| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| "http://www.w3.org/TR/html4/strict.dtd"> |
| |
| <html> |
| <head> |
| <title>Kaleidoscope: Implementing code generation to LLVM IR</title> |
| <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| <meta name="author" content="Chris Lattner"> |
| <link rel="stylesheet" href="../llvm.css" type="text/css"> |
| </head> |
| |
| <body> |
| |
| <div class="doc_title">Kaleidoscope: Code generation to LLVM IR</div> |
| |
| <ul> |
| <li><a href="index.html">Up to Tutorial Index</a></li> |
| <li>Chapter 3 |
| <ol> |
| <li><a href="#intro">Chapter 3 Introduction</a></li> |
| <li><a href="#basics">Code Generation Setup</a></li> |
| <li><a href="#exprs">Expression Code Generation</a></li> |
| <li><a href="#funcs">Function Code Generation</a></li> |
| <li><a href="#driver">Driver Changes and Closing Thoughts</a></li> |
| <li><a href="#code">Full Code Listing</a></li> |
| </ol> |
| </li> |
| <li><a href="LangImpl4.html">Chapter 4</a>: Adding JIT and Optimizer |
| Support</li> |
| </ul> |
| |
| <div class="doc_author"> |
| <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="intro">Chapter 3 Introduction</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>Welcome to Chapter 3 of the "<a href="index.html">Implementing a language |
| with LLVM</a>" tutorial. This chapter shows you how to transform the <a |
| href="LangImpl2.html">Abstract Syntax Tree</a>, built in Chapter 2, into LLVM IR. |
| This will teach you a little bit about how LLVM does things, as well as |
| demonstrate how easy it is to use. It's much more work to build a lexer and |
| parser than it is to generate LLVM IR code. :) |
| </p> |
| |
| <p><b>Please note</b>: the code in this chapter and later require LLVM 2.2 or |
| later. LLVM 2.1 and before will not work with it. Also note that you need |
| to use a version of this tutorial that matches your LLVM release: If you are |
| using an official LLVM release, use the version of the documentation included |
| with your release or on the <a href="http://llvm.org/releases/">llvm.org |
| releases page</a>.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="basics">Code Generation Setup</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p> |
| In order to generate LLVM IR, we want some simple setup to get started. First |
| we define virtual code generation (codegen) methods in each AST class:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| /// ExprAST - Base class for all expression nodes. |
| class ExprAST { |
| public: |
| virtual ~ExprAST() {} |
| <b>virtual Value *Codegen() = 0;</b> |
| }; |
| |
| /// NumberExprAST - Expression class for numeric literals like "1.0". |
| class NumberExprAST : public ExprAST { |
| double Val; |
| public: |
| explicit NumberExprAST(double val) : Val(val) {} |
| <b>virtual Value *Codegen();</b> |
| }; |
| ... |
| </pre> |
| </div> |
| |
| <p>The Codegen() method says to emit IR for that AST node along with all the things it |
| depends on, and they all return an LLVM Value object. |
| "Value" is the class used to represent a "<a |
| href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single |
| Assignment (SSA)</a> register" or "SSA value" in LLVM. The most distinct aspect |
| of SSA values is that their value is computed as the related instruction |
| executes, and it does not get a new value until (and if) the instruction |
| re-executes. In other words, there is no way to "change" an SSA value. For |
| more information, please read up on <a |
| href="http://en.wikipedia.org/wiki/Static_single_assignment_form">Static Single |
| Assignment</a> - the concepts are really quite natural once you grok them.</p> |
| |
| <p>Note that instead of adding virtual methods to the ExprAST class hierarchy, |
| it could also make sense to use a <a |
| href="http://en.wikipedia.org/wiki/Visitor_pattern">visitor pattern</a> or some |
| other way to model this. Again, this tutorial won't dwell on good software |
| engineering practices: for our purposes, adding a virtual method is |
| simplest.</p> |
| |
| <p>The |
| second thing we want is an "Error" method like we used for the parser, which will |
| be used to report errors found during code generation (for example, use of an |
| undeclared parameter):</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| |
| static Module *TheModule; |
| static IRBuilder<> Builder(getGlobalContext()); |
| static std::map<std::string, Value*> NamedValues; |
| </pre> |
| </div> |
| |
| <p>The static variables will be used during code generation. <tt>TheModule</tt> |
| is the LLVM construct that contains all of the functions and global variables in |
| a chunk of code. In many ways, it is the top-level structure that the LLVM IR |
| uses to contain code.</p> |
| |
| <p>The <tt>Builder</tt> object is a helper object that makes it easy to generate |
| LLVM instructions. Instances of the <a |
| href="http://llvm.org/doxygen/IRBuilder_8h-source.html"><tt>IRBuilder</tt></a> |
| class template keep track of the current place to insert instructions and has |
| methods to create new instructions.</p> |
| |
| <p>The <tt>NamedValues</tt> map keeps track of which values are defined in the |
| current scope and what their LLVM representation is. (In other words, it is a |
| symbol table for the code). In this form of Kaleidoscope, the only things that |
| can be referenced are function parameters. As such, function parameters will |
| be in this map when generating code for their function body.</p> |
| |
| <p> |
| With these basics in place, we can start talking about how to generate code for |
| each expression. Note that this assumes that the <tt>Builder</tt> has been set |
| up to generate code <em>into</em> something. For now, we'll assume that this |
| has already been done, and we'll just use it to emit code. |
| </p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="exprs">Expression Code Generation</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>Generating LLVM code for expression nodes is very straightforward: less |
| than 45 lines of commented code for all four of our expression nodes. First |
| we'll do numeric literals:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Value *NumberExprAST::Codegen() { |
| return ConstantFP::get(getGlobalContext(), APFloat(Val)); |
| } |
| </pre> |
| </div> |
| |
| <p>In the LLVM IR, numeric constants are represented with the |
| <tt>ConstantFP</tt> class, which holds the numeric value in an <tt>APFloat</tt> |
| internally (<tt>APFloat</tt> has the capability of holding floating point |
| constants of <em>A</em>rbitrary <em>P</em>recision). This code basically just |
| creates and returns a <tt>ConstantFP</tt>. Note that in the LLVM IR |
| that constants are all uniqued together and shared. For this reason, the API |
| uses "the Context.get..." idiom instead of "new foo(..)" or "foo::Create(..)".</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Value *VariableExprAST::Codegen() { |
| // Look this variable up in the function. |
| Value *V = NamedValues[Name]; |
| return V ? V : ErrorV("Unknown variable name"); |
| } |
| </pre> |
| </div> |
| |
| <p>References to variables are also quite simple using LLVM. In the simple version |
| of Kaleidoscope, we assume that the variable has already been emited somewhere |
| and its value is available. In practice, the only values that can be in the |
| <tt>NamedValues</tt> map are function arguments. This |
| code simply checks to see that the specified name is in the map (if not, an |
| unknown variable is being referenced) and returns the value for it. In future |
| chapters, we'll add support for <a href="LangImpl5.html#for">loop induction |
| variables</a> in the symbol table, and for <a |
| href="LangImpl7.html#localvars">local variables</a>.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Value *BinaryExprAST::Codegen() { |
| Value *L = LHS->Codegen(); |
| Value *R = RHS->Codegen(); |
| if (L == 0 || R == 0) return 0; |
| |
| switch (Op) { |
| case '+': return Builder.CreateAdd(L, R, "addtmp"); |
| case '-': return Builder.CreateSub(L, R, "subtmp"); |
| case '*': return Builder.CreateMul(L, R, "multmp"); |
| case '<': |
| L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| // Convert bool 0/1 to double 0.0 or 1.0 |
| return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), |
| "booltmp"); |
| default: return ErrorV("invalid binary operator"); |
| } |
| } |
| </pre> |
| </div> |
| |
| <p>Binary operators start to get more interesting. The basic idea here is that |
| we recursively emit code for the left-hand side of the expression, then the |
| right-hand side, then we compute the result of the binary expression. In this |
| code, we do a simple switch on the opcode to create the right LLVM instruction. |
| </p> |
| |
| <p>In the example above, the LLVM builder class is starting to show its value. |
| IRBuilder knows where to insert the newly created instruction, all you have to |
| do is specify what instruction to create (e.g. with <tt>CreateAdd</tt>), which |
| operands to use (<tt>L</tt> and <tt>R</tt> here) and optionally provide a name |
| for the generated instruction.</p> |
| |
| <p>One nice thing about LLVM is that the name is just a hint. For instance, if |
| the code above emits multiple "addtmp" variables, LLVM will automatically |
| provide each one with an increasing, unique numeric suffix. Local value names |
| for instructions are purely optional, but it makes it much easier to read the |
| IR dumps.</p> |
| |
| <p><a href="../LangRef.html#instref">LLVM instructions</a> are constrained by |
| strict rules: for example, the Left and Right operators of |
| an <a href="../LangRef.html#i_add">add instruction</a> must have the same |
| type, and the result type of the add must match the operand types. Because |
| all values in Kaleidoscope are doubles, this makes for very simple code for add, |
| sub and mul.</p> |
| |
| <p>On the other hand, LLVM specifies that the <a |
| href="../LangRef.html#i_fcmp">fcmp instruction</a> always returns an 'i1' value |
| (a one bit integer). The problem with this is that Kaleidoscope wants the value to be a 0.0 or 1.0 value. In order to get these semantics, we combine the fcmp instruction with |
| a <a href="../LangRef.html#i_uitofp">uitofp instruction</a>. This instruction |
| converts its input integer into a floating point value by treating the input |
| as an unsigned value. In contrast, if we used the <a |
| href="../LangRef.html#i_sitofp">sitofp instruction</a>, the Kaleidoscope '<' |
| operator would return 0.0 and -1.0, depending on the input value.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Value *CallExprAST::Codegen() { |
| // Look up the name in the global module table. |
| Function *CalleeF = TheModule->getFunction(Callee); |
| if (CalleeF == 0) |
| return ErrorV("Unknown function referenced"); |
| |
| // If argument mismatch error. |
| if (CalleeF->arg_size() != Args.size()) |
| return ErrorV("Incorrect # arguments passed"); |
| |
| std::vector<Value*> ArgsV; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| ArgsV.push_back(Args[i]->Codegen()); |
| if (ArgsV.back() == 0) return 0; |
| } |
| |
| return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); |
| } |
| </pre> |
| </div> |
| |
| <p>Code generation for function calls is quite straightforward with LLVM. The |
| code above initially does a function name lookup in the LLVM Module's symbol |
| table. Recall that the LLVM Module is the container that holds all of the |
| functions we are JIT'ing. By giving each function the same name as what the |
| user specifies, we can use the LLVM symbol table to resolve function names for |
| us.</p> |
| |
| <p>Once we have the function to call, we recursively codegen each argument that |
| is to be passed in, and create an LLVM <a href="../LangRef.html#i_call">call |
| instruction</a>. Note that LLVM uses the native C calling conventions by |
| default, allowing these calls to also call into standard library functions like |
| "sin" and "cos", with no additional effort.</p> |
| |
| <p>This wraps up our handling of the four basic expressions that we have so far |
| in Kaleidoscope. Feel free to go in and add some more. For example, by |
| browsing the <a href="../LangRef.html">LLVM language reference</a> you'll find |
| several other interesting instructions that are really easy to plug into our |
| basic framework.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="funcs">Function Code Generation</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>Code generation for prototypes and functions must handle a number of |
| details, which make their code less beautiful than expression code |
| generation, but allows us to illustrate some important points. First, lets |
| talk about code generation for prototypes: they are used both for function |
| bodies and external function declarations. The code starts with:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Function *PrototypeAST::Codegen() { |
| // Make the function type: double(double,double) etc. |
| std::vector<const Type*> Doubles(Args.size(), |
| Type::getDoubleTy(getGlobalContext())); |
| FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), |
| Doubles, false); |
| |
| Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); |
| </pre> |
| </div> |
| |
| <p>This code packs a lot of power into a few lines. Note first that this |
| function returns a "Function*" instead of a "Value*". Because a "prototype" |
| really talks about the external interface for a function (not the value computed |
| by an expression), it makes sense for it to return the LLVM Function it |
| corresponds to when codegen'd.</p> |
| |
| <p>The call to <tt>Context.get</tt> creates |
| the <tt>FunctionType</tt> that should be used for a given Prototype. Since all |
| function arguments in Kaleidoscope are of type double, the first line creates |
| a vector of "N" LLVM double types. It then uses the <tt>Context.get</tt> |
| method to create a function type that takes "N" doubles as arguments, returns |
| one double as a result, and that is not vararg (the false parameter indicates |
| this). Note that Types in LLVM are uniqued just like Constants are, so you |
| don't "new" a type, you "get" it.</p> |
| |
| <p>The final line above actually creates the function that the prototype will |
| correspond to. This indicates the type, linkage and name to use, as well as which |
| module to insert into. "<a href="../LangRef.html#linkage">external linkage</a>" |
| means that the function may be defined outside the current module and/or that it |
| is callable by functions outside the module. The Name passed in is the name the |
| user specified: since "<tt>TheModule</tt>" is specified, this name is registered |
| in "<tt>TheModule</tt>"s symbol table, which is used by the function call code |
| above.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // If F conflicted, there was already something named 'Name'. If it has a |
| // body, don't allow redefinition or reextern. |
| if (F->getName() != Name) { |
| // Delete the one we just made and get the existing one. |
| F->eraseFromParent(); |
| F = TheModule->getFunction(Name); |
| </pre> |
| </div> |
| |
| <p>The Module symbol table works just like the Function symbol table when it |
| comes to name conflicts: if a new function is created with a name was previously |
| added to the symbol table, it will get implicitly renamed when added to the |
| Module. The code above exploits this fact to determine if there was a previous |
| definition of this function.</p> |
| |
| <p>In Kaleidoscope, I choose to allow redefinitions of functions in two cases: |
| first, we want to allow 'extern'ing a function more than once, as long as the |
| prototypes for the externs match (since all arguments have the same type, we |
| just have to check that the number of arguments match). Second, we want to |
| allow 'extern'ing a function and then definining a body for it. This is useful |
| when defining mutually recursive functions.</p> |
| |
| <p>In order to implement this, the code above first checks to see if there is |
| a collision on the name of the function. If so, it deletes the function we just |
| created (by calling <tt>eraseFromParent</tt>) and then calling |
| <tt>getFunction</tt> to get the existing function with the specified name. Note |
| that many APIs in LLVM have "erase" forms and "remove" forms. The "remove" form |
| unlinks the object from its parent (e.g. a Function from a Module) and returns |
| it. The "erase" form unlinks the object and then deletes it.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // If F already has a body, reject this. |
| if (!F->empty()) { |
| ErrorF("redefinition of function"); |
| return 0; |
| } |
| |
| // If F took a different number of args, reject. |
| if (F->arg_size() != Args.size()) { |
| ErrorF("redefinition of function with different # args"); |
| return 0; |
| } |
| } |
| </pre> |
| </div> |
| |
| <p>In order to verify the logic above, we first check to see if the pre-existing |
| function is "empty". In this case, empty means that it has no basic blocks in |
| it, which means it has no body. If it has no body, it is a forward |
| declaration. Since we don't allow anything after a full definition of the |
| function, the code rejects this case. If the previous reference to a function |
| was an 'extern', we simply verify that the number of arguments for that |
| definition and this one match up. If not, we emit an error.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Set names for all arguments. |
| unsigned Idx = 0; |
| for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| ++AI, ++Idx) { |
| AI->setName(Args[Idx]); |
| |
| // Add arguments to variable symbol table. |
| NamedValues[Args[Idx]] = AI; |
| } |
| return F; |
| } |
| </pre> |
| </div> |
| |
| <p>The last bit of code for prototypes loops over all of the arguments in the |
| function, setting the name of the LLVM Argument objects to match, and registering |
| the arguments in the <tt>NamedValues</tt> map for future use by the |
| <tt>VariableExprAST</tt> AST node. Once this is set up, it returns the Function |
| object to the caller. Note that we don't check for conflicting |
| argument names here (e.g. "extern foo(a b a)"). Doing so would be very |
| straight-forward with the mechanics we have already used above.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| Function *FunctionAST::Codegen() { |
| NamedValues.clear(); |
| |
| Function *TheFunction = Proto->Codegen(); |
| if (TheFunction == 0) |
| return 0; |
| </pre> |
| </div> |
| |
| <p>Code generation for function definitions starts out simply enough: we just |
| codegen the prototype (Proto) and verify that it is ok. We then clear out the |
| <tt>NamedValues</tt> map to make sure that there isn't anything in it from the |
| last function we compiled. Code generation of the prototype ensures that there |
| is an LLVM Function object that is ready to go for us.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Create a new basic block to start insertion into. |
| BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); |
| Builder.SetInsertPoint(BB); |
| |
| if (Value *RetVal = Body->Codegen()) { |
| </pre> |
| </div> |
| |
| <p>Now we get to the point where the <tt>Builder</tt> is set up. The first |
| line creates a new <a href="http://en.wikipedia.org/wiki/Basic_block">basic |
| block</a> (named "entry"), which is inserted into <tt>TheFunction</tt>. The |
| second line then tells the builder that new instructions should be inserted into |
| the end of the new basic block. Basic blocks in LLVM are an important part |
| of functions that define the <a |
| href="http://en.wikipedia.org/wiki/Control_flow_graph">Control Flow Graph</a>. |
| Since we don't have any control flow, our functions will only contain one |
| block at this point. We'll fix this in <a href="LangImpl5.html">Chapter 5</a> :).</p> |
| |
| <div class="doc_code"> |
| <pre> |
| if (Value *RetVal = Body->Codegen()) { |
| // Finish off the function. |
| Builder.CreateRet(RetVal); |
| |
| // Validate the generated code, checking for consistency. |
| verifyFunction(*TheFunction); |
| return TheFunction; |
| } |
| </pre> |
| </div> |
| |
| <p>Once the insertion point is set up, we call the <tt>CodeGen()</tt> method for |
| the root expression of the function. If no error happens, this emits code to |
| compute the expression into the entry block and returns the value that was |
| computed. Assuming no error, we then create an LLVM <a |
| href="../LangRef.html#i_ret">ret instruction</a>, which completes the function. |
| Once the function is built, we call <tt>verifyFunction</tt>, which |
| is provided by LLVM. This function does a variety of consistency checks on the |
| generated code, to determine if our compiler is doing everything right. Using |
| this is important: it can catch a lot of bugs. Once the function is finished |
| and validated, we return it.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // Error reading body, remove function. |
| TheFunction->eraseFromParent(); |
| return 0; |
| } |
| </pre> |
| </div> |
| |
| <p>The only piece left here is handling of the error case. For simplicity, we |
| handle this by merely deleting the function we produced with the |
| <tt>eraseFromParent</tt> method. This allows the user to redefine a function |
| that they incorrectly typed in before: if we didn't delete it, it would live in |
| the symbol table, with a body, preventing future redefinition.</p> |
| |
| <p>This code does have a bug, though. Since the <tt>PrototypeAST::Codegen</tt> |
| can return a previously defined forward declaration, our code can actually delete |
| a forward declaration. There are a number of ways to fix this bug, see what you |
| can come up with! Here is a testcase:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| extern foo(a b); # ok, defines foo. |
| def foo(a b) c; # error, 'c' is invalid. |
| def bar() foo(1, 2); # error, unknown function "foo" |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="driver">Driver Changes and |
| Closing Thoughts</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p> |
| For now, code generation to LLVM doesn't really get us much, except that we can |
| look at the pretty IR calls. The sample code inserts calls to Codegen into the |
| "<tt>HandleDefinition</tt>", "<tt>HandleExtern</tt>" etc functions, and then |
| dumps out the LLVM IR. This gives a nice way to look at the LLVM IR for simple |
| functions. For example: |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| ready> <b>4+5</b>; |
| Read top-level expression: |
| define double @""() { |
| entry: |
| %addtmp = add double 4.000000e+00, 5.000000e+00 |
| ret double %addtmp |
| } |
| </pre> |
| </div> |
| |
| <p>Note how the parser turns the top-level expression into anonymous functions |
| for us. This will be handy when we add <a href="LangImpl4.html#jit">JIT |
| support</a> in the next chapter. Also note that the code is very literally |
| transcribed, no optimizations are being performed. We will |
| <a href="LangImpl4.html#trivialconstfold">add optimizations</a> explicitly in |
| the next chapter.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ready> <b>def foo(a b) a*a + 2*a*b + b*b;</b> |
| Read function definition: |
| define double @foo(double %a, double %b) { |
| entry: |
| %multmp = mul double %a, %a |
| %multmp1 = mul double 2.000000e+00, %a |
| %multmp2 = mul double %multmp1, %b |
| %addtmp = add double %multmp, %multmp2 |
| %multmp3 = mul double %b, %b |
| %addtmp4 = add double %addtmp, %multmp3 |
| ret double %addtmp4 |
| } |
| </pre> |
| </div> |
| |
| <p>This shows some simple arithmetic. Notice the striking similarity to the |
| LLVM builder calls that we use to create the instructions.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ready> <b>def bar(a) foo(a, 4.0) + bar(31337);</b> |
| Read function definition: |
| define double @bar(double %a) { |
| entry: |
| %calltmp = call double @foo( double %a, double 4.000000e+00 ) |
| %calltmp1 = call double @bar( double 3.133700e+04 ) |
| %addtmp = add double %calltmp, %calltmp1 |
| ret double %addtmp |
| } |
| </pre> |
| </div> |
| |
| <p>This shows some function calls. Note that this function will take a long |
| time to execute if you call it. In the future we'll add conditional control |
| flow to actually make recursion useful :).</p> |
| |
| <div class="doc_code"> |
| <pre> |
| ready> <b>extern cos(x);</b> |
| Read extern: |
| declare double @cos(double) |
| |
| ready> <b>cos(1.234);</b> |
| Read top-level expression: |
| define double @""() { |
| entry: |
| %calltmp = call double @cos( double 1.234000e+00 ) |
| ret double %calltmp |
| } |
| </pre> |
| </div> |
| |
| <p>This shows an extern for the libm "cos" function, and a call to it.</p> |
| |
| |
| <div class="doc_code"> |
| <pre> |
| ready> <b>^D</b> |
| ; ModuleID = 'my cool jit' |
| |
| define double @""() { |
| entry: |
| %addtmp = add double 4.000000e+00, 5.000000e+00 |
| ret double %addtmp |
| } |
| |
| define double @foo(double %a, double %b) { |
| entry: |
| %multmp = mul double %a, %a |
| %multmp1 = mul double 2.000000e+00, %a |
| %multmp2 = mul double %multmp1, %b |
| %addtmp = add double %multmp, %multmp2 |
| %multmp3 = mul double %b, %b |
| %addtmp4 = add double %addtmp, %multmp3 |
| ret double %addtmp4 |
| } |
| |
| define double @bar(double %a) { |
| entry: |
| %calltmp = call double @foo( double %a, double 4.000000e+00 ) |
| %calltmp1 = call double @bar( double 3.133700e+04 ) |
| %addtmp = add double %calltmp, %calltmp1 |
| ret double %addtmp |
| } |
| |
| declare double @cos(double) |
| |
| define double @""() { |
| entry: |
| %calltmp = call double @cos( double 1.234000e+00 ) |
| ret double %calltmp |
| } |
| </pre> |
| </div> |
| |
| <p>When you quit the current demo, it dumps out the IR for the entire module |
| generated. Here you can see the big picture with all the functions referencing |
| each other.</p> |
| |
| <p>This wraps up the third chapter of the Kaleidoscope tutorial. Up next, we'll |
| describe how to <a href="LangImpl4.html">add JIT codegen and optimizer |
| support</a> to this so we can actually start running code!</p> |
| |
| </div> |
| |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"><a name="code">Full Code Listing</a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p> |
| Here is the complete code listing for our running example, enhanced with the |
| LLVM code generator. Because this uses the LLVM libraries, we need to link |
| them in. To do this, we use the <a |
| href="http://llvm.org/cmds/llvm-config.html">llvm-config</a> tool to inform |
| our makefile/command line about which options to use:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| # Compile |
| g++ -g -O3 toy.cpp `llvm-config --cppflags --ldflags --libs core` -o toy |
| # Run |
| ./toy |
| </pre> |
| </div> |
| |
| <p>Here is the code:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| // To build this: |
| // See example below. |
| |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Module.h" |
| #include "llvm/Analysis/Verifier.h" |
| #include "llvm/Support/IRBuilder.h" |
| #include <cstdio> |
| #include <string> |
| #include <map> |
| #include <vector> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // Lexer |
| //===----------------------------------------------------------------------===// |
| |
| // The lexer returns tokens [0-255] if it is an unknown character, otherwise one |
| // of these for known things. |
| enum Token { |
| tok_eof = -1, |
| |
| // commands |
| tok_def = -2, tok_extern = -3, |
| |
| // primary |
| tok_identifier = -4, tok_number = -5, |
| }; |
| |
| static std::string IdentifierStr; // Filled in if tok_identifier |
| static double NumVal; // Filled in if tok_number |
| |
| /// gettok - Return the next token from standard input. |
| static int gettok() { |
| static int LastChar = ' '; |
| |
| // Skip any whitespace. |
| while (isspace(LastChar)) |
| LastChar = getchar(); |
| |
| if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* |
| IdentifierStr = LastChar; |
| while (isalnum((LastChar = getchar()))) |
| IdentifierStr += LastChar; |
| |
| if (IdentifierStr == "def") return tok_def; |
| if (IdentifierStr == "extern") return tok_extern; |
| return tok_identifier; |
| } |
| |
| if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ |
| std::string NumStr; |
| do { |
| NumStr += LastChar; |
| LastChar = getchar(); |
| } while (isdigit(LastChar) || LastChar == '.'); |
| |
| NumVal = strtod(NumStr.c_str(), 0); |
| return tok_number; |
| } |
| |
| if (LastChar == '#') { |
| // Comment until end of line. |
| do LastChar = getchar(); |
| while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); |
| |
| if (LastChar != EOF) |
| return gettok(); |
| } |
| |
| // Check for end of file. Don't eat the EOF. |
| if (LastChar == EOF) |
| return tok_eof; |
| |
| // Otherwise, just return the character as its ascii value. |
| int ThisChar = LastChar; |
| LastChar = getchar(); |
| return ThisChar; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Abstract Syntax Tree (aka Parse Tree) |
| //===----------------------------------------------------------------------===// |
| |
| /// ExprAST - Base class for all expression nodes. |
| class ExprAST { |
| public: |
| virtual ~ExprAST() {} |
| virtual Value *Codegen() = 0; |
| }; |
| |
| /// NumberExprAST - Expression class for numeric literals like "1.0". |
| class NumberExprAST : public ExprAST { |
| double Val; |
| public: |
| explicit NumberExprAST(double val) : Val(val) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// VariableExprAST - Expression class for referencing a variable, like "a". |
| class VariableExprAST : public ExprAST { |
| std::string Name; |
| public: |
| explicit VariableExprAST(const std::string &name) : Name(name) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// BinaryExprAST - Expression class for a binary operator. |
| class BinaryExprAST : public ExprAST { |
| char Op; |
| ExprAST *LHS, *RHS; |
| public: |
| BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) |
| : Op(op), LHS(lhs), RHS(rhs) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// CallExprAST - Expression class for function calls. |
| class CallExprAST : public ExprAST { |
| std::string Callee; |
| std::vector<ExprAST*> Args; |
| public: |
| CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) |
| : Callee(callee), Args(args) {} |
| virtual Value *Codegen(); |
| }; |
| |
| /// PrototypeAST - This class represents the "prototype" for a function, |
| /// which captures its argument names as well as if it is an operator. |
| class PrototypeAST { |
| std::string Name; |
| std::vector<std::string> Args; |
| public: |
| PrototypeAST(const std::string &name, const std::vector<std::string> &args) |
| : Name(name), Args(args) {} |
| |
| Function *Codegen(); |
| }; |
| |
| /// FunctionAST - This class represents a function definition itself. |
| class FunctionAST { |
| PrototypeAST *Proto; |
| ExprAST *Body; |
| public: |
| FunctionAST(PrototypeAST *proto, ExprAST *body) |
| : Proto(proto), Body(body) {} |
| |
| Function *Codegen(); |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Parser |
| //===----------------------------------------------------------------------===// |
| |
| /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current |
| /// token the parser it looking at. getNextToken reads another token from the |
| /// lexer and updates CurTok with its results. |
| static int CurTok; |
| static int getNextToken() { |
| return CurTok = gettok(); |
| } |
| |
| /// BinopPrecedence - This holds the precedence for each binary operator that is |
| /// defined. |
| static std::map<char, int> BinopPrecedence; |
| |
| /// GetTokPrecedence - Get the precedence of the pending binary operator token. |
| static int GetTokPrecedence() { |
| if (!isascii(CurTok)) |
| return -1; |
| |
| // Make sure it's a declared binop. |
| int TokPrec = BinopPrecedence[CurTok]; |
| if (TokPrec <= 0) return -1; |
| return TokPrec; |
| } |
| |
| /// Error* - These are little helper functions for error handling. |
| ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} |
| PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } |
| FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } |
| |
| static ExprAST *ParseExpression(); |
| |
| /// identifierexpr |
| /// ::= identifier |
| /// ::= identifier '(' expression* ')' |
| static ExprAST *ParseIdentifierExpr() { |
| std::string IdName = IdentifierStr; |
| |
| getNextToken(); // eat identifier. |
| |
| if (CurTok != '(') // Simple variable ref. |
| return new VariableExprAST(IdName); |
| |
| // Call. |
| getNextToken(); // eat ( |
| std::vector<ExprAST*> Args; |
| if (CurTok != ')') { |
| while (1) { |
| ExprAST *Arg = ParseExpression(); |
| if (!Arg) return 0; |
| Args.push_back(Arg); |
| |
| if (CurTok == ')') break; |
| |
| if (CurTok != ',') |
| return Error("Expected ')' or ',' in argument list"); |
| getNextToken(); |
| } |
| } |
| |
| // Eat the ')'. |
| getNextToken(); |
| |
| return new CallExprAST(IdName, Args); |
| } |
| |
| /// numberexpr ::= number |
| static ExprAST *ParseNumberExpr() { |
| ExprAST *Result = new NumberExprAST(NumVal); |
| getNextToken(); // consume the number |
| return Result; |
| } |
| |
| /// parenexpr ::= '(' expression ')' |
| static ExprAST *ParseParenExpr() { |
| getNextToken(); // eat (. |
| ExprAST *V = ParseExpression(); |
| if (!V) return 0; |
| |
| if (CurTok != ')') |
| return Error("expected ')'"); |
| getNextToken(); // eat ). |
| return V; |
| } |
| |
| /// primary |
| /// ::= identifierexpr |
| /// ::= numberexpr |
| /// ::= parenexpr |
| static ExprAST *ParsePrimary() { |
| switch (CurTok) { |
| default: return Error("unknown token when expecting an expression"); |
| case tok_identifier: return ParseIdentifierExpr(); |
| case tok_number: return ParseNumberExpr(); |
| case '(': return ParseParenExpr(); |
| } |
| } |
| |
| /// binoprhs |
| /// ::= ('+' primary)* |
| static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { |
| // If this is a binop, find its precedence. |
| while (1) { |
| int TokPrec = GetTokPrecedence(); |
| |
| // If this is a binop that binds at least as tightly as the current binop, |
| // consume it, otherwise we are done. |
| if (TokPrec < ExprPrec) |
| return LHS; |
| |
| // Okay, we know this is a binop. |
| int BinOp = CurTok; |
| getNextToken(); // eat binop |
| |
| // Parse the primary expression after the binary operator. |
| ExprAST *RHS = ParsePrimary(); |
| if (!RHS) return 0; |
| |
| // If BinOp binds less tightly with RHS than the operator after RHS, let |
| // the pending operator take RHS as its LHS. |
| int NextPrec = GetTokPrecedence(); |
| if (TokPrec < NextPrec) { |
| RHS = ParseBinOpRHS(TokPrec+1, RHS); |
| if (RHS == 0) return 0; |
| } |
| |
| // Merge LHS/RHS. |
| LHS = new BinaryExprAST(BinOp, LHS, RHS); |
| } |
| } |
| |
| /// expression |
| /// ::= primary binoprhs |
| /// |
| static ExprAST *ParseExpression() { |
| ExprAST *LHS = ParsePrimary(); |
| if (!LHS) return 0; |
| |
| return ParseBinOpRHS(0, LHS); |
| } |
| |
| /// prototype |
| /// ::= id '(' id* ')' |
| static PrototypeAST *ParsePrototype() { |
| if (CurTok != tok_identifier) |
| return ErrorP("Expected function name in prototype"); |
| |
| std::string FnName = IdentifierStr; |
| getNextToken(); |
| |
| if (CurTok != '(') |
| return ErrorP("Expected '(' in prototype"); |
| |
| std::vector<std::string> ArgNames; |
| while (getNextToken() == tok_identifier) |
| ArgNames.push_back(IdentifierStr); |
| if (CurTok != ')') |
| return ErrorP("Expected ')' in prototype"); |
| |
| // success. |
| getNextToken(); // eat ')'. |
| |
| return new PrototypeAST(FnName, ArgNames); |
| } |
| |
| /// definition ::= 'def' prototype expression |
| static FunctionAST *ParseDefinition() { |
| getNextToken(); // eat def. |
| PrototypeAST *Proto = ParsePrototype(); |
| if (Proto == 0) return 0; |
| |
| if (ExprAST *E = ParseExpression()) |
| return new FunctionAST(Proto, E); |
| return 0; |
| } |
| |
| /// toplevelexpr ::= expression |
| static FunctionAST *ParseTopLevelExpr() { |
| if (ExprAST *E = ParseExpression()) { |
| // Make an anonymous proto. |
| PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); |
| return new FunctionAST(Proto, E); |
| } |
| return 0; |
| } |
| |
| /// external ::= 'extern' prototype |
| static PrototypeAST *ParseExtern() { |
| getNextToken(); // eat extern. |
| return ParsePrototype(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Code Generation |
| //===----------------------------------------------------------------------===// |
| |
| static Module *TheModule; |
| static IRBuilder<> Builder(getGlobalContext()); |
| static std::map<std::string, Value*> NamedValues; |
| |
| Value *ErrorV(const char *Str) { Error(Str); return 0; } |
| |
| Value *NumberExprAST::Codegen() { |
| return ConstantFP::get(getGlobalContext(), APFloat(Val)); |
| } |
| |
| Value *VariableExprAST::Codegen() { |
| // Look this variable up in the function. |
| Value *V = NamedValues[Name]; |
| return V ? V : ErrorV("Unknown variable name"); |
| } |
| |
| Value *BinaryExprAST::Codegen() { |
| Value *L = LHS->Codegen(); |
| Value *R = RHS->Codegen(); |
| if (L == 0 || R == 0) return 0; |
| |
| switch (Op) { |
| case '+': return Builder.CreateAdd(L, R, "addtmp"); |
| case '-': return Builder.CreateSub(L, R, "subtmp"); |
| case '*': return Builder.CreateMul(L, R, "multmp"); |
| case '<': |
| L = Builder.CreateFCmpULT(L, R, "cmptmp"); |
| // Convert bool 0/1 to double 0.0 or 1.0 |
| return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), "booltmp"); |
| default: return ErrorV("invalid binary operator"); |
| } |
| } |
| |
| Value *CallExprAST::Codegen() { |
| // Look up the name in the global module table. |
| Function *CalleeF = TheModule->getFunction(Callee); |
| if (CalleeF == 0) |
| return ErrorV("Unknown function referenced"); |
| |
| // If argument mismatch error. |
| if (CalleeF->arg_size() != Args.size()) |
| return ErrorV("Incorrect # arguments passed"); |
| |
| std::vector<Value*> ArgsV; |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| ArgsV.push_back(Args[i]->Codegen()); |
| if (ArgsV.back() == 0) return 0; |
| } |
| |
| return Builder.CreateCall(CalleeF, ArgsV.begin(), ArgsV.end(), "calltmp"); |
| } |
| |
| Function *PrototypeAST::Codegen() { |
| // Make the function type: double(double,double) etc. |
| std::vector<const Type*> Doubles(Args.size(), |
| Type::getDoubleTy(getGlobalContext())); |
| FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), |
| Doubles, false); |
| |
| Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); |
| |
| // If F conflicted, there was already something named 'Name'. If it has a |
| // body, don't allow redefinition or reextern. |
| if (F->getName() != Name) { |
| // Delete the one we just made and get the existing one. |
| F->eraseFromParent(); |
| F = TheModule->getFunction(Name); |
| |
| // If F already has a body, reject this. |
| if (!F->empty()) { |
| ErrorF("redefinition of function"); |
| return 0; |
| } |
| |
| // If F took a different number of args, reject. |
| if (F->arg_size() != Args.size()) { |
| ErrorF("redefinition of function with different # args"); |
| return 0; |
| } |
| } |
| |
| // Set names for all arguments. |
| unsigned Idx = 0; |
| for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); |
| ++AI, ++Idx) { |
| AI->setName(Args[Idx]); |
| |
| // Add arguments to variable symbol table. |
| NamedValues[Args[Idx]] = AI; |
| } |
| |
| return F; |
| } |
| |
| Function *FunctionAST::Codegen() { |
| NamedValues.clear(); |
| |
| Function *TheFunction = Proto->Codegen(); |
| if (TheFunction == 0) |
| return 0; |
| |
| // Create a new basic block to start insertion into. |
| BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); |
| Builder.SetInsertPoint(BB); |
| |
| if (Value *RetVal = Body->Codegen()) { |
| // Finish off the function. |
| Builder.CreateRet(RetVal); |
| |
| // Validate the generated code, checking for consistency. |
| verifyFunction(*TheFunction); |
| return TheFunction; |
| } |
| |
| // Error reading body, remove function. |
| TheFunction->eraseFromParent(); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-Level parsing and JIT Driver |
| //===----------------------------------------------------------------------===// |
| |
| static void HandleDefinition() { |
| if (FunctionAST *F = ParseDefinition()) { |
| if (Function *LF = F->Codegen()) { |
| fprintf(stderr, "Read function definition:"); |
| LF->dump(); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleExtern() { |
| if (PrototypeAST *P = ParseExtern()) { |
| if (Function *F = P->Codegen()) { |
| fprintf(stderr, "Read extern: "); |
| F->dump(); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| static void HandleTopLevelExpression() { |
| // Evaluate a top level expression into an anonymous function. |
| if (FunctionAST *F = ParseTopLevelExpr()) { |
| if (Function *LF = F->Codegen()) { |
| fprintf(stderr, "Read top-level expression:"); |
| LF->dump(); |
| } |
| } else { |
| // Skip token for error recovery. |
| getNextToken(); |
| } |
| } |
| |
| /// top ::= definition | external | expression | ';' |
| static void MainLoop() { |
| while (1) { |
| fprintf(stderr, "ready> "); |
| switch (CurTok) { |
| case tok_eof: return; |
| case ';': getNextToken(); break; // ignore top level semicolons. |
| case tok_def: HandleDefinition(); break; |
| case tok_extern: HandleExtern(); break; |
| default: HandleTopLevelExpression(); break; |
| } |
| } |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // "Library" functions that can be "extern'd" from user code. |
| //===----------------------------------------------------------------------===// |
| |
| /// putchard - putchar that takes a double and returns 0. |
| extern "C" |
| double putchard(double X) { |
| putchar((char)X); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Main driver code. |
| //===----------------------------------------------------------------------===// |
| |
| int main() { |
| TheModule = new Module("my cool jit", getGlobalContext()); |
| |
| // Install standard binary operators. |
| // 1 is lowest precedence. |
| BinopPrecedence['<'] = 10; |
| BinopPrecedence['+'] = 20; |
| BinopPrecedence['-'] = 20; |
| BinopPrecedence['*'] = 40; // highest. |
| |
| // Prime the first token. |
| fprintf(stderr, "ready> "); |
| getNextToken(); |
| |
| MainLoop(); |
| TheModule->dump(); |
| return 0; |
| } |
| </pre> |
| </div> |
| <a href="LangImpl4.html">Next: Adding JIT and Optimizer Support</a> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <hr> |
| <address> |
| <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> |
| <a href="http://validator.w3.org/check/referer"><img |
| src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> |
| |
| <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> |
| Last modified: $Date: 2009-07-21 11:05:13 -0700 (Tue, 21 Jul 2009) $ |
| </address> |
| </body> |
| </html> |