| //===- DataStructure.cpp - Implement the core data structure analysis -----===// |
| // |
| // This file implements the core data structure functionality. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Module.h" |
| #include "llvm/DerivedTypes.h" |
| #include "Support/STLExtras.h" |
| #include "Support/StatisticReporter.h" |
| #include "Support/STLExtras.h" |
| #include <algorithm> |
| #include <set> |
| #include "llvm/Analysis/DataStructure.h" |
| |
| using std::vector; |
| |
| //===----------------------------------------------------------------------===// |
| // DSNode Implementation |
| //===----------------------------------------------------------------------===// |
| |
| DSNode::DSNode(enum NodeTy NT, const Type *T) : Ty(T), NodeType(NT) { |
| // If this node has any fields, allocate them now, but leave them null. |
| switch (T->getPrimitiveID()) { |
| case Type::PointerTyID: Links.resize(1); break; |
| case Type::ArrayTyID: Links.resize(1); break; |
| case Type::StructTyID: |
| Links.resize(cast<StructType>(T)->getNumContainedTypes()); |
| break; |
| default: break; |
| } |
| } |
| |
| // DSNode copy constructor... do not copy over the referrers list! |
| DSNode::DSNode(const DSNode &N) |
| : Ty(N.Ty), Links(N.Links), Globals(N.Globals), NodeType(N.NodeType) { |
| } |
| |
| void DSNode::removeReferrer(DSNodeHandle *H) { |
| // Search backwards, because we depopulate the list from the back for |
| // efficiency (because it's a vector). |
| vector<DSNodeHandle*>::reverse_iterator I = |
| std::find(Referrers.rbegin(), Referrers.rend(), H); |
| assert(I != Referrers.rend() && "Referrer not pointing to node!"); |
| Referrers.erase(I.base()-1); |
| } |
| |
| // addGlobal - Add an entry for a global value to the Globals list. This also |
| // marks the node with the 'G' flag if it does not already have it. |
| // |
| void DSNode::addGlobal(GlobalValue *GV) { |
| // Keep the list sorted. |
| vector<GlobalValue*>::iterator I = |
| std::lower_bound(Globals.begin(), Globals.end(), GV); |
| |
| if (I == Globals.end() || *I != GV) { |
| assert(GV->getType()->getElementType() == Ty); |
| Globals.insert(I, GV); |
| NodeType |= GlobalNode; |
| } |
| } |
| |
| |
| // addEdgeTo - Add an edge from the current node to the specified node. This |
| // can cause merging of nodes in the graph. |
| // |
| void DSNode::addEdgeTo(unsigned LinkNo, DSNode *N) { |
| assert(LinkNo < Links.size() && "LinkNo out of range!"); |
| if (N == 0 || Links[LinkNo] == N) return; // Nothing to do |
| if (Links[LinkNo] == 0) { // No merging to perform |
| Links[LinkNo] = N; |
| return; |
| } |
| |
| // Merge the two nodes... |
| Links[LinkNo]->mergeWith(N); |
| } |
| |
| |
| // mergeWith - Merge this node into the specified node, moving all links to and |
| // from the argument node into the current node. The specified node may be a |
| // null pointer (in which case, nothing happens). |
| // |
| void DSNode::mergeWith(DSNode *N) { |
| if (N == 0 || N == this) return; // Noop |
| assert(N->Ty == Ty && N->Links.size() == Links.size() && |
| "Cannot merge nodes of two different types!"); |
| |
| // Remove all edges pointing at N, causing them to point to 'this' instead. |
| while (!N->Referrers.empty()) |
| *N->Referrers.back() = this; |
| |
| // Make all of the outgoing links of N now be outgoing links of this. This |
| // can cause recursive merging! |
| // |
| for (unsigned i = 0, e = Links.size(); i != e; ++i) { |
| addEdgeTo(i, N->Links[i]); |
| N->Links[i] = 0; // Reduce unneccesary edges in graph. N is dead |
| } |
| |
| // Merge the node types |
| NodeType |= N->NodeType; |
| N->NodeType = 0; // N is now a dead node. |
| |
| // Merge the globals list... |
| if (!N->Globals.empty()) { |
| // Save the current globals off to the side... |
| vector<GlobalValue*> OldGlobals(Globals); |
| |
| // Resize the globals vector to be big enough to hold both of them... |
| Globals.resize(Globals.size()+N->Globals.size()); |
| |
| // Merge the two sorted globals lists together... |
| std::merge(OldGlobals.begin(), OldGlobals.end(), |
| N->Globals.begin(), N->Globals.end(), Globals.begin()); |
| |
| // Erase duplicate entries from the globals list... |
| Globals.erase(std::unique(Globals.begin(), Globals.end()), Globals.end()); |
| |
| // Delete the globals from the old node... |
| N->Globals.clear(); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // DSGraph Implementation |
| //===----------------------------------------------------------------------===// |
| |
| DSGraph::DSGraph(const DSGraph &G) : Func(G.Func) { |
| std::map<const DSNode*, DSNode*> NodeMap; // ignored |
| RetNode = cloneInto(G, ValueMap, NodeMap, false); |
| } |
| |
| DSGraph::~DSGraph() { |
| FunctionCalls.clear(); |
| OrigFunctionCalls.clear(); |
| ValueMap.clear(); |
| RetNode = 0; |
| |
| #ifndef NDEBUG |
| // Drop all intra-node references, so that assertions don't fail... |
| std::for_each(Nodes.begin(), Nodes.end(), |
| std::mem_fun(&DSNode::dropAllReferences)); |
| #endif |
| |
| // Delete all of the nodes themselves... |
| std::for_each(Nodes.begin(), Nodes.end(), deleter<DSNode>); |
| } |
| |
| // dump - Allow inspection of graph in a debugger. |
| void DSGraph::dump() const { print(std::cerr); } |
| |
| |
| // cloneInto - Clone the specified DSGraph into the current graph, returning the |
| // Return node of the graph. The translated ValueMap for the old function is |
| // filled into the OldValMap member. If StripLocals is set to true, Scalar and |
| // Alloca markers are removed from the graph, as the graph is being cloned into |
| // a calling function's graph. |
| // |
| DSNode *DSGraph::cloneInto(const DSGraph &G, |
| std::map<Value*, DSNodeHandle> &OldValMap, |
| std::map<const DSNode*, DSNode*> &OldNodeMap, |
| bool StripLocals) { |
| |
| assert(OldNodeMap.size()==0 && "Return argument OldNodeMap should be empty"); |
| |
| OldNodeMap[0] = 0; // Null pointer maps to null |
| |
| unsigned FN = Nodes.size(); // FirstNode... |
| |
| // Duplicate all of the nodes, populating the node map... |
| Nodes.reserve(FN+G.Nodes.size()); |
| for (unsigned i = 0, e = G.Nodes.size(); i != e; ++i) { |
| DSNode *Old = G.Nodes[i], *New = new DSNode(*Old); |
| Nodes.push_back(New); |
| OldNodeMap[Old] = New; |
| } |
| |
| // Rewrite the links in the nodes to point into the current graph now. |
| for (unsigned i = FN, e = Nodes.size(); i != e; ++i) |
| for (unsigned j = 0, e = Nodes[i]->getNumLinks(); j != e; ++j) |
| Nodes[i]->setLink(j, OldNodeMap[Nodes[i]->getLink(j)]); |
| |
| // If we are inlining this graph into the called function graph, remove local |
| // markers. |
| if (StripLocals) |
| for (unsigned i = FN, e = Nodes.size(); i != e; ++i) |
| Nodes[i]->NodeType &= ~(DSNode::AllocaNode | DSNode::ScalarNode); |
| |
| // Copy the value map... |
| for (std::map<Value*, DSNodeHandle>::const_iterator I = G.ValueMap.begin(), |
| E = G.ValueMap.end(); I != E; ++I) |
| OldValMap[I->first] = OldNodeMap[I->second]; |
| |
| // Copy the function calls list... |
| unsigned FC = FunctionCalls.size(); // FirstCall |
| FunctionCalls.reserve(FC+G.FunctionCalls.size()); |
| for (unsigned i = 0, e = G.FunctionCalls.size(); i != e; ++i) { |
| FunctionCalls.push_back(std::vector<DSNodeHandle>()); |
| FunctionCalls[FC+i].reserve(G.FunctionCalls[i].size()); |
| for (unsigned j = 0, e = G.FunctionCalls[i].size(); j != e; ++j) |
| FunctionCalls[FC+i].push_back(OldNodeMap[G.FunctionCalls[i][j]]); |
| } |
| |
| // Copy the list of unresolved callers |
| PendingCallers.insert(PendingCallers.end(), |
| G.PendingCallers.begin(), G.PendingCallers.end()); |
| |
| // Return the returned node pointer... |
| return OldNodeMap[G.RetNode]; |
| } |
| |
| |
| // markIncompleteNodes - Mark the specified node as having contents that are not |
| // known with the current analysis we have performed. Because a node makes all |
| // of the nodes it can reach imcomplete if the node itself is incomplete, we |
| // must recursively traverse the data structure graph, marking all reachable |
| // nodes as incomplete. |
| // |
| static void markIncompleteNode(DSNode *N) { |
| // Stop recursion if no node, or if node already marked... |
| if (N == 0 || (N->NodeType & DSNode::Incomplete)) return; |
| |
| // Actually mark the node |
| N->NodeType |= DSNode::Incomplete; |
| |
| // Recusively process children... |
| for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) |
| markIncompleteNode(N->getLink(i)); |
| } |
| |
| |
| // markIncompleteNodes - Traverse the graph, identifying nodes that may be |
| // modified by other functions that have not been resolved yet. This marks |
| // nodes that are reachable through three sources of "unknownness": |
| // |
| // Global Variables, Function Calls, and Incoming Arguments |
| // |
| // For any node that may have unknown components (because something outside the |
| // scope of current analysis may have modified it), the 'Incomplete' flag is |
| // added to the NodeType. |
| // |
| void DSGraph::markIncompleteNodes() { |
| // Mark any incoming arguments as incomplete... |
| for (Function::aiterator I = Func.abegin(), E = Func.aend(); I != E; ++I) |
| if (isa<PointerType>(I->getType())) |
| markIncompleteNode(ValueMap[I]->getLink(0)); |
| |
| // Mark stuff passed into functions calls as being incomplete... |
| for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) { |
| vector<DSNodeHandle> &Args = FunctionCalls[i]; |
| // Then the return value is certainly incomplete! |
| markIncompleteNode(Args[0]); |
| |
| // The call does not make the function argument incomplete... |
| |
| // All arguments to the function call are incomplete though! |
| for (unsigned i = 2, e = Args.size(); i != e; ++i) |
| markIncompleteNode(Args[i]); |
| } |
| |
| // Mark all of the nodes pointed to by global or cast nodes as incomplete... |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| if (Nodes[i]->NodeType & (DSNode::GlobalNode | DSNode::CastNode)) { |
| DSNode *N = Nodes[i]; |
| for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) |
| markIncompleteNode(N->getLink(i)); |
| } |
| } |
| |
| // isNodeDead - This method checks to see if a node is dead, and if it isn't, it |
| // checks to see if there are simple transformations that it can do to make it |
| // dead. |
| // |
| bool DSGraph::isNodeDead(DSNode *N) { |
| // Is it a trivially dead shadow node... |
| if (N->getReferrers().empty() && N->NodeType == 0) |
| return true; |
| |
| // Is it a function node or some other trivially unused global? |
| if ((N->NodeType & ~DSNode::GlobalNode) == 0 && |
| N->getNumLinks() == 0 && |
| N->getReferrers().size() == N->getGlobals().size()) { |
| |
| // Remove the globals from the valuemap, so that the referrer count will go |
| // down to zero. |
| while (!N->getGlobals().empty()) { |
| GlobalValue *GV = N->getGlobals().back(); |
| N->getGlobals().pop_back(); |
| ValueMap.erase(GV); |
| } |
| assert(N->getReferrers().empty() && "Referrers should all be gone now!"); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| // removeTriviallyDeadNodes - After the graph has been constructed, this method |
| // removes all unreachable nodes that are created because they got merged with |
| // other nodes in the graph. These nodes will all be trivially unreachable, so |
| // we don't have to perform any non-trivial analysis here. |
| // |
| void DSGraph::removeTriviallyDeadNodes() { |
| for (unsigned i = 0; i != Nodes.size(); ++i) |
| if (isNodeDead(Nodes[i])) { // This node is dead! |
| delete Nodes[i]; // Free memory... |
| Nodes.erase(Nodes.begin()+i--); // Remove from node list... |
| } |
| |
| // Remove trivially identical function calls |
| unsigned NumFns = FunctionCalls.size(); |
| std::sort(FunctionCalls.begin(), FunctionCalls.end()); |
| FunctionCalls.erase(std::unique(FunctionCalls.begin(), FunctionCalls.end()), |
| FunctionCalls.end()); |
| |
| DEBUG(if (NumFns != FunctionCalls.size()) |
| std::cerr << "Merged " << (NumFns-FunctionCalls.size()) |
| << " call nodes in " << Func.getName() << "\n";); |
| } |
| |
| |
| // markAlive - Simple graph traverser that recursively walks the graph marking |
| // stuff to be alive. |
| // |
| static void markAlive(DSNode *N, std::set<DSNode*> &Alive) { |
| if (N == 0 || Alive.count(N)) return; |
| |
| Alive.insert(N); |
| for (unsigned i = 0, e = N->getNumLinks(); i != e; ++i) |
| markAlive(N->getLink(i), Alive); |
| } |
| |
| |
| // removeDeadNodes - Use a more powerful reachability analysis to eliminate |
| // subgraphs that are unreachable. This often occurs because the data |
| // structure doesn't "escape" into it's caller, and thus should be eliminated |
| // from the caller's graph entirely. This is only appropriate to use when |
| // inlining graphs. |
| // |
| void DSGraph::removeDeadNodes() { |
| // Reduce the amount of work we have to do... |
| removeTriviallyDeadNodes(); |
| |
| // FIXME: Merge nontrivially identical call nodes... |
| |
| // Alive - a set that holds all nodes found to be reachable/alive. |
| std::set<DSNode*> Alive; |
| |
| // Mark all nodes reachable by call nodes as alive... |
| for (unsigned i = 0, e = FunctionCalls.size(); i != e; ++i) |
| for (unsigned j = 0, e = FunctionCalls[i].size(); j != e; ++j) |
| markAlive(FunctionCalls[i][j], Alive); |
| |
| for (unsigned i = 0, e = OrigFunctionCalls.size(); i != e; ++i) |
| for (unsigned j = 0, e = OrigFunctionCalls[i].size(); j != e; ++j) |
| markAlive(OrigFunctionCalls[i][j], Alive); |
| |
| // Mark all nodes reachable by scalar, global, or incomplete nodes as |
| // reachable... |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| if (Nodes[i]->NodeType & (DSNode::ScalarNode | DSNode::GlobalNode)) |
| markAlive(Nodes[i], Alive); |
| |
| // Loop over all unreachable nodes, dropping their references... |
| std::vector<DSNode*> DeadNodes; |
| DeadNodes.reserve(Nodes.size()); // Only one allocation is allowed. |
| for (unsigned i = 0; i != Nodes.size(); ++i) |
| if (!Alive.count(Nodes[i])) { |
| DSNode *N = Nodes[i]; |
| Nodes.erase(Nodes.begin()+i--); // Erase node from alive list. |
| DeadNodes.push_back(N); // Add node to our list of dead nodes |
| N->dropAllReferences(); // Drop all outgoing edges |
| } |
| |
| // The return value is alive as well... |
| markAlive(RetNode, Alive); |
| |
| // Delete all dead nodes... |
| std::for_each(DeadNodes.begin(), DeadNodes.end(), deleter<DSNode>); |
| } |
| |
| |
| |
| // maskNodeTypes - Apply a mask to all of the node types in the graph. This |
| // is useful for clearing out markers like Scalar or Incomplete. |
| // |
| void DSGraph::maskNodeTypes(unsigned char Mask) { |
| for (unsigned i = 0, e = Nodes.size(); i != e; ++i) |
| Nodes[i]->NodeType &= Mask; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // LocalDataStructures Implementation |
| //===----------------------------------------------------------------------===// |
| |
| // releaseMemory - If the pass pipeline is done with this pass, we can release |
| // our memory... here... |
| // |
| void LocalDataStructures::releaseMemory() { |
| for (std::map<Function*, DSGraph*>::iterator I = DSInfo.begin(), |
| E = DSInfo.end(); I != E; ++I) |
| delete I->second; |
| |
| // Empty map so next time memory is released, data structures are not |
| // re-deleted. |
| DSInfo.clear(); |
| } |
| |
| bool LocalDataStructures::run(Module &M) { |
| // Calculate all of the graphs... |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) |
| if (!I->isExternal()) |
| DSInfo.insert(std::make_pair(&*I, new DSGraph(*I))); |
| |
| return false; |
| } |