add optional parameters to the running program from Argv |
| for (unsigned i=0, e = Args.size(); i != e; ++i) |
| JITArgs.push_back(Args[i].c_str()); |
| JITArgs.push_back(0); |
| |
| outs() << "<jit>"; outs().flush(); |
| DEBUG(errs() << "\nAbout to run:\t"; |
| for (unsigned i=0, e = JITArgs.size()-1; i != e; ++i) |
| errs() << " " << JITArgs[i]; |
| errs() << "\n"; |
| ); |
| DEBUG(errs() << "\nSending output to " << OutputFile << "\n"); |
| return RunProgramWithTimeout(LLIPath, &JITArgs[0], |
| InputFile, OutputFile, OutputFile, |
| Timeout, MemoryLimit, Error); |
| } |
| |
| /// createJIT - Try to find the LLI executable |
| /// |
| AbstractInterpreter *AbstractInterpreter::createJIT(const char *Argv0, |
| std::string &Message, const std::vector<std::string> *Args) { |
| std::string LLIPath = |
| PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t) & createJIT); |
| if (!LLIPath.empty()) { |
| Message = "Found lli: " + LLIPath + "\n"; |
| return new JIT(LLIPath, Args); |
| } |
| |
| Message = "Cannot find `lli' in executable directory!\n"; |
| return 0; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // GCC abstraction |
| // |
| |
| static bool IsARMArchitecture(std::vector<const char*> Args) { |
| for (std::vector<const char*>::const_iterator |
| I = Args.begin(), E = Args.end(); I != E; ++I) { |
| if (StringRef(*I).equals_lower("-arch")) { |
| ++I; |
| if (I != E && StringRef(*I).substr(0, strlen("arm")).equals_lower("arm")) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| int GCC::ExecuteProgram(const std::string &ProgramFile, |
| const std::vector<std::string> &Args, |
| FileType fileType, |
| const std::string &InputFile, |
| const std::string &OutputFile, |
| std::string *Error, |
| const std::vector<std::string> &ArgsForGCC, |
| unsigned Timeout, |
| unsigned MemoryLimit) { |
| std::vector<const char*> GCCArgs; |
| |
| GCCArgs.push_back(GCCPath.c_str()); |
| |
| if (TargetTriple.getArch() == Triple::x86) |
| GCCArgs.push_back("-m32"); |
| |
| for (std::vector<std::string>::const_iterator |
| I = gccArgs.begin(), E = gccArgs.end(); I != E; ++I) |
| GCCArgs.push_back(I->c_str()); |
| |
| // Specify -x explicitly in case the extension is wonky |
| if (fileType != ObjectFile) { |
| GCCArgs.push_back("-x"); |
| if (fileType == CFile) { |
| GCCArgs.push_back("c"); |
| GCCArgs.push_back("-fno-strict-aliasing"); |
| } else { |
| GCCArgs.push_back("assembler"); |
| |
| // For ARM architectures we don't want this flag. bugpoint isn't |
| // explicitly told what architecture it is working on, so we get |
| // it from gcc flags |
| if (TargetTriple.isOSDarwin() && !IsARMArchitecture(GCCArgs)) |
| GCCArgs.push_back("-force_cpusubtype_ALL"); |
| } |
| } |
| |
| GCCArgs.push_back(ProgramFile.c_str()); // Specify the input filename. |
| |
| GCCArgs.push_back("-x"); |
| GCCArgs.push_back("none"); |
| GCCArgs.push_back("-o"); |
| |
| SmallString<128> OutputBinary; |
| error_code EC = |
| sys::fs::unique_file(ProgramFile+ "-%%%%%%%.gcc.exe", OutputBinary); |
| if (EC) { |
| errs() << "Error making unique filename: " << EC.message() << "\n"; |
| exit(1); |
| } |
| GCCArgs.push_back(OutputBinary.c_str()); // Output to the right file... |
| |
| // Add any arguments intended for GCC. We locate them here because this is |
| // most likely -L and -l options that need to come before other libraries but |
| // after the source. Other options won't be sensitive to placement on the |
| // command line, so this should be safe. |
| for (unsigned i = 0, e = ArgsForGCC.size(); i != e; ++i) |
| GCCArgs.push_back(ArgsForGCC[i].c_str()); |
| |
| GCCArgs.push_back("-lm"); // Hard-code the math library... |
| GCCArgs.push_back("-O2"); // Optimize the program a bit... |
| #if defined (HAVE_LINK_R) |
| GCCArgs.push_back("-Wl,-R."); // Search this dir for .so files |
| #endif |
| if (TargetTriple.getArch() == Triple::sparc) |
| GCCArgs.push_back("-mcpu=v9"); |
| GCCArgs.push_back(0); // NULL terminator |
| |
| outs() << "<gcc>"; outs().flush(); |
| DEBUG(errs() << "\nAbout to run:\t"; |
| for (unsigned i = 0, e = GCCArgs.size()-1; i != e; ++i) |
| errs() << " " << GCCArgs[i]; |
| errs() << "\n"; |
| ); |
| if (RunProgramWithTimeout(GCCPath, &GCCArgs[0], "", "", "")) { |
| *Error = ProcessFailure(GCCPath, &GCCArgs[0]); |
| return -1; |
| } |
| |
| std::vector<const char*> ProgramArgs; |
| |
| // Declared here so that the destructor only runs after |
| // ProgramArgs is used. |
| std::string Exec; |
| |
| if (RemoteClientPath.empty()) |
| ProgramArgs.push_back(OutputBinary.c_str()); |
| else { |
| ProgramArgs.push_back(RemoteClientPath.c_str()); |
| ProgramArgs.push_back(RemoteHost.c_str()); |
| if (!RemoteUser.empty()) { |
| ProgramArgs.push_back("-l"); |
| ProgramArgs.push_back(RemoteUser.c_str()); |
| } |
| if (!RemotePort.empty()) { |
| ProgramArgs.push_back("-p"); |
| ProgramArgs.push_back(RemotePort.c_str()); |
| } |
| if (!RemoteExtra.empty()) { |
| ProgramArgs.push_back(RemoteExtra.c_str()); |
| } |
| |
| // Full path to the binary. We need to cd to the exec directory because |
| // there is a dylib there that the exec expects to find in the CWD |
| char* env_pwd = getenv("PWD"); |
| Exec = "cd "; |
| Exec += env_pwd; |
| Exec += "; ./"; |
| Exec += OutputBinary.c_str(); |
| ProgramArgs.push_back(Exec.c_str()); |
| } |
| |
| // Add optional parameters to the running program from Argv |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| ProgramArgs.push_back(Args[i].c_str()); |
| ProgramArgs.push_back(0); // NULL terminator |
| |
| // Now that we have a binary, run it! |
| outs() << "<program>"; outs().flush(); |
| DEBUG(errs() << "\nAbout to run:\t"; |
| for (unsigned i = 0, e = ProgramArgs.size()-1; i != e; ++i) |
| errs() << " " << ProgramArgs[i]; |
| errs() << "\n"; |
| ); |
| |
| FileRemover OutputBinaryRemover(OutputBinary.str(), !SaveTemps); |
| |
| if (RemoteClientPath.empty()) { |
| DEBUG(errs() << "<run locally>"); |
| int ExitCode = RunProgramWithTimeout(OutputBinary.str(), &ProgramArgs[0], |
| InputFile, OutputFile, OutputFile, |
| Timeout, MemoryLimit, Error); |
| // Treat a signal (usually SIGSEGV) or timeout as part of the program output |
| // so that crash-causing miscompilation is handled seamlessly. |
| if (ExitCode < -1) { |
| std::ofstream outFile(OutputFile.c_str(), std::ios_base::app); |
| outFile << *Error << '\n'; |
| outFile.close(); |
| Error->clear(); |
| } |
| return ExitCode; |
| } else { |
| outs() << "<run remotely>"; outs().flush(); |
| return RunProgramRemotelyWithTimeout(RemoteClientPath, |
| &ProgramArgs[0], InputFile, OutputFile, |
| OutputFile, Timeout, MemoryLimit); |
| } |
| } |
| |
| int GCC::MakeSharedObject(const std::string &InputFile, FileType fileType, |
| std::string &OutputFile, |
| const std::vector<std::string> &ArgsForGCC, |
| std::string &Error) { |
| SmallString<128> UniqueFilename; |
| error_code EC = sys::fs::unique_file(InputFile + "-%%%%%%%" + LTDL_SHLIB_EXT, |
| UniqueFilename); |
| if (EC) { |
| errs() << "Error making unique filename: " << EC.message() << "\n"; |
| exit(1); |
| } |
| OutputFile = UniqueFilename.str(); |
| |
| std::vector<const char*> GCCArgs; |
| |
| GCCArgs.push_back(GCCPath.c_str()); |
| |
| if (TargetTriple.getArch() == Triple::x86) |
| GCCArgs.push_back("-m32"); |
| |
| for (std::vector<std::string>::const_iterator |
| I = gccArgs.begin(), E = gccArgs.end(); I != E; ++I) |
| GCCArgs.push_back(I->c_str()); |
| |
| // Compile the C/asm file into a shared object |
| if (fileType != ObjectFile) { |
| GCCArgs.push_back("-x"); |
| GCCArgs.push_back(fileType == AsmFile ? "assembler" : "c"); |
| } |
| GCCArgs.push_back("-fno-strict-aliasing"); |
| GCCArgs.push_back(InputFile.c_str()); // Specify the input filename. |
| GCCArgs.push_back("-x"); |
| GCCArgs.push_back("none"); |
| if (TargetTriple.getArch() == Triple::sparc) |
| GCCArgs.push_back("-G"); // Compile a shared library, `-G' for Sparc |
| else if (TargetTriple.isOSDarwin()) { |
| // link all source files into a single module in data segment, rather than |
| // generating blocks. dynamic_lookup requires that you set |
| // MACOSX_DEPLOYMENT_TARGET=10.3 in your env. FIXME: it would be better for |
| // bugpoint to just pass that in the environment of GCC. |
| GCCArgs.push_back("-single_module"); |
| GCCArgs.push_back("-dynamiclib"); // `-dynamiclib' for MacOS X/PowerPC |
| GCCArgs.push_back("-undefined"); |
| GCCArgs.push_back("dynamic_lookup"); |
| } else |
| GCCArgs.push_back("-shared"); // `-shared' for Linux/X86, maybe others |
| |
| if (TargetTriple.getArch() == Triple::x86_64) |
| GCCArgs.push_back("-fPIC"); // Requires shared objs to contain PIC |
| |
| if (TargetTriple.getArch() == Triple::sparc) |
| GCCArgs.push_back("-mcpu=v9"); |
| |
| GCCArgs.push_back("-o"); |
| GCCArgs.push_back(OutputFile.c_str()); // Output to the right filename. |
| GCCArgs.push_back("-O2"); // Optimize the program a bit. |
| |
| |
| |
| // Add any arguments intended for GCC. We locate them here because this is |
| // most likely -L and -l options that need to come before other libraries but |
| // after the source. Other options won't be sensitive to placement on the |
| // command line, so this should be safe. |
| for (unsigned i = 0, e = ArgsForGCC.size(); i != e; ++i) |
| GCCArgs.push_back(ArgsForGCC[i].c_str()); |
| GCCArgs.push_back(0); // NULL terminator |
| |
| |
| |
| outs() << "<gcc>"; outs().flush(); |
| DEBUG(errs() << "\nAbout to run:\t"; |
| for (unsigned i = 0, e = GCCArgs.size()-1; i != e; ++i) |
| errs() << " " << GCCArgs[i]; |
| errs() << "\n"; |
| ); |
| if (RunProgramWithTimeout(GCCPath, &GCCArgs[0], "", "", "")) { |
| Error = ProcessFailure(GCCPath, &GCCArgs[0]); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /// create - Try to find the `gcc' executable |
| /// |
| GCC *GCC::create(std::string &Message, |
| const std::string &GCCBinary, |
| const std::vector<std::string> *Args) { |
| std::string GCCPath = sys::FindProgramByName(GCCBinary); |
| if (GCCPath.empty()) { |
| Message = "Cannot find `"+ GCCBinary +"' in PATH!\n"; |
| return 0; |
| } |
| |
| std::string RemoteClientPath; |
| if (!RemoteClient.empty()) |
| RemoteClientPath = sys::FindProgramByName(RemoteClient); |
| |
| Message = "Found gcc: " + GCCPath + "\n"; |
| return new GCC(GCCPath, RemoteClientPath, Args); |
| } |