blob: b5aeec61efd295051ec0fb53fd5638cfb7e65dda [file] [log] [blame]
//===- DFAPacketizerEmitter.cpp - Packetization DFA for a VLIW machine-----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class parses the Schedule.td file and produces an API that can be used
// to reason about whether an instruction can be added to a packet on a VLIW
// architecture. The class internally generates a deterministic finite
// automaton (DFA) that models all possible mappings of machine instructions
// to functional units as instructions are added to a packet.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/TableGen/Record.h"
#include "CodeGenTarget.h"
#include "DFAPacketizerEmitter.h"
#include <list>
using namespace llvm;
//
//
// State represents the usage of machine resources if the packet contains
// a set of instruction classes.
//
// Specifically, currentState is a set of bit-masks
// The nth bit in a bit-mask indicates whether the nth resource is being used
// by this state. The set of bit-masks in a state represent the different
// possible outcomes of transitioning to this state.
// For example: Consider a two resource architecture: Resource L and Resource M
// with three instruction classes: L, M, and L_or_M
// From the initial state (currentState = 0x00), if we add instruction class
// L_or_M we will transition to a state with currentState = [0x01, 0x10]. This
// represents the possible resource states that can result from adding a L_or_M
// instruction
//
// Another way of thinking about this transition is we are mapping a NDFA with
// two states [0x01] and [0x10] into a DFA with a single state [0x01, 0x10]
//
//
namespace {
class State {
public:
static int currentStateNum;
int stateNum;
bool isInitial;
std::set<unsigned> stateInfo;
State();
State(const State& S);
//
// canAddInsnClass - Returns true if an instruction of type InsnClass is a
// valid transition from this state i.e., can an instruction of type InsnClass
// be added to the packet represented by this state
//
// PossibleStates is the set of valid resource states that ensue from valid
// transitions
//
bool canAddInsnClass(unsigned InsnClass, std::set<unsigned>& PossibleStates);
};
} // End anonymous namespace
namespace {
struct Transition {
public:
static int currentTransitionNum;
int transitionNum;
State* from;
unsigned input;
State* to;
Transition(State* from_, unsigned input_, State* to_);
};
} // End anonymous namespace
//
// Comparators to keep set of states sorted
//
namespace {
struct ltState {
bool operator()(const State* s1, const State* s2) const;
};
} // End anonymous namespace
//
// class DFA: deterministic finite automaton for processor resource tracking
//
namespace {
class DFA {
public:
DFA();
// Set of states. Need to keep this sorted to emit the transition table
std::set<State*, ltState> states;
// Map from a state to the list of transitions with that state as source
std::map<State*, SmallVector<Transition*, 16>, ltState> stateTransitions;
State* currentState;
// Highest valued Input seen
unsigned LargestInput;
//
// Modify the DFA
//
void initialize();
void addState(State*);
void addTransition(Transition*);
//
// getTransition - Return the state when a transition is made from
// State From with Input I. If a transition is not found, return NULL
//
State* getTransition(State*, unsigned);
//
// isValidTransition: Predicate that checks if there is a valid transition
// from state From on input InsnClass
//
bool isValidTransition(State* From, unsigned InsnClass);
//
// writeTable: Print out a table representing the DFA
//
void writeTableAndAPI(raw_ostream &OS, const std::string& ClassName);
};
} // End anonymous namespace
//
// Constructors for State, Transition, and DFA
//
State::State() :
stateNum(currentStateNum++), isInitial(false) {}
State::State(const State& S) :
stateNum(currentStateNum++), isInitial(S.isInitial),
stateInfo(S.stateInfo) {}
Transition::Transition(State* from_, unsigned input_, State* to_) :
transitionNum(currentTransitionNum++), from(from_), input(input_),
to(to_) {}
DFA::DFA() :
LargestInput(0) {}
bool ltState::operator()(const State* s1, const State* s2) const {
return (s1->stateNum < s2->stateNum);
}
//
// canAddInsnClass - Returns true if an instruction of type InsnClass is a
// valid transition from this state i.e., can an instruction of type InsnClass
// be added to the packet represented by this state
//
// PossibleStates is the set of valid resource states that ensue from valid
// transitions
//
bool State::canAddInsnClass(unsigned InsnClass,
std::set<unsigned>& PossibleStates) {
//
// Iterate over all resource states in currentState
//
bool AddedState = false;
for (std::set<unsigned>::iterator SI = stateInfo.begin();
SI != stateInfo.end(); ++SI) {
unsigned thisState = *SI;
//
// Iterate over all possible resources used in InsnClass
// For ex: for InsnClass = 0x11, all resources = {0x01, 0x10}
//
DenseSet<unsigned> VisitedResourceStates;
for (unsigned int j = 0; j < sizeof(InsnClass) * 8; ++j) {
if ((0x1 << j) & InsnClass) {
//
// For each possible resource used in InsnClass, generate the
// resource state if that resource was used
//
unsigned ResultingResourceState = thisState | (0x1 << j);
//
// Check if the resulting resource state can be accommodated in this
// packet
// We compute ResultingResourceState OR thisState
// If the result of the OR is different than thisState, it implies
// that there is at least one resource that can be used to schedule
// InsnClass in the current packet
// Insert ResultingResourceState into PossibleStates only if we haven't
// processed ResultingResourceState before
//
if ((ResultingResourceState != thisState) &&
(VisitedResourceStates.count(ResultingResourceState) == 0)) {
VisitedResourceStates.insert(ResultingResourceState);
PossibleStates.insert(ResultingResourceState);
AddedState = true;
}
}
}
}
return AddedState;
}
void DFA::initialize() {
currentState->isInitial = true;
}
void DFA::addState(State* S) {
assert(!states.count(S) && "State already exists");
states.insert(S);
}
void DFA::addTransition(Transition* T) {
// Update LargestInput
if (T->input > LargestInput)
LargestInput = T->input;
// Add the new transition
stateTransitions[T->from].push_back(T);
}
//
// getTransition - Return the state when a transition is made from
// State From with Input I. If a transition is not found, return NULL
//
State* DFA::getTransition(State* From, unsigned I) {
// Do we have a transition from state From?
if (!stateTransitions.count(From))
return NULL;
// Do we have a transition from state From with Input I?
for (SmallVector<Transition*, 16>::iterator VI =
stateTransitions[From].begin();
VI != stateTransitions[From].end(); ++VI)
if ((*VI)->input == I)
return (*VI)->to;
return NULL;
}
bool DFA::isValidTransition(State* From, unsigned InsnClass) {
return (getTransition(From, InsnClass) != NULL);
}
int State::currentStateNum = 0;
int Transition::currentTransitionNum = 0;
DFAGen::DFAGen(RecordKeeper& R):
TargetName(CodeGenTarget(R).getName()),
allInsnClasses(), Records(R) {}
//
// writeTableAndAPI - Print out a table representing the DFA and the
// associated API to create a DFA packetizer
//
// Format:
// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
// transitions
// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable for
// the ith state
//
//
void DFA::writeTableAndAPI(raw_ostream &OS, const std::string& TargetName) {
std::set<State*, ltState>::iterator SI = states.begin();
// This table provides a map to the beginning of the transitions for State s
// in DFAStateInputTable i.e.,
std::vector<int> StateEntry(states.size());
OS << "namespace llvm {\n\n";
OS << "const int " << TargetName << "DFAStateInputTable[][2] = {\n";
// Tracks the total valid transitions encountered so far. It is used
// to construct the StateEntry table
int ValidTransitions = 0;
for (unsigned i = 0; i < states.size(); ++i, ++SI) {
StateEntry[i] = ValidTransitions;
for (unsigned j = 0; j <= LargestInput; ++j) {
assert (((*SI)->stateNum == (int) i) && "Mismatch in state numbers");
if (!isValidTransition(*SI, j))
continue;
OS << "{" << j << ", "
<< getTransition(*SI, j)->stateNum
<< "}, ";
++ValidTransitions;
}
/* If there are no valid transitions from this stage, we need a sentinel
transition */
if (ValidTransitions == StateEntry[i])
OS << "{-1, -1},";
OS << "\n";
}
OS << "};\n\n";
OS << "const unsigned int " << TargetName << "DFAStateEntryTable[] = {\n";
// Multiply i by 2 since each entry in DFAStateInputTable is a set of
// two numbers
for (unsigned i = 0; i < states.size(); ++i)
OS << StateEntry[i] << ", ";
OS << "\n};\n";
OS << "} // namespace\n";
//
// Emit DFA Packetizer tables if the target is a VLIW machine
//
std::string SubTargetClassName = TargetName + "GenSubtargetInfo";
OS << "\n" << "#include \"llvm/CodeGen/DFAPacketizer.h\"\n";
OS << "namespace llvm {\n";
OS << "DFAPacketizer* " << SubTargetClassName << "::"
<< "createDFAPacketizer(const InstrItineraryData *IID) const {\n"
<< " return new DFAPacketizer(IID, " << TargetName
<< "DFAStateInputTable, " << TargetName << "DFAStateEntryTable);\n}\n\n";
OS << "} // End llvm namespace \n";
}
//
// collectAllInsnClasses - Populate allInsnClasses which is a set of units
// used in each stage.
//
void DFAGen::collectAllInsnClasses(const std::string &Name,
Record *ItinData,
unsigned &NStages,
raw_ostream &OS) {
// Collect processor itineraries
std::vector<Record*> ProcItinList =
Records.getAllDerivedDefinitions("ProcessorItineraries");
// If just no itinerary then don't bother
if (ProcItinList.size() < 2)
return;
std::map<std::string, unsigned> NameToBitsMap;
// Parse functional units for all the itineraries.
for (unsigned i = 0, N = ProcItinList.size(); i < N; ++i) {
Record *Proc = ProcItinList[i];
std::vector<Record*> FUs = Proc->getValueAsListOfDefs("FU");
// Convert macros to bits for each stage
for (unsigned i = 0, N = FUs.size(); i < N; ++i)
NameToBitsMap[FUs[i]->getName()] = (unsigned) (1U << i);
}
const std::vector<Record*> &StageList =
ItinData->getValueAsListOfDefs("Stages");
// The number of stages
NStages = StageList.size();
// For each unit
unsigned UnitBitValue = 0;
// Compute the bitwise or of each unit used in this stage
for (unsigned i = 0; i < NStages; ++i) {
const Record *Stage = StageList[i];
// Get unit list
const std::vector<Record*> &UnitList =
Stage->getValueAsListOfDefs("Units");
for (unsigned j = 0, M = UnitList.size(); j < M; ++j) {
// Conduct bitwise or
std::string UnitName = UnitList[j]->getName();
assert(NameToBitsMap.count(UnitName));
UnitBitValue |= NameToBitsMap[UnitName];
}
if (UnitBitValue != 0)
allInsnClasses.insert(UnitBitValue);
}
}
//
// Run the worklist algorithm to generate the DFA
//
void DFAGen::run(raw_ostream &OS) {
EmitSourceFileHeader("Target DFA Packetizer Tables", OS);
// Collect processor iteraries
std::vector<Record*> ProcItinList =
Records.getAllDerivedDefinitions("ProcessorItineraries");
//
// Collect the instruction classes
//
for (unsigned i = 0, N = ProcItinList.size(); i < N; i++) {
Record *Proc = ProcItinList[i];
// Get processor itinerary name
const std::string &Name = Proc->getName();
// Skip default
if (Name == "NoItineraries")
continue;
// Sanity check for at least one instruction itinerary class
unsigned NItinClasses =
Records.getAllDerivedDefinitions("InstrItinClass").size();
if (NItinClasses == 0)
return;
// Get itinerary data list
std::vector<Record*> ItinDataList = Proc->getValueAsListOfDefs("IID");
// Collect instruction classes for all itinerary data
for (unsigned j = 0, M = ItinDataList.size(); j < M; j++) {
Record *ItinData = ItinDataList[j];
unsigned NStages;
collectAllInsnClasses(Name, ItinData, NStages, OS);
}
}
//
// Run a worklist algorithm to generate the DFA
//
DFA D;
State* Initial = new State;
Initial->isInitial = true;
Initial->stateInfo.insert(0x0);
D.addState(Initial);
SmallVector<State*, 32> WorkList;
std::map<std::set<unsigned>, State*> Visited;
WorkList.push_back(Initial);
//
// Worklist algorithm to create a DFA for processor resource tracking
// C = {set of InsnClasses}
// Begin with initial node in worklist. Initial node does not have
// any consumed resources,
// ResourceState = 0x0
// Visited = {}
// While worklist != empty
// S = first element of worklist
// For every instruction class C
// if we can accommodate C in S:
// S' = state with resource states = {S Union C}
// Add a new transition: S x C -> S'
// If S' is not in Visited:
// Add S' to worklist
// Add S' to Visited
//
while (!WorkList.empty()) {
State* current = WorkList.pop_back_val();
for (DenseSet<unsigned>::iterator CI = allInsnClasses.begin(),
CE = allInsnClasses.end(); CI != CE; ++CI) {
unsigned InsnClass = *CI;
std::set<unsigned> NewStateResources;
//
// If we haven't already created a transition for this input
// and the state can accommodate this InsnClass, create a transition
//
if (!D.getTransition(current, InsnClass) &&
current->canAddInsnClass(InsnClass, NewStateResources)) {
State* NewState = NULL;
//
// If we have seen this state before, then do not create a new state
//
//
std::map<std::set<unsigned>, State*>::iterator VI;
if ((VI = Visited.find(NewStateResources)) != Visited.end())
NewState = VI->second;
else {
NewState = new State;
NewState->stateInfo = NewStateResources;
D.addState(NewState);
Visited[NewStateResources] = NewState;
WorkList.push_back(NewState);
}
Transition* NewTransition = new Transition(current, InsnClass,
NewState);
D.addTransition(NewTransition);
}
}
}
// Print out the table
D.writeTableAndAPI(OS, TargetName);
}