| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| "http://www.w3.org/TR/html4/strict.dtd"> |
| |
| <html> |
| <head> |
| <title>Kaleidoscope: Extending the Language: Control Flow</title> |
| <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| <meta name="author" content="Chris Lattner"> |
| <link rel="stylesheet" href="../llvm.css" type="text/css"> |
| </head> |
| |
| <body> |
| |
| <div class="doc_title">Kaleidoscope: Extending the Language: Control Flow</div> |
| |
| <ul> |
| <li><a href="index.html">Up to Tutorial Index</a></li> |
| <li>Chapter 5 |
| <ol> |
| <li><a href="#intro">Chapter 5 Introduction</a></li> |
| <li><a href="#ifthen">If/Then/Else</a> |
| <ol> |
| <li><a href="#iflexer">Lexer Extensions</a></li> |
| <li><a href="#ifast">AST Extensions</a></li> |
| <li><a href="#ifparser">Parser Extensions</a></li> |
| <li><a href="#ifir">LLVM IR</a></li> |
| <li><a href="#ifcodegen">Code Generation</a></li> |
| </ol> |
| </li> |
| <li><a href="#for">'for' Loop Expression</a> |
| <ol> |
| <li><a href="#forlexer">Lexer Extensions</a></li> |
| <li><a href="#forast">AST Extensions</a></li> |
| <li><a href="#forparser">Parser Extensions</a></li> |
| <li><a href="#forir">LLVM IR</a></li> |
| <li><a href="#forcodegen">Code Generation</a></li> |
| </ol> |
| </li> |
| <li><a href="#code">Full Code Listing</a></li> |
| </ol> |
| </li> |
| <li><a href="LangImpl6.html">Chapter 6</a>: Extending the Language: |
| User-defined Operators</li> |
| </ul> |
| |
| <div class="doc_author"> |
| <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="intro">Chapter 5 Introduction</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>Welcome to Chapter 5 of the "<a href="index.html">Implementing a language |
| with LLVM</a>" tutorial. Parts 1-4 described the implementation of the simple |
| Kaleidoscope language and included support for generating LLVM IR, followed by |
| optimizations and a JIT compiler. Unfortunately, as presented, Kaleidoscope is |
| mostly useless: it has no control flow other than call and return. This means |
| that you can't have conditional branches in the code, significantly limiting its |
| power. In this episode of "build that compiler", we'll extend Kaleidoscope to |
| have an if/then/else expression plus a simple 'for' loop.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="ifthen">If/Then/Else</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p> |
| Extending Kaleidoscope to support if/then/else is quite straightforward. It |
| basically requires adding lexer support for this "new" concept to the lexer, |
| parser, AST, and LLVM code emitter. This example is nice, because it shows how |
| easy it is to "grow" a language over time, incrementally extending it as new |
| ideas are discovered.</p> |
| |
| <p>Before we get going on "how" we add this extension, lets talk about "what" we |
| want. The basic idea is that we want to be able to write this sort of thing: |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| def fib(x) |
| if x < 3 then |
| 1 |
| else |
| fib(x-1)+fib(x-2); |
| </pre> |
| </div> |
| |
| <p>In Kaleidoscope, every construct is an expression: there are no statements. |
| As such, the if/then/else expression needs to return a value like any other. |
| Since we're using a mostly functional form, we'll have it evaluate its |
| conditional, then return the 'then' or 'else' value based on how the condition |
| was resolved. This is very similar to the C "?:" expression.</p> |
| |
| <p>The semantics of the if/then/else expression is that it evaluates the |
| condition to a boolean equality value: 0.0 is considered to be false and |
| everything else is considered to be true. |
| If the condition is true, the first subexpression is evaluated and returned, if |
| the condition is false, the second subexpression is evaluated and returned. |
| Since Kaleidoscope allows side-effects, this behavior is important to nail down. |
| </p> |
| |
| <p>Now that we know what we "want", lets break this down into its constituent |
| pieces.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsubsection"><a name="iflexer">Lexer Extensions for |
| If/Then/Else</a></div> |
| <!-- ======================================================================= --> |
| |
| |
| <div class="doc_text"> |
| |
| <p>The lexer extensions are straightforward. First we add new enum values |
| for the relevant tokens:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // control |
| tok_if = -6, tok_then = -7, tok_else = -8, |
| </pre> |
| </div> |
| |
| <p>Once we have that, we recognize the new keywords in the lexer. This is pretty simple |
| stuff:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ... |
| if (IdentifierStr == "def") return tok_def; |
| if (IdentifierStr == "extern") return tok_extern; |
| <b>if (IdentifierStr == "if") return tok_if; |
| if (IdentifierStr == "then") return tok_then; |
| if (IdentifierStr == "else") return tok_else;</b> |
| return tok_identifier; |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsubsection"><a name="ifast">AST Extensions for |
| If/Then/Else</a></div> |
| <!-- ======================================================================= --> |
| |
| <div class="doc_text"> |
| |
| <p>To represent the new expression we add a new AST node for it:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// IfExprAST - Expression class for if/then/else. |
| class IfExprAST : public ExprAST { |
| ExprAST *Cond, *Then, *Else; |
| public: |
| IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) |
| : Cond(cond), Then(then), Else(_else) {} |
| virtual Value *Codegen(); |
| }; |
| </pre> |
| </div> |
| |
| <p>The AST node just has pointers to the various subexpressions.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsubsection"><a name="ifparser">Parser Extensions for |
| If/Then/Else</a></div> |
| <!-- ======================================================================= --> |
| |
| <div class="doc_text"> |
| |
| <p>Now that we have the relevant tokens coming from the lexer and we have the |
| AST node to build, our parsing logic is relatively straightforward. First we |
| define a new parsing function:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| static ExprAST *ParseIfExpr() { |
| getNextToken(); // eat the if. |
| |
| // condition. |
| ExprAST *Cond = ParseExpression(); |
| if (!Cond) return 0; |
| |
| if (CurTok != tok_then) |
| return Error("expected then"); |
| getNextToken(); // eat the then |
| |
| ExprAST *Then = ParseExpression(); |
| if (Then == 0) return 0; |
| |
| if (CurTok != tok_else) |
| return Error("expected else"); |
| |
| getNextToken(); |
| |
| ExprAST *Else = ParseExpression(); |
| if (!Else) return 0; |
| |
| return new IfExprAST(Cond, Then, Else); |
| } |
| </pre> |
| </div> |
| |
| <p>Next we hook it up as a primary expression:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| static ExprAST *ParsePrimary() { |
| switch (CurTok) { |
| default: return Error("unknown token when expecting an expression"); |
| case tok_identifier: return ParseIdentifierExpr(); |
| case tok_number: return ParseNumberExpr(); |
| case '(': return ParseParenExpr(); |
| <b>case tok_if: return ParseIfExpr();</b> |
| } |
| } |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsubsection"><a name="ifir">LLVM IR for If/Then/Else</a></div> |
| <!-- ======================================================================= --> |
| |
| <div class="doc_text"> |
| |
| <p>Now that we have it parsing and building the AST, the final piece is adding |
| LLVM code generation support. This is the most interesting part of the |
| if/then/else example, because this is where it starts to introduce new concepts. |
| All of the code above has been thoroughly described in previous chapters. |
| </p> |
| |
| <p>To motivate the code we want to produce, lets take a look at a simple |
| example. Consider:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| extern foo(); |
| extern bar(); |
| def baz(x) if x then foo() else bar(); |
| </pre> |
| </div> |
| |
| <p>If you disable optimizations, the code you'll (soon) get from Kaleidoscope |
| looks like this:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| declare double @foo() |
| |
| declare double @bar() |
| |
| define double @baz(double %x) { |
| entry: |
| %ifcond = fcmp one double %x, 0.000000e+00 |
| br i1 %ifcond, label %then, label %else |
| |
| then: ; preds = %entry |
| %calltmp = call double @foo() |
| br label %ifcont |
| |
| else: ; preds = %entry |
| %calltmp1 = call double @bar() |
| br label %ifcont |
| |
| ifcont: ; preds = %else, %then |
| %iftmp = phi double [ %calltmp, %then ], [ %calltmp1, %else ] |
| ret double %iftmp |
| } |
| </pre> |
| </div> |
| |
| <p>To visualize the control flow graph, you can use a nifty feature of the LLVM |
| '<a href="http://llvm.org/cmds/opt.html">opt</a>' tool. If you put this LLVM IR |
| into "t.ll" and run "<tt>llvm-as < t.ll | opt -analyze -view-cfg</tt>", <a |
| href="../ProgrammersManual.html#ViewGraph">a window will pop up</a> and you'll |
| see this graph:</p> |
| |
| <center><img src="LangImpl5-cfg.png" alt="Example CFG" width="423" |
| height="315"></center> |
| |
| <p>Another way to get this is to call "<tt>F->viewCFG()</tt>" or |
| "<tt>F->viewCFGOnly()</tt>" (where F is a "<tt>Function*</tt>") either by |
| inserting actual calls into the code and recompiling or by calling these in the |
| debugger. LLVM has many nice features for visualizing various graphs.</p> |
| |
| <p>Getting back to the generated code, it is fairly simple: the entry block |
| evaluates the conditional expression ("x" in our case here) and compares the |
| result to 0.0 with the "<tt><a href="../LangRef.html#i_fcmp">fcmp</a> one</tt>" |
| instruction ('one' is "Ordered and Not Equal"). Based on the result of this |
| expression, the code jumps to either the "then" or "else" blocks, which contain |
| the expressions for the true/false cases.</p> |
| |
| <p>Once the then/else blocks are finished executing, they both branch back to the |
| 'ifcont' block to execute the code that happens after the if/then/else. In this |
| case the only thing left to do is to return to the caller of the function. The |
| question then becomes: how does the code know which expression to return?</p> |
| |
| <p>The answer to this question involves an important SSA operation: the |
| <a href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Phi |
| operation</a>. If you're not familiar with SSA, <a |
| href="http://en.wikipedia.org/wiki/Static_single_assignment_form">the wikipedia |
| article</a> is a good introduction and there are various other introductions to |
| it available on your favorite search engine. The short version is that |
| "execution" of the Phi operation requires "remembering" which block control came |
| from. The Phi operation takes on the value corresponding to the input control |
| block. In this case, if control comes in from the "then" block, it gets the |
| value of "calltmp". If control comes from the "else" block, it gets the value |
| of "calltmp1".</p> |
| |
| <p>At this point, you are probably starting to think "Oh no! This means my |
| simple and elegant front-end will have to start generating SSA form in order to |
| use LLVM!". Fortunately, this is not the case, and we strongly advise |
| <em>not</em> implementing an SSA construction algorithm in your front-end |
| unless there is an amazingly good reason to do so. In practice, there are two |
| sorts of values that float around in code written for your average imperative |
| programming language that might need Phi nodes:</p> |
| |
| <ol> |
| <li>Code that involves user variables: <tt>x = 1; x = x + 1; </tt></li> |
| <li>Values that are implicit in the structure of your AST, such as the Phi node |
| in this case.</li> |
| </ol> |
| |
| <p>In <a href="LangImpl7.html">Chapter 7</a> of this tutorial ("mutable |
| variables"), we'll talk about #1 |
| in depth. For now, just believe me that you don't need SSA construction to |
| handle this case. For #2, you have the choice of using the techniques that we will |
| describe for #1, or you can insert Phi nodes directly, if convenient. In this |
| case, it is really really easy to generate the Phi node, so we choose to do it |
| directly.</p> |
| |
| <p>Okay, enough of the motivation and overview, lets generate code!</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsubsection"><a name="ifcodegen">Code Generation for |
| If/Then/Else</a></div> |
| <!-- ======================================================================= --> |
| |
| <div class="doc_text"> |
| |
| <p>In order to generate code for this, we implement the <tt>Codegen</tt> method |
| for <tt>IfExprAST</tt>:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Value *IfExprAST::Codegen() { |
| Value *CondV = Cond->Codegen(); |
| if (CondV == 0) return 0; |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| CondV = Builder.CreateFCmpONE(CondV, |
| ConstantFP::get(Type::DoubleTy, APFloat(0.0)), |
| "ifcond"); |
| </pre> |
| </div> |
| |
| <p>This code is straightforward and similar to what we saw before. We emit the |
| expression for the condition, then compare that value to zero to get a truth |
| value as a 1-bit (bool) value.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Create blocks for the then and else cases. Insert the 'then' block at the |
| // end of the function. |
| BasicBlock *ThenBB = new BasicBlock("then", TheFunction); |
| BasicBlock *ElseBB = new BasicBlock("else"); |
| BasicBlock *MergeBB = new BasicBlock("ifcont"); |
| |
| Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| </pre> |
| </div> |
| |
| <p>This code creates the basic blocks that are related to the if/then/else |
| statement, and correspond directly to the blocks in the example above. The |
| first line gets the current Function object that is being built. It |
| gets this by asking the builder for the current BasicBlock, and asking that |
| block for its "parent" (the function it is currently embedded into).</p> |
| |
| <p>Once it has that, it creates three blocks. Note that it passes "TheFunction" |
| into the constructor for the "then" block. This causes the constructor to |
| automatically insert the new block into the end of the specified function. The |
| other two blocks are created, but aren't yet inserted into the function.</p> |
| |
| <p>Once the blocks are created, we can emit the conditional branch that chooses |
| between them. Note that creating new blocks does not implicitly affect the |
| LLVMBuilder, so it is still inserting into the block that the condition |
| went into. Also note that it is creating a branch to the "then" block and the |
| "else" block, even though the "else" block isn't inserted into the function yet. |
| This is all ok: it is the standard way that LLVM supports forward |
| references.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Emit then value. |
| Builder.SetInsertPoint(ThenBB); |
| |
| Value *ThenV = Then->Codegen(); |
| if (ThenV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| ThenBB = Builder.GetInsertBlock(); |
| </pre> |
| </div> |
| |
| <p>After the conditional branch is inserted, we move the builder to start |
| inserting into the "then" block. Strictly speaking, this call moves the |
| insertion point to be at the end of the specified block. However, since the |
| "then" block is empty, it also starts out by inserting at the beginning of the |
| block. :)</p> |
| |
| <p>Once the insertion point is set, we recursively codegen the "then" expression |
| from the AST. To finish off the "then" block, we create an unconditional branch |
| to the merge block. One interesting (and very important) aspect of the LLVM IR |
| is that it <a href="../LangRef.html#functionstructure">requires all basic blocks |
| to be "terminated"</a> with a <a href="../LangRef.html#terminators">control flow |
| instruction</a> such as return or branch. This means that all control flow, |
| <em>including fall throughs</em> must be made explicit in the LLVM IR. If you |
| violate this rule, the verifier will emit an error.</p> |
| |
| <p>The final line here is quite subtle, but is very important. The basic issue |
| is that when we create the Phi node in the merge block, we need to set up the |
| block/value pairs that indicate how the Phi will work. Importantly, the Phi |
| node expects to have an entry for each predecessor of the block in the CFG. Why |
| then, are we getting the current block when we just set it to ThenBB 5 lines |
| above? The problem is that the "Then" expression may actually itself change the |
| block that the Builder is emitting into if, for example, it contains a nested |
| "if/then/else" expression. Because calling Codegen recursively could |
| arbitrarily change the notion of the current block, we are required to get an |
| up-to-date value for code that will set up the Phi node.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Emit else block. |
| TheFunction->getBasicBlockList().push_back(ElseBB); |
| Builder.SetInsertPoint(ElseBB); |
| |
| Value *ElseV = Else->Codegen(); |
| if (ElseV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| ElseBB = Builder.GetInsertBlock(); |
| </pre> |
| </div> |
| |
| <p>Code generation for the 'else' block is basically identical to codegen for |
| the 'then' block. The only significant difference is the first line, which adds |
| the 'else' block to the function. Recall previously that the 'else' block was |
| created, but not added to the function. Now that the 'then' and 'else' blocks |
| are emitted, we can finish up with the merge code:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Emit merge block. |
| TheFunction->getBasicBlockList().push_back(MergeBB); |
| Builder.SetInsertPoint(MergeBB); |
| PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp"); |
| |
| PN->addIncoming(ThenV, ThenBB); |
| PN->addIncoming(ElseV, ElseBB); |
| return PN; |
| } |
| </pre> |
| </div> |
| |
| <p>The first two lines here are now familiar: the first adds the "merge" block |
| to the Function object (it was previously floating, like the else block above). |
| The second block changes the insertion point so that newly created code will go |
| into the "merge" block. Once that is done, we need to create the PHI node and |
| set up the block/value pairs for the PHI.</p> |
| |
| <p>Finally, the CodeGen function returns the phi node as the value computed by |
| the if/then/else expression. In our example above, this returned value will |
| feed into the code for the top-level function, which will create the return |
| instruction.</p> |
| |
| <p>Overall, we now have the ability to execute conditional code in |
| Kaleidoscope. With this extension, Kaleidoscope is a fairly complete language |
| that can calculate a wide variety of numeric functions. Next up we'll add |
| another useful expression that is familiar from non-functional languages...</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="for">'for' Loop Expression</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>Now that we know how to add basic control flow constructs to the language, |
| we have the tools to add more powerful things. Lets add something more |
| aggressive, a 'for' expression:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| extern putchard(char) |
| def printstar(n) |
| for i = 1, i < n, 1.0 in |
| putchard(42); # ascii 42 = '*' |
| |
| # print 100 '*' characters |
| printstar(100); |
| </pre> |
| </div> |
| |
| <p>This expression defines a new variable ("i" in this case) which iterates from |
| a starting value, while the condition ("i < n" in this case) is true, |
| incrementing by an optional step value ("1.0" in this case). If the step value |
| is omitted, it defaults to 1.0. While the loop is true, it executes its |
| body expression. Because we don't have anything better to return, we'll just |
| define the loop as always returning 0.0. In the future when we have mutable |
| variables, it will get more useful.</p> |
| |
| <p>As before, lets talk about the changes that we need to Kaleidoscope to |
| support this.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsubsection"><a name="forlexer">Lexer Extensions for |
| the 'for' Loop</a></div> |
| <!-- ======================================================================= --> |
| |
| <div class="doc_text"> |
| |
| <p>The lexer extensions are the same sort of thing as for if/then/else:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ... in enum Token ... |
| // control |
| tok_if = -6, tok_then = -7, tok_else = -8, |
| <b> tok_for = -9, tok_in = -10</b> |
| |
| ... in gettok ... |
| if (IdentifierStr == "def") return tok_def; |
| if (IdentifierStr == "extern") return tok_extern; |
| if (IdentifierStr == "if") return tok_if; |
| if (IdentifierStr == "then") return tok_then; |
| if (IdentifierStr == "else") return tok_else; |
| <b>if (IdentifierStr == "for") return tok_for; |
| if (IdentifierStr == "in") return tok_in;</b> |
| return tok_identifier; |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsubsection"><a name="forast">AST Extensions for |
| the 'for' Loop</a></div> |
| <!-- ======================================================================= --> |
| |
| <div class="doc_text"> |
| |
| <p>The AST node is just as simple. It basically boils down to capturing |
| the variable name and the constituent expressions in the node.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// ForExprAST - Expression class for for/in. |
| class ForExprAST : public ExprAST { |
| std::string VarName; |
| ExprAST *Start, *End, *Step, *Body; |
| public: |
| ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, |
| ExprAST *step, ExprAST *body) |
| : VarName(varname), Start(start), End(end), Step(step), Body(body) {} |
| virtual Value *Codegen(); |
| }; |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsubsection"><a name="forparser">Parser Extensions for |
| the 'for' Loop</a></div> |
| <!-- ======================================================================= --> |
| |
| <div class="doc_text"> |
| |
| <p>The parser code is also fairly standard. The only interesting thing here is |
| handling of the optional step value. The parser code handles it by checking to |
| see if the second comma is present. If not, it sets the step value to null in |
| the AST node:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression |
| static ExprAST *ParseForExpr() { |
| getNextToken(); // eat the for. |
| |
| if (CurTok != tok_identifier) |
| return Error("expected identifier after for"); |
| |
| std::string IdName = IdentifierStr; |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '=') |
| return Error("expected '=' after for"); |
| getNextToken(); // eat '='. |
| |
| |
| ExprAST *Start = ParseExpression(); |
| if (Start == 0) return 0; |
| if (CurTok != ',') |
| return Error("expected ',' after for start value"); |
| getNextToken(); |
| |
| ExprAST *End = ParseExpression(); |
| if (End == 0) return 0; |
| |
| // The step value is optional. |
| ExprAST *Step = 0; |
| if (CurTok == ',') { |
| getNextToken(); |
| Step = ParseExpression(); |
| if (Step == 0) return 0; |
| } |
| |
| if (CurTok != tok_in) |
| return Error("expected 'in' after for"); |
| getNextToken(); // eat 'in'. |
| |
| ExprAST *Body = ParseExpression(); |
| if (Body == 0) return 0; |
| |
| return new ForExprAST(IdName, Start, End, Step, Body); |
| } |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsubsection"><a name="forir">LLVM IR for |
| the 'for' Loop</a></div> |
| <!-- ======================================================================= --> |
| |
| <div class="doc_text"> |
| |
| <p>Now we get to the good part: the LLVM IR we want to generate for this thing. |
| With the simple example above, we get this LLVM IR (note that this dump is |
| generated with optimizations disabled for clarity): |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| declare double @putchard(double) |
| |
| define double @printstar(double %n) { |
| entry: |
| ; initial value = 1.0 (inlined into phi) |
| br label %loop |
| |
| loop: ; preds = %loop, %entry |
| %i = phi double [ 1.000000e+00, %entry ], [ %nextvar, %loop ] |
| ; body |
| %calltmp = call double @putchard( double 4.200000e+01 ) |
| ; increment |
| %nextvar = add double %i, 1.000000e+00 |
| |
| ; termination test |
| %cmptmp = fcmp ult double %i, %n |
| %booltmp = uitofp i1 %cmptmp to double |
| %loopcond = fcmp one double %booltmp, 0.000000e+00 |
| br i1 %loopcond, label %loop, label %afterloop |
| |
| afterloop: ; preds = %loop |
| ; loop always returns 0.0 |
| ret double 0.000000e+00 |
| } |
| </pre> |
| </div> |
| |
| <p>This loop contains all the same constructs we saw before: a phi node, several |
| expressions, and some basic blocks. Lets see how this fits together.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsubsection"><a name="forcodegen">Code Generation for |
| the 'for' Loop</a></div> |
| <!-- ======================================================================= --> |
| |
| <div class="doc_text"> |
| |
| <p>The first part of Codegen is very simple: we just output the start expression |
| for the loop value:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Value *ForExprAST::Codegen() { |
| // Emit the start code first, without 'variable' in scope. |
| Value *StartVal = Start->Codegen(); |
| if (StartVal == 0) return 0; |
| </pre> |
| </div> |
| |
| <p>With this out of the way, the next step is to set up the LLVM basic block |
| for the start of the loop body. In the case above, the whole loop body is one |
| block, but remember that the body code itself could consist of multiple blocks |
| (e.g. if it contains an if/then/else or a for/in expression).</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Make the new basic block for the loop header, inserting after current |
| // block. |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| BasicBlock *PreheaderBB = Builder.GetInsertBlock(); |
| BasicBlock *LoopBB = new BasicBlock("loop", TheFunction); |
| |
| // Insert an explicit fall through from the current block to the LoopBB. |
| Builder.CreateBr(LoopBB); |
| </pre> |
| </div> |
| |
| <p>This code is similar to what we saw for if/then/else. Because we will need |
| it to create the Phi node, we remember the block that falls through into the |
| loop. Once we have that, we create the actual block that starts the loop and |
| create an unconditional branch for the fall-through between the two blocks.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Start insertion in LoopBB. |
| Builder.SetInsertPoint(LoopBB); |
| |
| // Start the PHI node with an entry for Start. |
| PHINode *Variable = Builder.CreatePHI(Type::DoubleTy, VarName.c_str()); |
| Variable->addIncoming(StartVal, PreheaderBB); |
| </pre> |
| </div> |
| |
| <p>Now that the "preheader" for the loop is set up, we switch to emitting code |
| for the loop body. To begin with, we move the insertion point and create the |
| PHI node for the loop induction variable. Since we already know the incoming |
| value for the starting value, we add it to the Phi node. Note that the Phi will |
| eventually get a second value for the backedge, but we can't set it up yet |
| (because it doesn't exist!).</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Within the loop, the variable is defined equal to the PHI node. If it |
| // shadows an existing variable, we have to restore it, so save it now. |
| Value *OldVal = NamedValues[VarName]; |
| NamedValues[VarName] = Variable; |
| |
| // Emit the body of the loop. This, like any other expr, can change the |
| // current BB. Note that we ignore the value computed by the body, but don't |
| // allow an error. |
| if (Body->Codegen() == 0) |
| return 0; |
| </pre> |
| </div> |
| |
| <p>Now the code starts to get more interesting. Our 'for' loop introduces a new |
| variable to the symbol table. This means that our symbol table can now contain |
| either function arguments or loop variables. To handle this, before we codegen |
| the body of the loop, we add the loop variable as the current value for its |
| name. Note that it is possible that there is a variable of the same name in the |
| outer scope. It would be easy to make this an error (emit an error and return |
| null if there is already an entry for VarName) but we choose to allow shadowing |
| of variables. In order to handle this correctly, we remember the Value that |
| we are potentially shadowing in <tt>OldVal</tt> (which will be null if there is |
| no shadowed variable).</p> |
| |
| <p>Once the loop variable is set into the symbol table, the code recursively |
| codegen's the body. This allows the body to use the loop variable: any |
| references to it will naturally find it in the symbol table.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Emit the step value. |
| Value *StepVal; |
| if (Step) { |
| StepVal = Step->Codegen(); |
| if (StepVal == 0) return 0; |
| } else { |
| // If not specified, use 1.0. |
| StepVal = ConstantFP::get(Type::DoubleTy, APFloat(1.0)); |
| } |
| |
| Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar"); |
| </pre> |
| </div> |
| |
| <p>Now that the body is emitted, we compute the next value of the iteration |
| variable by adding the step value, or 1.0 if it isn't present. '<tt>NextVar</tt>' |
| will be the value of the loop variable on the next iteration of the loop.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Compute the end condition. |
| Value *EndCond = End->Codegen(); |
| if (EndCond == 0) return EndCond; |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| EndCond = Builder.CreateFCmpONE(EndCond, |
| ConstantFP::get(Type::DoubleTy, APFloat(0.0)), |
| "loopcond"); |
| </pre> |
| </div> |
| |
| <p>Finally, we evaluate the exit value of the loop, to determine whether the |
| loop should exit. This mirrors the condition evaluation for the if/then/else |
| statement.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Create the "after loop" block and insert it. |
| BasicBlock *LoopEndBB = Builder.GetInsertBlock(); |
| BasicBlock *AfterBB = new BasicBlock("afterloop", TheFunction); |
| |
| // Insert the conditional branch into the end of LoopEndBB. |
| Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| |
| // Any new code will be inserted in AfterBB. |
| Builder.SetInsertPoint(AfterBB); |
| </pre> |
| </div> |
| |
| <p>With the code for the body of the loop complete, we just need to finish up |
| the control flow for it. This code remembers the end block (for the phi node), then creates the block for the loop exit ("afterloop"). Based on the value of the |
| exit condition, it creates a conditional branch that chooses between executing |
| the loop again and exiting the loop. Any future code is emitted in the |
| "afterloop" block, so it sets the insertion position to it.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Add a new entry to the PHI node for the backedge. |
| Variable->addIncoming(NextVar, LoopEndBB); |
| |
| // Restore the unshadowed variable. |
| if (OldVal) |
| NamedValues[VarName] = OldVal; |
| else |
| NamedValues.erase(VarName); |
| |
| // for expr always returns 0.0. |
| return Constant::getNullValue(Type::DoubleTy); |
| } |
| </pre> |
| </div> |
| |
| <p>The final code handles various cleanups: now that we have the "NextVar" |
| value, we can add the incoming value to the loop PHI node. After that, we |
| remove the loop variable from the symbol table, so that it isn't in scope after |
| the for loop. Finally, code generation of the for loop always returns 0.0, so |
| that is what we return from <tt>ForExprAST::Codegen</tt>.</p> |
| |
| <p>With this, we conclude the "adding control flow to Kaleidoscope" chapter of |
| the tutorial. In this chapter we added two control flow constructs, and used them to motivate a couple of aspects of the LLVM IR that are important for front-end implementors |
| to know. In the next chapter of our saga, we will get a bit crazier and add |
| <a href="LangImpl6.html">user-defined operators</a> to our poor innocent |
| language.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="code">Full Code Listing</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p> |
| Here is the complete code listing for our running example, enhanced with the |
| if/then/else and for expressions.. To build this example, use: |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| # Compile |
| g++ -g toy.cpp `llvm-config --cppflags --ldflags --libs core jit native` -O3 -o toy |
| # Run |
| ./toy |
| </pre> |
| </div> |
| |
| <p>Here is the code:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/ExecutionEngine/ExecutionEngine.h" |
| #include "llvm/Module.h" |
| #include "llvm/ModuleProvider.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/Analysis/Verifier.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Support/LLVMBuilder.h" |
| #include <cstdio> |
| #include <string> |
| #include <map> |
| #include <vector> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Lexer |
| //===----------------------------------------------------------------------===// |
| |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| // of these for known things. |
| enum Token { |
| tok_eof = -1, |
| |
| // commands |
| tok_def = -2, tok_extern = -3, |
| |
| // primary |
| tok_identifier = -4, tok_number = -5, |
| |
| // control |
| tok_if = -6, tok_then = -7, tok_else = -8, |
| tok_for = -9, tok_in = -10 |
| }; |
| |
| static std::string IdentifierStr; // Filled in if tok_identifier |
| static double NumVal; // Filled in if tok_number |
| |
| /// gettok - Return the next token from standard input. |
| static int gettok() { |
| static int LastChar = ' '; |
| |
| // Skip any whitespace. |
| while (isspace(LastChar)) |
| LastChar = getchar(); |
| |
| if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| IdentifierStr = LastChar; |
| while (isalnum((LastChar = getchar()))) |
| IdentifierStr += LastChar; |
| |
| if (IdentifierStr == "def") return tok_def; |
| if (IdentifierStr == "extern") return tok_extern; |
| if (IdentifierStr == "if") return tok_if; |
| if (IdentifierStr == "then") return tok_then; |
| if (IdentifierStr == "else") return tok_else; |
| if (IdentifierStr == "for") return tok_for; |
| if (IdentifierStr == "in") return tok_in; |
| return tok_identifier; |
| } |
| |
| if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| std::string NumStr; |
| do { |
| NumStr += LastChar; |
| LastChar = getchar(); |
| } while (isdigit(LastChar) || LastChar == '.'); |
| |
| NumVal = strtod(NumStr.c_str(), 0); |
| return tok_number; |
| } |
| |
| if (LastChar == '#') { |
| // Comment until end of line. |
| do LastChar = getchar(); |
| while (LastChar != EOF && LastChar != '\n' & LastChar != '\r'); |
| |
| if (LastChar != EOF) |
| return gettok(); |
| } |
| |
| // Check for end of file. Don't eat the EOF. |
| if (LastChar == EOF) |
| return tok_eof; |
| |
| // Otherwise, just return the character as its ascii value. |
| int ThisChar = LastChar; |
| LastChar = getchar(); |
| return ThisChar; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Abstract Syntax Tree (aka Parse Tree) |
| //===----------------------------------------------------------------------===// |
| |
| /// ExprAST - Base class for all expression nodes. |
| class ExprAST { |
| public: |
| virtual ~ExprAST() {} |
| virtual Value *Codegen() = 0; |
| }; |
| |
| /// NumberExprAST - Expression class for numeric literals like "1.0". |
| class NumberExprAST : public ExprAST { |
| double Val; |
| public: |
| NumberExprAST(double val) : Val(val) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// VariableExprAST - Expression class for referencing a variable, like "a". |
| class VariableExprAST : public ExprAST { |
| std::string Name; |
| public: |
| VariableExprAST(const std::string &name) : Name(name) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// BinaryExprAST - Expression class for a binary operator. |
| class BinaryExprAST : public ExprAST { |
| char Op; |
| ExprAST *LHS, *RHS; |
| public: |
| BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| : Op(op), LHS(lhs), RHS(rhs) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// CallExprAST - Expression class for function calls. |
| class CallExprAST : public ExprAST { |
| std::string Callee; |
| std::vector<ExprAST*> Args; |
| public: |
| CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| : Callee(callee), Args(args) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// IfExprAST - Expression class for if/then/else. |
| class IfExprAST : public ExprAST { |
| ExprAST *Cond, *Then, *Else; |
| public: |
| IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) |
| : Cond(cond), Then(then), Else(_else) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// ForExprAST - Expression class for for/in. |
| class ForExprAST : public ExprAST { |
| std::string VarName; |
| ExprAST *Start, *End, *Step, *Body; |
| public: |
| ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, |
| ExprAST *step, ExprAST *body) |
| : VarName(varname), Start(start), End(end), Step(step), Body(body) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// PrototypeAST - This class represents the "prototype" for a function, |
| /// which captures its argument names as well as if it is an operator. |
| class PrototypeAST { |
| std::string Name; |
| std::vector<std::string> Args; |
| public: |
| PrototypeAST(const std::string &name, const std::vector<std::string> &args) |
| : Name(name), Args(args) {} |
| |
| Function *Codegen(); |
| }; |
| |
| /// FunctionAST - This class represents a function definition itself. |
| class FunctionAST { |
| PrototypeAST *Proto; |
| ExprAST *Body; |
| public: |
| FunctionAST(PrototypeAST *proto, ExprAST *body) |
| : Proto(proto), Body(body) {} |
| |
| Function *Codegen(); |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Parser |
| //===----------------------------------------------------------------------===// |
| |
| /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| /// token the parser it looking at. getNextToken reads another token from the |
| /// lexer and updates CurTok with its results. |
| static int CurTok; |
| static int getNextToken() { |
| return CurTok = gettok(); |
| } |
| |
| /// BinopPrecedence - This holds the precedence for each binary operator that is |
| /// defined. |
| static std::map<char, int> BinopPrecedence; |
| |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| static int GetTokPrecedence() { |
| if (!isascii(CurTok)) |
| return -1; |
| |
| // Make sure it's a declared binop. |
| int TokPrec = BinopPrecedence[CurTok]; |
| if (TokPrec <= 0) return -1; |
| return TokPrec; |
| } |
| |
| /// Error* - These are little helper functions for error handling. |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| |
| static ExprAST *ParseExpression(); |
| |
| /// identifierexpr |
| /// ::= identifier |
| /// ::= identifier '(' expression* ')' |
| static ExprAST *ParseIdentifierExpr() { |
| std::string IdName = IdentifierStr; |
| |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '(') // Simple variable ref. |
| return new VariableExprAST(IdName); |
| |
| // Call. |
| getNextToken(); // eat ( |
| std::vector<ExprAST*> Args; |
| if (CurTok != ')') { |
| while (1) { |
| ExprAST *Arg = ParseExpression(); |
| if (!Arg) return 0; |
| Args.push_back(Arg); |
| |
| if (CurTok == ')') break; |
| |
| if (CurTok != ',') |
| return Error("Expected ')'"); |
| getNextToken(); |
| } |
| } |
| |
| // Eat the ')'. |
| getNextToken(); |
| |
| return new CallExprAST(IdName, Args); |
| } |
| |
| /// numberexpr ::= number |
| static ExprAST *ParseNumberExpr() { |
| ExprAST *Result = new NumberExprAST(NumVal); |
| getNextToken(); // consume the number |
| return Result; |
| } |
| |
| /// parenexpr ::= '(' expression ')' |
| static ExprAST *ParseParenExpr() { |
| getNextToken(); // eat (. |
| ExprAST *V = ParseExpression(); |
| if (!V) return 0; |
| |
| if (CurTok != ')') |
| return Error("expected ')'"); |
| getNextToken(); // eat ). |
| return V; |
| } |
| |
| /// ifexpr ::= 'if' expression 'then' expression 'else' expression |
| static ExprAST *ParseIfExpr() { |
| getNextToken(); // eat the if. |
| |
| // condition. |
| ExprAST *Cond = ParseExpression(); |
| if (!Cond) return 0; |
| |
| if (CurTok != tok_then) |
| return Error("expected then"); |
| getNextToken(); // eat the then |
| |
| ExprAST *Then = ParseExpression(); |
| if (Then == 0) return 0; |
| |
| if (CurTok != tok_else) |
| return Error("expected else"); |
| |
| getNextToken(); |
| |
| ExprAST *Else = ParseExpression(); |
| if (!Else) return 0; |
| |
| return new IfExprAST(Cond, Then, Else); |
| } |
| |
| /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression |
| static ExprAST *ParseForExpr() { |
| getNextToken(); // eat the for. |
| |
| if (CurTok != tok_identifier) |
| return Error("expected identifier after for"); |
| |
| std::string IdName = IdentifierStr; |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '=') |
| return Error("expected '=' after for"); |
| getNextToken(); // eat '='. |
| |
| |
| ExprAST *Start = ParseExpression(); |
| if (Start == 0) return 0; |
| if (CurTok != ',') |
| return Error("expected ',' after for start value"); |
| getNextToken(); |
| |
| ExprAST *End = ParseExpression(); |
| if (End == 0) return 0; |
| |
| // The step value is optional. |
| ExprAST *Step = 0; |
| if (CurTok == ',') { |
| getNextToken(); |
| Step = ParseExpression(); |
| if (Step == 0) return 0; |
| } |
| |
| if (CurTok != tok_in) |
| return Error("expected 'in' after for"); |
| getNextToken(); // eat 'in'. |
| |
| ExprAST *Body = ParseExpression(); |
| if (Body == 0) return 0; |
| |
| return new ForExprAST(IdName, Start, End, Step, Body); |
| } |
| |
| |
| /// primary |
| /// ::= identifierexpr |
| /// ::= numberexpr |
| /// ::= parenexpr |
| /// ::= ifexpr |
| /// ::= forexpr |
| static ExprAST *ParsePrimary() { |
| switch (CurTok) { |
| default: return Error("unknown token when expecting an expression"); |
| case tok_identifier: return ParseIdentifierExpr(); |
| case tok_number: return ParseNumberExpr(); |
| case '(': return ParseParenExpr(); |
| case tok_if: return ParseIfExpr(); |
| case tok_for: return ParseForExpr(); |
| } |
| } |
| |
| /// binoprhs |
| /// ::= ('+' primary)* |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| // If this is a binop, find its precedence. |
| while (1) { |
| int TokPrec = GetTokPrecedence(); |
| |
| // If this is a binop that binds at least as tightly as the current binop, |
| // consume it, otherwise we are done. |
| if (TokPrec < ExprPrec) |
| return LHS; |
| |
| // Okay, we know this is a binop. |
| int BinOp = CurTok; |
| getNextToken(); // eat binop |
| |
| // Parse the primary expression after the binary operator. |
| ExprAST *RHS = ParsePrimary(); |
| if (!RHS) return 0; |
| |
| // If BinOp binds less tightly with RHS than the operator after RHS, let |
| // the pending operator take RHS as its LHS. |
| int NextPrec = GetTokPrecedence(); |
| if (TokPrec < NextPrec) { |
| RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| if (RHS == 0) return 0; |
| } |
| |
| // Merge LHS/RHS. |
| LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| } |
| } |
| |
| /// expression |
| /// ::= primary binoprhs |
| /// |
| static ExprAST *ParseExpression() { |
| ExprAST *LHS = ParsePrimary(); |
| if (!LHS) return 0; |
| |
| return ParseBinOpRHS(0, LHS); |
| } |
| |
| /// prototype |
| /// ::= id '(' id* ')' |
| static PrototypeAST *ParsePrototype() { |
| if (CurTok != tok_identifier) |
| return ErrorP("Expected function name in prototype"); |
| |
| std::string FnName = IdentifierStr; |
| getNextToken(); |
| |
| if (CurTok != '(') |
| return ErrorP("Expected '(' in prototype"); |
| |
| std::vector<std::string> ArgNames; |
| while (getNextToken() == tok_identifier) |
| ArgNames.push_back(IdentifierStr); |
| if (CurTok != ')') |
| return ErrorP("Expected ')' in prototype"); |
| |
| // success. |
| getNextToken(); // eat ')'. |
| |
| return new PrototypeAST(FnName, ArgNames); |
| } |
| |
| /// definition ::= 'def' prototype expression |
| static FunctionAST *ParseDefinition() { |
| getNextToken(); // eat def. |
| PrototypeAST *Proto = ParsePrototype(); |
| if (Proto == 0) return 0; |
| |
| if (ExprAST *E = ParseExpression()) |
| return new FunctionAST(Proto, E); |
| return 0; |
| } |
| |
| /// toplevelexpr ::= expression |
| static FunctionAST *ParseTopLevelExpr() { |
| if (ExprAST *E = ParseExpression()) { |
| // Make an anonymous proto. |
| PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| return new FunctionAST(Proto, E); |
| } |
| return 0; |
| } |
| |
| /// external ::= 'extern' prototype |
| static PrototypeAST *ParseExtern() { |
| getNextToken(); // eat extern. |
| return ParsePrototype(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Code Generation |
| //===----------------------------------------------------------------------===// |
| |
| static Module *TheModule; |
| static LLVMFoldingBuilder Builder; |
| static std::map<std::string, Value*> NamedValues; |
| static FunctionPassManager *TheFPM; |
| |
| Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| |
| Value *NumberExprAST::Codegen() { |
| return ConstantFP::get(Type::DoubleTy, APFloat(Val)); |
| } |
| |
| Value *VariableExprAST::Codegen() { |
| // Look this variable up in the function. |
| Value *V = NamedValues[Name]; |
| return V ? V : ErrorV("Unknown variable name"); |
| } |
| |
| Value *BinaryExprAST::Codegen() { |
| Value *L = LHS->Codegen(); |
| Value *R = RHS->Codegen(); |
| if (L == 0 || R == 0) return 0; |
| |
| switch (Op) { |
| case '+': return Builder.CreateAdd(L, R, "addtmp"); |
| case '-': return Builder.CreateSub(L, R, "subtmp"); |
| case '*': return Builder.CreateMul(L, R, "multmp"); |
| case '<': |
| L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| // Convert bool 0/1 to double 0.0 or 1.0 |
| return Builder.CreateUIToFP(L, Type::DoubleTy, "booltmp"); |
| default: return ErrorV("invalid binary operator"); |
| } |
| } |
| |
| Value *CallExprAST::Codegen() { |
| // Look up the name in the global module table. |
| Function *CalleeF = TheModule->getFunction(Callee); |
| if (CalleeF == 0) |
| return ErrorV("Unknown function referenced"); |
| |
| // If argument mismatch error. |
| if (CalleeF->arg_size() != Args.size()) |
| return ErrorV("Incorrect # arguments passed"); |
| |
| std::vector<Value*> ArgsV; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| ArgsV.push_back(Args[i]->Codegen()); |
| if (ArgsV.back() == 0) return 0; |
| } |
| |
| return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); |
| } |
| |
| Value *IfExprAST::Codegen() { |
| Value *CondV = Cond->Codegen(); |
| if (CondV == 0) return 0; |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| CondV = Builder.CreateFCmpONE(CondV, |
| ConstantFP::get(Type::DoubleTy, APFloat(0.0)), |
| "ifcond"); |
| |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| |
| // Create blocks for the then and else cases. Insert the 'then' block at the |
| // end of the function. |
| BasicBlock *ThenBB = new BasicBlock("then", TheFunction); |
| BasicBlock *ElseBB = new BasicBlock("else"); |
| BasicBlock *MergeBB = new BasicBlock("ifcont"); |
| |
| Builder.CreateCondBr(CondV, ThenBB, ElseBB); |
| |
| // Emit then value. |
| Builder.SetInsertPoint(ThenBB); |
| |
| Value *ThenV = Then->Codegen(); |
| if (ThenV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Then' can change the current block, update ThenBB for the PHI. |
| ThenBB = Builder.GetInsertBlock(); |
| |
| // Emit else block. |
| TheFunction->getBasicBlockList().push_back(ElseBB); |
| Builder.SetInsertPoint(ElseBB); |
| |
| Value *ElseV = Else->Codegen(); |
| if (ElseV == 0) return 0; |
| |
| Builder.CreateBr(MergeBB); |
| // Codegen of 'Else' can change the current block, update ElseBB for the PHI. |
| ElseBB = Builder.GetInsertBlock(); |
| |
| // Emit merge block. |
| TheFunction->getBasicBlockList().push_back(MergeBB); |
| Builder.SetInsertPoint(MergeBB); |
| PHINode *PN = Builder.CreatePHI(Type::DoubleTy, "iftmp"); |
| |
| PN->addIncoming(ThenV, ThenBB); |
| PN->addIncoming(ElseV, ElseBB); |
| return PN; |
| } |
| |
| Value *ForExprAST::Codegen() { |
| // Output this as: |
| // ... |
| // start = startexpr |
| // goto loop |
| // loop: |
| // variable = phi [start, loopheader], [nextvariable, loopend] |
| // ... |
| // bodyexpr |
| // ... |
| // loopend: |
| // step = stepexpr |
| // nextvariable = variable + step |
| // endcond = endexpr |
| // br endcond, loop, endloop |
| // outloop: |
| |
| // Emit the start code first, without 'variable' in scope. |
| Value *StartVal = Start->Codegen(); |
| if (StartVal == 0) return 0; |
| |
| // Make the new basic block for the loop header, inserting after current |
| // block. |
| Function *TheFunction = Builder.GetInsertBlock()->getParent(); |
| BasicBlock *PreheaderBB = Builder.GetInsertBlock(); |
| BasicBlock *LoopBB = new BasicBlock("loop", TheFunction); |
| |
| // Insert an explicit fall through from the current block to the LoopBB. |
| Builder.CreateBr(LoopBB); |
| |
| // Start insertion in LoopBB. |
| Builder.SetInsertPoint(LoopBB); |
| |
| // Start the PHI node with an entry for Start. |
| PHINode *Variable = Builder.CreatePHI(Type::DoubleTy, VarName.c_str()); |
| Variable->addIncoming(StartVal, PreheaderBB); |
| |
| // Within the loop, the variable is defined equal to the PHI node. If it |
| // shadows an existing variable, we have to restore it, so save it now. |
| Value *OldVal = NamedValues[VarName]; |
| NamedValues[VarName] = Variable; |
| |
| // Emit the body of the loop. This, like any other expr, can change the |
| // current BB. Note that we ignore the value computed by the body, but don't |
| // allow an error. |
| if (Body->Codegen() == 0) |
| return 0; |
| |
| // Emit the step value. |
| Value *StepVal; |
| if (Step) { |
| StepVal = Step->Codegen(); |
| if (StepVal == 0) return 0; |
| } else { |
| // If not specified, use 1.0. |
| StepVal = ConstantFP::get(Type::DoubleTy, APFloat(1.0)); |
| } |
| |
| Value *NextVar = Builder.CreateAdd(Variable, StepVal, "nextvar"); |
| |
| // Compute the end condition. |
| Value *EndCond = End->Codegen(); |
| if (EndCond == 0) return EndCond; |
| |
| // Convert condition to a bool by comparing equal to 0.0. |
| EndCond = Builder.CreateFCmpONE(EndCond, |
| ConstantFP::get(Type::DoubleTy, APFloat(0.0)), |
| "loopcond"); |
| |
| // Create the "after loop" block and insert it. |
| BasicBlock *LoopEndBB = Builder.GetInsertBlock(); |
| BasicBlock *AfterBB = new BasicBlock("afterloop", TheFunction); |
| |
| // Insert the conditional branch into the end of LoopEndBB. |
| Builder.CreateCondBr(EndCond, LoopBB, AfterBB); |
| |
| // Any new code will be inserted in AfterBB. |
| Builder.SetInsertPoint(AfterBB); |
| |
| // Add a new entry to the PHI node for the backedge. |
| Variable->addIncoming(NextVar, LoopEndBB); |
| |
| // Restore the unshadowed variable. |
| if (OldVal) |
| NamedValues[VarName] = OldVal; |
| else |
| NamedValues.erase(VarName); |
| |
| |
| // for expr always returns 0.0. |
| return Constant::getNullValue(Type::DoubleTy); |
| } |
| |
| Function *PrototypeAST::Codegen() { |
| // Make the function type: double(double,double) etc. |
| std::vector<const Type*> Doubles(Args.size(), Type::DoubleTy); |
| FunctionType *FT = FunctionType::get(Type::DoubleTy, Doubles, false); |
| |
| Function *F = new Function(FT, Function::ExternalLinkage, Name, TheModule); |
| |
| // If F conflicted, there was already something named 'Name'. If it has a |
| // body, don't allow redefinition or reextern. |
| if (F->getName() != Name) { |
| // Delete the one we just made and get the existing one. |
| F->eraseFromParent(); |
| F = TheModule->getFunction(Name); |
| |
| // If F already has a body, reject this. |
| if (!F->empty()) { |
| ErrorF("redefinition of function"); |
| return 0; |
| } |
| |
| // If F took a different number of args, reject. |
| if (F->arg_size() != Args.size()) { |
| ErrorF("redefinition of function with different # args"); |
| return 0; |
| } |
| } |
| |
| // Set names for all arguments. |
| unsigned Idx = 0; |
| for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| ++AI, ++Idx) { |
| AI->setName(Args[Idx]); |
| |
| // Add arguments to variable symbol table. |
| NamedValues[Args[Idx]] = AI; |
| } |
| |
| return F; |
| } |
| |
| Function *FunctionAST::Codegen() { |
| NamedValues.clear(); |
| |
| Function *TheFunction = Proto->Codegen(); |
| if (TheFunction == 0) |
| return 0; |
| |
| // Create a new basic block to start insertion into. |
| BasicBlock *BB = new BasicBlock("entry", TheFunction); |
| Builder.SetInsertPoint(BB); |
| |
| if (Value *RetVal = Body->Codegen()) { |
| // Finish off the function. |
| Builder.CreateRet(RetVal); |
| |
| // Validate the generated code, checking for consistency. |
| verifyFunction(*TheFunction); |
| |
| // Optimize the function. |
| TheFPM->run(*TheFunction); |
| |
| return TheFunction; |
| } |
| |
| // Error reading body, remove function. |
| TheFunction->eraseFromParent(); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-Level parsing and JIT Driver |
| //===----------------------------------------------------------------------===// |
| |
| static ExecutionEngine *TheExecutionEngine; |
| |
| static void HandleDefinition() { |
| if (FunctionAST *F = ParseDefinition()) { |
| if (Function *LF = F->Codegen()) { |
| fprintf(stderr, "Read function definition:"); |
| LF->dump(); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleExtern() { |
| if (PrototypeAST *P = ParseExtern()) { |
| if (Function *F = P->Codegen()) { |
| fprintf(stderr, "Read extern: "); |
| F->dump(); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleTopLevelExpression() { |
| // Evaluate a top level expression into an anonymous function. |
| if (FunctionAST *F = ParseTopLevelExpr()) { |
| if (Function *LF = F->Codegen()) { |
| // JIT the function, returning a function pointer. |
| void *FPtr = TheExecutionEngine->getPointerToFunction(LF); |
| |
| // Cast it to the right type (takes no arguments, returns a double) so we |
| // can call it as a native function. |
| double (*FP)() = (double (*)())FPtr; |
| fprintf(stderr, "Evaluated to %f\n", FP()); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| /// top ::= definition | external | expression | ';' |
| static void MainLoop() { |
| while (1) { |
| fprintf(stderr, "ready> "); |
| switch (CurTok) { |
| case tok_eof: return; |
| case ';': getNextToken(); break; // ignore top level semicolons. |
| case tok_def: HandleDefinition(); break; |
| case tok_extern: HandleExtern(); break; |
| default: HandleTopLevelExpression(); break; |
| } |
| } |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // "Library" functions that can be "extern'd" from user code. |
| //===----------------------------------------------------------------------===// |
| |
| /// putchard - putchar that takes a double and returns 0. |
| extern "C" |
| double putchard(double X) { |
| putchar((char)X); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main driver code. |
| //===----------------------------------------------------------------------===// |
| |
| int main() { |
| // Install standard binary operators. |
| // 1 is lowest precedence. |
| BinopPrecedence['<'] = 10; |
| BinopPrecedence['+'] = 20; |
| BinopPrecedence['-'] = 20; |
| BinopPrecedence['*'] = 40; // highest. |
| |
| // Prime the first token. |
| fprintf(stderr, "ready> "); |
| getNextToken(); |
| |
| // Make the module, which holds all the code. |
| TheModule = new Module("my cool jit"); |
| |
| // Create the JIT. |
| TheExecutionEngine = ExecutionEngine::create(TheModule); |
| |
| { |
| ExistingModuleProvider OurModuleProvider(TheModule); |
| FunctionPassManager OurFPM(&OurModuleProvider); |
| |
| // Set up the optimizer pipeline. Start with registering info about how the |
| // target lays out data structures. |
| OurFPM.add(new TargetData(*TheExecutionEngine->getTargetData())); |
| // Do simple "peephole" optimizations and bit-twiddling optzns. |
| OurFPM.add(createInstructionCombiningPass()); |
| // Reassociate expressions. |
| OurFPM.add(createReassociatePass()); |
| // Eliminate Common SubExpressions. |
| OurFPM.add(createGVNPass()); |
| // Simplify the control flow graph (deleting unreachable blocks, etc). |
| OurFPM.add(createCFGSimplificationPass()); |
| // Set the global so the code gen can use this. |
| TheFPM = &OurFPM; |
| |
| // Run the main "interpreter loop" now. |
| MainLoop(); |
| |
| TheFPM = 0; |
| } // Free module provider and pass manager. |
| |
| |
| // Print out all of the generated code. |
| TheModule->dump(); |
| return 0; |
| } |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <hr> |
| <address> |
| <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> |
| <a href="http://validator.w3.org/check/referer"><img |
| src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> |
| |
| <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> |
| Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ |
| </address> |
| </body> |
| </html> |