| //===-- JITEmitter.cpp - Write machine code to executable memory ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a MachineCodeEmitter object that is used by the JIT to |
| // write machine code to memory and remember where relocatable values are. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "jit" |
| #include "JIT.h" |
| #include "llvm/Constant.h" |
| #include "llvm/Module.h" |
| #include "llvm/Type.h" |
| #include "llvm/CodeGen/MachineCodeEmitter.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineRelocation.h" |
| #include "llvm/ExecutionEngine/GenericValue.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetJITInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MutexGuard.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/System/Memory.h" |
| #include <algorithm> |
| #include <iostream> |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> NumBytes("jit", "Number of bytes of machine code compiled"); |
| Statistic<> NumRelos("jit", "Number of relocations applied"); |
| JIT *TheJIT = 0; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // JITMemoryManager code. |
| // |
| namespace { |
| /// MemoryRangeHeader - For a range of memory, this is the header that we put |
| /// on the block of memory. It is carefully crafted to be one word of memory. |
| /// Allocated blocks have just this header, free'd blocks have FreeRangeHeader |
| /// which starts with this. |
| struct FreeRangeHeader; |
| struct MemoryRangeHeader { |
| /// ThisAllocated - This is true if this block is currently allocated. If |
| /// not, this can be converted to a FreeRangeHeader. |
| intptr_t ThisAllocated : 1; |
| |
| /// PrevAllocated - Keep track of whether the block immediately before us is |
| /// allocated. If not, the word immediately before this header is the size |
| /// of the previous block. |
| intptr_t PrevAllocated : 1; |
| |
| /// BlockSize - This is the size in bytes of this memory block, |
| /// including this header. |
| uintptr_t BlockSize : (sizeof(intptr_t)*8 - 2); |
| |
| |
| /// getBlockAfter - Return the memory block immediately after this one. |
| /// |
| MemoryRangeHeader &getBlockAfter() const { |
| return *(MemoryRangeHeader*)((char*)this+BlockSize); |
| } |
| |
| /// getFreeBlockBefore - If the block before this one is free, return it, |
| /// otherwise return null. |
| FreeRangeHeader *getFreeBlockBefore() const { |
| if (PrevAllocated) return 0; |
| intptr_t PrevSize = ((intptr_t *)this)[-1]; |
| return (FreeRangeHeader*)((char*)this-PrevSize); |
| } |
| |
| /// FreeBlock - Turn an allocated block into a free block, adjusting |
| /// bits in the object headers, and adding an end of region memory block. |
| FreeRangeHeader *FreeBlock(FreeRangeHeader *FreeList); |
| |
| /// TrimAllocationToSize - If this allocated block is significantly larger |
| /// than NewSize, split it into two pieces (where the former is NewSize |
| /// bytes, including the header), and add the new block to the free list. |
| FreeRangeHeader *TrimAllocationToSize(FreeRangeHeader *FreeList, |
| uint64_t NewSize); |
| }; |
| |
| /// FreeRangeHeader - For a memory block that isn't already allocated, this |
| /// keeps track of the current block and has a pointer to the next free block. |
| /// Free blocks are kept on a circularly linked list. |
| struct FreeRangeHeader : public MemoryRangeHeader { |
| FreeRangeHeader *Prev; |
| FreeRangeHeader *Next; |
| |
| /// getMinBlockSize - Get the minimum size for a memory block. Blocks |
| /// smaller than this size cannot be created. |
| static unsigned getMinBlockSize() { |
| return sizeof(FreeRangeHeader)+sizeof(intptr_t); |
| } |
| |
| /// SetEndOfBlockSizeMarker - The word at the end of every free block is |
| /// known to be the size of the free block. Set it for this block. |
| void SetEndOfBlockSizeMarker() { |
| void *EndOfBlock = (char*)this + BlockSize; |
| ((intptr_t *)EndOfBlock)[-1] = BlockSize; |
| } |
| |
| FreeRangeHeader *RemoveFromFreeList() { |
| assert(Next->Prev == this && Prev->Next == this && "Freelist broken!"); |
| Next->Prev = Prev; |
| return Prev->Next = Next; |
| } |
| |
| void AddToFreeList(FreeRangeHeader *FreeList) { |
| Next = FreeList; |
| Prev = FreeList->Prev; |
| Prev->Next = this; |
| Next->Prev = this; |
| } |
| |
| /// GrowBlock - The block after this block just got deallocated. Merge it |
| /// into the current block. |
| void GrowBlock(uintptr_t NewSize); |
| |
| /// AllocateBlock - Mark this entire block allocated, updating freelists |
| /// etc. This returns a pointer to the circular free-list. |
| FreeRangeHeader *AllocateBlock(); |
| }; |
| } |
| |
| |
| /// AllocateBlock - Mark this entire block allocated, updating freelists |
| /// etc. This returns a pointer to the circular free-list. |
| FreeRangeHeader *FreeRangeHeader::AllocateBlock() { |
| assert(!ThisAllocated && !getBlockAfter().PrevAllocated && |
| "Cannot allocate an allocated block!"); |
| // Mark this block allocated. |
| ThisAllocated = 1; |
| getBlockAfter().PrevAllocated = 1; |
| |
| // Remove it from the free list. |
| return RemoveFromFreeList(); |
| } |
| |
| /// FreeBlock - Turn an allocated block into a free block, adjusting |
| /// bits in the object headers, and adding an end of region memory block. |
| /// If possible, coallesce this block with neighboring blocks. Return the |
| /// FreeRangeHeader to allocate from. |
| FreeRangeHeader *MemoryRangeHeader::FreeBlock(FreeRangeHeader *FreeList) { |
| MemoryRangeHeader *FollowingBlock = &getBlockAfter(); |
| assert(ThisAllocated && "This block is already allocated!"); |
| assert(FollowingBlock->PrevAllocated && "Flags out of sync!"); |
| |
| FreeRangeHeader *FreeListToReturn = FreeList; |
| |
| // If the block after this one is free, merge it into this block. |
| if (!FollowingBlock->ThisAllocated) { |
| FreeRangeHeader &FollowingFreeBlock = *(FreeRangeHeader *)FollowingBlock; |
| // "FreeList" always needs to be a valid free block. If we're about to |
| // coallesce with it, update our notion of what the free list is. |
| if (&FollowingFreeBlock == FreeList) { |
| FreeList = FollowingFreeBlock.Next; |
| FreeListToReturn = 0; |
| assert(&FollowingFreeBlock != FreeList && "No tombstone block?"); |
| } |
| FollowingFreeBlock.RemoveFromFreeList(); |
| |
| // Include the following block into this one. |
| BlockSize += FollowingFreeBlock.BlockSize; |
| FollowingBlock = &FollowingFreeBlock.getBlockAfter(); |
| |
| // Tell the block after the block we are coallescing that this block is |
| // allocated. |
| FollowingBlock->PrevAllocated = 1; |
| } |
| |
| assert(FollowingBlock->ThisAllocated && "Missed coallescing?"); |
| |
| if (FreeRangeHeader *PrevFreeBlock = getFreeBlockBefore()) { |
| PrevFreeBlock->GrowBlock(PrevFreeBlock->BlockSize + BlockSize); |
| return FreeListToReturn ? FreeListToReturn : PrevFreeBlock; |
| } |
| |
| // Otherwise, mark this block free. |
| FreeRangeHeader &FreeBlock = *(FreeRangeHeader*)this; |
| FollowingBlock->PrevAllocated = 0; |
| FreeBlock.ThisAllocated = 0; |
| |
| // Link this into the linked list of free blocks. |
| FreeBlock.AddToFreeList(FreeList); |
| |
| // Add a marker at the end of the block, indicating the size of this free |
| // block. |
| FreeBlock.SetEndOfBlockSizeMarker(); |
| return FreeListToReturn ? FreeListToReturn : &FreeBlock; |
| } |
| |
| /// GrowBlock - The block after this block just got deallocated. Merge it |
| /// into the current block. |
| void FreeRangeHeader::GrowBlock(uintptr_t NewSize) { |
| assert(NewSize > BlockSize && "Not growing block?"); |
| BlockSize = NewSize; |
| SetEndOfBlockSizeMarker(); |
| getBlockAfter().PrevAllocated = 0; |
| } |
| |
| /// TrimAllocationToSize - If this allocated block is significantly larger |
| /// than NewSize, split it into two pieces (where the former is NewSize |
| /// bytes, including the header), and add the new block to the free list. |
| FreeRangeHeader *MemoryRangeHeader:: |
| TrimAllocationToSize(FreeRangeHeader *FreeList, uint64_t NewSize) { |
| assert(ThisAllocated && getBlockAfter().PrevAllocated && |
| "Cannot deallocate part of an allocated block!"); |
| |
| // Round up size for alignment of header. |
| unsigned HeaderAlign = __alignof(FreeRangeHeader); |
| NewSize = (NewSize+ (HeaderAlign-1)) & ~(HeaderAlign-1); |
| |
| // Size is now the size of the block we will remove from the start of the |
| // current block. |
| assert(NewSize <= BlockSize && |
| "Allocating more space from this block than exists!"); |
| |
| // If splitting this block will cause the remainder to be too small, do not |
| // split the block. |
| if (BlockSize <= NewSize+FreeRangeHeader::getMinBlockSize()) |
| return FreeList; |
| |
| // Otherwise, we splice the required number of bytes out of this block, form |
| // a new block immediately after it, then mark this block allocated. |
| MemoryRangeHeader &FormerNextBlock = getBlockAfter(); |
| |
| // Change the size of this block. |
| BlockSize = NewSize; |
| |
| // Get the new block we just sliced out and turn it into a free block. |
| FreeRangeHeader &NewNextBlock = (FreeRangeHeader &)getBlockAfter(); |
| NewNextBlock.BlockSize = (char*)&FormerNextBlock - (char*)&NewNextBlock; |
| NewNextBlock.ThisAllocated = 0; |
| NewNextBlock.PrevAllocated = 1; |
| NewNextBlock.SetEndOfBlockSizeMarker(); |
| FormerNextBlock.PrevAllocated = 0; |
| NewNextBlock.AddToFreeList(FreeList); |
| return &NewNextBlock; |
| } |
| |
| |
| namespace { |
| /// JITMemoryManager - Manage memory for the JIT code generation in a logical, |
| /// sane way. This splits a large block of MAP_NORESERVE'd memory into two |
| /// sections, one for function stubs, one for the functions themselves. We |
| /// have to do this because we may need to emit a function stub while in the |
| /// middle of emitting a function, and we don't know how large the function we |
| /// are emitting is. This never bothers to release the memory, because when |
| /// we are ready to destroy the JIT, the program exits. |
| class JITMemoryManager { |
| std::vector<sys::MemoryBlock> Blocks; // Memory blocks allocated by the JIT |
| FreeRangeHeader *FreeMemoryList; // Circular list of free blocks. |
| |
| // When emitting code into a memory block, this is the block. |
| MemoryRangeHeader *CurBlock; |
| |
| unsigned char *CurStubPtr, *StubBase; |
| unsigned char *GOTBase; // Target Specific reserved memory |
| |
| // Centralize memory block allocation. |
| sys::MemoryBlock getNewMemoryBlock(unsigned size); |
| |
| std::map<const Function*, MemoryRangeHeader*> FunctionBlocks; |
| public: |
| JITMemoryManager(bool useGOT); |
| ~JITMemoryManager(); |
| |
| inline unsigned char *allocateStub(unsigned StubSize); |
| |
| /// startFunctionBody - When a function starts, allocate a block of free |
| /// executable memory, returning a pointer to it and its actual size. |
| unsigned char *startFunctionBody(uintptr_t &ActualSize) { |
| CurBlock = FreeMemoryList; |
| |
| // Allocate the entire memory block. |
| FreeMemoryList = FreeMemoryList->AllocateBlock(); |
| ActualSize = CurBlock->BlockSize-sizeof(MemoryRangeHeader); |
| return (unsigned char *)(CurBlock+1); |
| } |
| |
| /// endFunctionBody - The function F is now allocated, and takes the memory |
| /// in the range [FunctionStart,FunctionEnd). |
| void endFunctionBody(const Function *F, unsigned char *FunctionStart, |
| unsigned char *FunctionEnd) { |
| assert(FunctionEnd > FunctionStart); |
| assert(FunctionStart == (unsigned char *)(CurBlock+1) && |
| "Mismatched function start/end!"); |
| |
| uintptr_t BlockSize = FunctionEnd - (unsigned char *)CurBlock; |
| FunctionBlocks[F] = CurBlock; |
| |
| // Release the memory at the end of this block that isn't needed. |
| FreeMemoryList =CurBlock->TrimAllocationToSize(FreeMemoryList, BlockSize); |
| } |
| |
| unsigned char *getGOTBase() const { |
| return GOTBase; |
| } |
| bool isManagingGOT() const { |
| return GOTBase != NULL; |
| } |
| |
| /// deallocateMemForFunction - Deallocate all memory for the specified |
| /// function body. |
| void deallocateMemForFunction(const Function *F) { |
| std::map<const Function*, MemoryRangeHeader*>::iterator |
| I = FunctionBlocks.find(F); |
| if (I == FunctionBlocks.end()) return; |
| |
| // Find the block that is allocated for this function. |
| MemoryRangeHeader *MemRange = I->second; |
| assert(MemRange->ThisAllocated && "Block isn't allocated!"); |
| |
| // Fill the buffer with garbage! |
| DEBUG(memset(MemRange+1, 0xCD, MemRange->BlockSize-sizeof(*MemRange))); |
| |
| // Free the memory. |
| FreeMemoryList = MemRange->FreeBlock(FreeMemoryList); |
| |
| // Finally, remove this entry from FunctionBlocks. |
| FunctionBlocks.erase(I); |
| } |
| }; |
| } |
| |
| JITMemoryManager::JITMemoryManager(bool useGOT) { |
| // Allocate a 16M block of memory for functions. |
| sys::MemoryBlock MemBlock = getNewMemoryBlock(16 << 20); |
| |
| unsigned char *MemBase = reinterpret_cast<unsigned char*>(MemBlock.base()); |
| |
| // Allocate stubs backwards from the base, allocate functions forward |
| // from the base. |
| StubBase = MemBase; |
| CurStubPtr = MemBase + 512*1024; // Use 512k for stubs, working backwards. |
| |
| // We set up the memory chunk with 4 mem regions, like this: |
| // [ START |
| // [ Free #0 ] -> Large space to allocate functions from. |
| // [ Allocated #1 ] -> Tiny space to separate regions. |
| // [ Free #2 ] -> Tiny space so there is always at least 1 free block. |
| // [ Allocated #3 ] -> Tiny space to prevent looking past end of block. |
| // END ] |
| // |
| // The last three blocks are never deallocated or touched. |
| |
| // Add MemoryRangeHeader to the end of the memory region, indicating that |
| // the space after the block of memory is allocated. This is block #3. |
| MemoryRangeHeader *Mem3 = (MemoryRangeHeader*)(MemBase+MemBlock.size())-1; |
| Mem3->ThisAllocated = 1; |
| Mem3->PrevAllocated = 0; |
| Mem3->BlockSize = 0; |
| |
| /// Add a tiny free region so that the free list always has one entry. |
| FreeRangeHeader *Mem2 = |
| (FreeRangeHeader *)(((char*)Mem3)-FreeRangeHeader::getMinBlockSize()); |
| Mem2->ThisAllocated = 0; |
| Mem2->PrevAllocated = 1; |
| Mem2->BlockSize = FreeRangeHeader::getMinBlockSize(); |
| Mem2->SetEndOfBlockSizeMarker(); |
| Mem2->Prev = Mem2; // Mem2 *is* the free list for now. |
| Mem2->Next = Mem2; |
| |
| /// Add a tiny allocated region so that Mem2 is never coallesced away. |
| MemoryRangeHeader *Mem1 = (MemoryRangeHeader*)Mem2-1; |
| Mem1->ThisAllocated = 1; |
| Mem1->PrevAllocated = 0; |
| Mem1->BlockSize = (char*)Mem2 - (char*)Mem1; |
| |
| // Add a FreeRangeHeader to the start of the function body region, indicating |
| // that the space is free. Mark the previous block allocated so we never look |
| // at it. |
| FreeRangeHeader *Mem0 = (FreeRangeHeader*)CurStubPtr; |
| Mem0->ThisAllocated = 0; |
| Mem0->PrevAllocated = 1; |
| Mem0->BlockSize = (char*)Mem1-(char*)Mem0; |
| Mem0->SetEndOfBlockSizeMarker(); |
| Mem0->AddToFreeList(Mem2); |
| |
| // Start out with the freelist pointing to Mem0. |
| FreeMemoryList = Mem0; |
| |
| // Allocate the GOT. |
| GOTBase = NULL; |
| if (useGOT) GOTBase = new unsigned char[sizeof(void*) * 8192]; |
| } |
| |
| JITMemoryManager::~JITMemoryManager() { |
| for (unsigned i = 0, e = Blocks.size(); i != e; ++i) |
| sys::Memory::ReleaseRWX(Blocks[i]); |
| |
| delete[] GOTBase; |
| Blocks.clear(); |
| } |
| |
| unsigned char *JITMemoryManager::allocateStub(unsigned StubSize) { |
| CurStubPtr -= StubSize; |
| if (CurStubPtr < StubBase) { |
| // FIXME: allocate a new block |
| std::cerr << "JIT ran out of memory for function stubs!\n"; |
| abort(); |
| } |
| return CurStubPtr; |
| } |
| |
| sys::MemoryBlock JITMemoryManager::getNewMemoryBlock(unsigned size) { |
| // Allocate a new block close to the last one. |
| const sys::MemoryBlock *BOld = Blocks.empty() ? 0 : &Blocks.front(); |
| std::string ErrMsg; |
| sys::MemoryBlock B = sys::Memory::AllocateRWX(size, BOld, &ErrMsg); |
| if (B.base() == 0) { |
| std::cerr << "Allocation failed when allocating new memory in the JIT\n"; |
| std::cerr << ErrMsg << "\n"; |
| abort(); |
| } |
| Blocks.push_back(B); |
| return B; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // JIT lazy compilation code. |
| // |
| namespace { |
| class JITResolverState { |
| private: |
| /// FunctionToStubMap - Keep track of the stub created for a particular |
| /// function so that we can reuse them if necessary. |
| std::map<Function*, void*> FunctionToStubMap; |
| |
| /// StubToFunctionMap - Keep track of the function that each stub |
| /// corresponds to. |
| std::map<void*, Function*> StubToFunctionMap; |
| |
| public: |
| std::map<Function*, void*>& getFunctionToStubMap(const MutexGuard& locked) { |
| assert(locked.holds(TheJIT->lock)); |
| return FunctionToStubMap; |
| } |
| |
| std::map<void*, Function*>& getStubToFunctionMap(const MutexGuard& locked) { |
| assert(locked.holds(TheJIT->lock)); |
| return StubToFunctionMap; |
| } |
| }; |
| |
| /// JITResolver - Keep track of, and resolve, call sites for functions that |
| /// have not yet been compiled. |
| class JITResolver { |
| /// MCE - The MachineCodeEmitter to use to emit stubs with. |
| MachineCodeEmitter &MCE; |
| |
| /// LazyResolverFn - The target lazy resolver function that we actually |
| /// rewrite instructions to use. |
| TargetJITInfo::LazyResolverFn LazyResolverFn; |
| |
| JITResolverState state; |
| |
| /// ExternalFnToStubMap - This is the equivalent of FunctionToStubMap for |
| /// external functions. |
| std::map<void*, void*> ExternalFnToStubMap; |
| |
| //map addresses to indexes in the GOT |
| std::map<void*, unsigned> revGOTMap; |
| unsigned nextGOTIndex; |
| |
| public: |
| JITResolver(MachineCodeEmitter &mce) : MCE(mce), nextGOTIndex(0) { |
| LazyResolverFn = |
| TheJIT->getJITInfo().getLazyResolverFunction(JITCompilerFn); |
| } |
| |
| /// getFunctionStub - This returns a pointer to a function stub, creating |
| /// one on demand as needed. |
| void *getFunctionStub(Function *F); |
| |
| /// getExternalFunctionStub - Return a stub for the function at the |
| /// specified address, created lazily on demand. |
| void *getExternalFunctionStub(void *FnAddr); |
| |
| /// AddCallbackAtLocation - If the target is capable of rewriting an |
| /// instruction without the use of a stub, record the location of the use so |
| /// we know which function is being used at the location. |
| void *AddCallbackAtLocation(Function *F, void *Location) { |
| MutexGuard locked(TheJIT->lock); |
| /// Get the target-specific JIT resolver function. |
| state.getStubToFunctionMap(locked)[Location] = F; |
| return (void*)(intptr_t)LazyResolverFn; |
| } |
| |
| /// getGOTIndexForAddress - Return a new or existing index in the GOT for |
| /// and address. This function only manages slots, it does not manage the |
| /// contents of the slots or the memory associated with the GOT. |
| unsigned getGOTIndexForAddr(void* addr); |
| |
| /// JITCompilerFn - This function is called to resolve a stub to a compiled |
| /// address. If the LLVM Function corresponding to the stub has not yet |
| /// been compiled, this function compiles it first. |
| static void *JITCompilerFn(void *Stub); |
| }; |
| } |
| |
| /// getJITResolver - This function returns the one instance of the JIT resolver. |
| /// |
| static JITResolver &getJITResolver(MachineCodeEmitter *MCE = 0) { |
| static JITResolver TheJITResolver(*MCE); |
| return TheJITResolver; |
| } |
| |
| #if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \ |
| defined(__APPLE__) |
| extern "C" void sys_icache_invalidate(const void *Addr, size_t len); |
| #endif |
| |
| /// synchronizeICache - On some targets, the JIT emitted code must be |
| /// explicitly refetched to ensure correct execution. |
| static void synchronizeICache(const void *Addr, size_t len) { |
| #if (defined(__POWERPC__) || defined (__ppc__) || defined(_POWER)) && \ |
| defined(__APPLE__) |
| sys_icache_invalidate(Addr, len); |
| #endif |
| } |
| |
| /// getFunctionStub - This returns a pointer to a function stub, creating |
| /// one on demand as needed. |
| void *JITResolver::getFunctionStub(Function *F) { |
| MutexGuard locked(TheJIT->lock); |
| |
| // If we already have a stub for this function, recycle it. |
| void *&Stub = state.getFunctionToStubMap(locked)[F]; |
| if (Stub) return Stub; |
| |
| // Call the lazy resolver function unless we already KNOW it is an external |
| // function, in which case we just skip the lazy resolution step. |
| void *Actual = (void*)(intptr_t)LazyResolverFn; |
| if (F->isExternal()) |
| Actual = TheJIT->getPointerToFunction(F); |
| |
| // Otherwise, codegen a new stub. For now, the stub will call the lazy |
| // resolver function. |
| Stub = TheJIT->getJITInfo().emitFunctionStub(Actual, MCE); |
| |
| if (Actual != (void*)(intptr_t)LazyResolverFn) { |
| // If we are getting the stub for an external function, we really want the |
| // address of the stub in the GlobalAddressMap for the JIT, not the address |
| // of the external function. |
| TheJIT->updateGlobalMapping(F, Stub); |
| } |
| |
| // Invalidate the icache if necessary. |
| synchronizeICache(Stub, MCE.getCurrentPCValue()-(intptr_t)Stub); |
| |
| DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub << "] for function '" |
| << F->getName() << "'\n"); |
| |
| // Finally, keep track of the stub-to-Function mapping so that the |
| // JITCompilerFn knows which function to compile! |
| state.getStubToFunctionMap(locked)[Stub] = F; |
| return Stub; |
| } |
| |
| /// getExternalFunctionStub - Return a stub for the function at the |
| /// specified address, created lazily on demand. |
| void *JITResolver::getExternalFunctionStub(void *FnAddr) { |
| // If we already have a stub for this function, recycle it. |
| void *&Stub = ExternalFnToStubMap[FnAddr]; |
| if (Stub) return Stub; |
| |
| Stub = TheJIT->getJITInfo().emitFunctionStub(FnAddr, MCE); |
| |
| // Invalidate the icache if necessary. |
| synchronizeICache(Stub, MCE.getCurrentPCValue()-(intptr_t)Stub); |
| |
| DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub |
| << "] for external function at '" << FnAddr << "'\n"); |
| return Stub; |
| } |
| |
| unsigned JITResolver::getGOTIndexForAddr(void* addr) { |
| unsigned idx = revGOTMap[addr]; |
| if (!idx) { |
| idx = ++nextGOTIndex; |
| revGOTMap[addr] = idx; |
| DEBUG(std::cerr << "Adding GOT entry " << idx |
| << " for addr " << addr << "\n"); |
| // ((void**)MemMgr.getGOTBase())[idx] = addr; |
| } |
| return idx; |
| } |
| |
| /// JITCompilerFn - This function is called when a lazy compilation stub has |
| /// been entered. It looks up which function this stub corresponds to, compiles |
| /// it if necessary, then returns the resultant function pointer. |
| void *JITResolver::JITCompilerFn(void *Stub) { |
| JITResolver &JR = getJITResolver(); |
| |
| MutexGuard locked(TheJIT->lock); |
| |
| // The address given to us for the stub may not be exactly right, it might be |
| // a little bit after the stub. As such, use upper_bound to find it. |
| std::map<void*, Function*>::iterator I = |
| JR.state.getStubToFunctionMap(locked).upper_bound(Stub); |
| assert(I != JR.state.getStubToFunctionMap(locked).begin() && |
| "This is not a known stub!"); |
| Function *F = (--I)->second; |
| |
| // We might like to remove the stub from the StubToFunction map. |
| // We can't do that! Multiple threads could be stuck, waiting to acquire the |
| // lock above. As soon as the 1st function finishes compiling the function, |
| // the next one will be released, and needs to be able to find the function it |
| // needs to call. |
| //JR.state.getStubToFunctionMap(locked).erase(I); |
| |
| DEBUG(std::cerr << "JIT: Lazily resolving function '" << F->getName() |
| << "' In stub ptr = " << Stub << " actual ptr = " |
| << I->first << "\n"); |
| |
| void *Result = TheJIT->getPointerToFunction(F); |
| |
| // We don't need to reuse this stub in the future, as F is now compiled. |
| JR.state.getFunctionToStubMap(locked).erase(F); |
| |
| // FIXME: We could rewrite all references to this stub if we knew them. |
| |
| // What we will do is set the compiled function address to map to the |
| // same GOT entry as the stub so that later clients may update the GOT |
| // if they see it still using the stub address. |
| // Note: this is done so the Resolver doesn't have to manage GOT memory |
| // Do this without allocating map space if the target isn't using a GOT |
| if(JR.revGOTMap.find(Stub) != JR.revGOTMap.end()) |
| JR.revGOTMap[Result] = JR.revGOTMap[Stub]; |
| |
| return Result; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // JITEmitter code. |
| // |
| namespace { |
| /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is |
| /// used to output functions to memory for execution. |
| class JITEmitter : public MachineCodeEmitter { |
| JITMemoryManager MemMgr; |
| |
| // When outputting a function stub in the context of some other function, we |
| // save BufferBegin/BufferEnd/CurBufferPtr here. |
| unsigned char *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr; |
| |
| /// Relocations - These are the relocations that the function needs, as |
| /// emitted. |
| std::vector<MachineRelocation> Relocations; |
| |
| /// MBBLocations - This vector is a mapping from MBB ID's to their address. |
| /// It is filled in by the StartMachineBasicBlock callback and queried by |
| /// the getMachineBasicBlockAddress callback. |
| std::vector<intptr_t> MBBLocations; |
| |
| /// ConstantPool - The constant pool for the current function. |
| /// |
| MachineConstantPool *ConstantPool; |
| |
| /// ConstantPoolBase - A pointer to the first entry in the constant pool. |
| /// |
| void *ConstantPoolBase; |
| |
| /// JumpTable - The jump tables for the current function. |
| /// |
| MachineJumpTableInfo *JumpTable; |
| |
| /// JumpTableBase - A pointer to the first entry in the jump table. |
| /// |
| void *JumpTableBase; |
| public: |
| JITEmitter(JIT &jit) : MemMgr(jit.getJITInfo().needsGOT()) { |
| TheJIT = &jit; |
| DEBUG(if (MemMgr.isManagingGOT()) std::cerr << "JIT is managing a GOT\n"); |
| } |
| |
| virtual void startFunction(MachineFunction &F); |
| virtual bool finishFunction(MachineFunction &F); |
| |
| void emitConstantPool(MachineConstantPool *MCP); |
| void initJumpTableInfo(MachineJumpTableInfo *MJTI); |
| void emitJumpTableInfo(MachineJumpTableInfo *MJTI); |
| |
| virtual void startFunctionStub(unsigned StubSize); |
| virtual void* finishFunctionStub(const Function *F); |
| |
| virtual void addRelocation(const MachineRelocation &MR) { |
| Relocations.push_back(MR); |
| } |
| |
| virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) { |
| if (MBBLocations.size() <= (unsigned)MBB->getNumber()) |
| MBBLocations.resize((MBB->getNumber()+1)*2); |
| MBBLocations[MBB->getNumber()] = getCurrentPCValue(); |
| } |
| |
| virtual intptr_t getConstantPoolEntryAddress(unsigned Entry) const; |
| virtual intptr_t getJumpTableEntryAddress(unsigned Entry) const; |
| |
| virtual intptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const { |
| assert(MBBLocations.size() > (unsigned)MBB->getNumber() && |
| MBBLocations[MBB->getNumber()] && "MBB not emitted!"); |
| return MBBLocations[MBB->getNumber()]; |
| } |
| |
| /// deallocateMemForFunction - Deallocate all memory for the specified |
| /// function body. |
| void deallocateMemForFunction(Function *F) { |
| MemMgr.deallocateMemForFunction(F); |
| } |
| private: |
| void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub); |
| }; |
| } |
| |
| void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference, |
| bool DoesntNeedStub) { |
| if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { |
| /// FIXME: If we straightened things out, this could actually emit the |
| /// global immediately instead of queuing it for codegen later! |
| return TheJIT->getOrEmitGlobalVariable(GV); |
| } |
| |
| // If we have already compiled the function, return a pointer to its body. |
| Function *F = cast<Function>(V); |
| void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F); |
| if (ResultPtr) return ResultPtr; |
| |
| if (F->isExternal()) { |
| // If this is an external function pointer, we can force the JIT to |
| // 'compile' it, which really just adds it to the map. |
| if (DoesntNeedStub) |
| return TheJIT->getPointerToFunction(F); |
| |
| return getJITResolver(this).getFunctionStub(F); |
| } |
| |
| // Okay, the function has not been compiled yet, if the target callback |
| // mechanism is capable of rewriting the instruction directly, prefer to do |
| // that instead of emitting a stub. |
| if (DoesntNeedStub) |
| return getJITResolver(this).AddCallbackAtLocation(F, Reference); |
| |
| // Otherwise, we have to emit a lazy resolving stub. |
| return getJITResolver(this).getFunctionStub(F); |
| } |
| |
| void JITEmitter::startFunction(MachineFunction &F) { |
| uintptr_t ActualSize; |
| BufferBegin = CurBufferPtr = MemMgr.startFunctionBody(ActualSize); |
| BufferEnd = BufferBegin+ActualSize; |
| |
| emitConstantPool(F.getConstantPool()); |
| initJumpTableInfo(F.getJumpTableInfo()); |
| |
| // About to start emitting the machine code for the function. |
| emitAlignment(std::max(F.getFunction()->getAlignment(), 8U)); |
| TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr); |
| |
| MBBLocations.clear(); |
| } |
| |
| bool JITEmitter::finishFunction(MachineFunction &F) { |
| if (CurBufferPtr == BufferEnd) { |
| // FIXME: Allocate more space, then try again. |
| std::cerr << "JIT: Ran out of space for generated machine code!\n"; |
| abort(); |
| } |
| |
| emitJumpTableInfo(F.getJumpTableInfo()); |
| |
| // FnStart is the start of the text, not the start of the constant pool and |
| // other per-function data. |
| unsigned char *FnStart = |
| (unsigned char *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction()); |
| unsigned char *FnEnd = CurBufferPtr; |
| |
| MemMgr.endFunctionBody(F.getFunction(), BufferBegin, FnEnd); |
| NumBytes += FnEnd-FnStart; |
| |
| if (!Relocations.empty()) { |
| NumRelos += Relocations.size(); |
| |
| // Resolve the relocations to concrete pointers. |
| for (unsigned i = 0, e = Relocations.size(); i != e; ++i) { |
| MachineRelocation &MR = Relocations[i]; |
| void *ResultPtr; |
| if (MR.isString()) { |
| ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString()); |
| |
| // If the target REALLY wants a stub for this function, emit it now. |
| if (!MR.doesntNeedFunctionStub()) |
| ResultPtr = getJITResolver(this).getExternalFunctionStub(ResultPtr); |
| } else if (MR.isGlobalValue()) { |
| ResultPtr = getPointerToGlobal(MR.getGlobalValue(), |
| BufferBegin+MR.getMachineCodeOffset(), |
| MR.doesntNeedFunctionStub()); |
| } else if (MR.isBasicBlock()) { |
| ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock()); |
| } else if (MR.isConstantPoolIndex()){ |
| ResultPtr=(void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex()); |
| } else { |
| assert(MR.isJumpTableIndex()); |
| ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex()); |
| } |
| |
| MR.setResultPointer(ResultPtr); |
| |
| // if we are managing the GOT and the relocation wants an index, |
| // give it one |
| if (MemMgr.isManagingGOT() && MR.isGOTRelative()) { |
| unsigned idx = getJITResolver(this).getGOTIndexForAddr(ResultPtr); |
| MR.setGOTIndex(idx); |
| if (((void**)MemMgr.getGOTBase())[idx] != ResultPtr) { |
| DEBUG(std::cerr << "GOT was out of date for " << ResultPtr |
| << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] |
| << "\n"); |
| ((void**)MemMgr.getGOTBase())[idx] = ResultPtr; |
| } |
| } |
| } |
| |
| TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0], |
| Relocations.size(), MemMgr.getGOTBase()); |
| } |
| |
| // Update the GOT entry for F to point to the new code. |
| if(MemMgr.isManagingGOT()) { |
| unsigned idx = getJITResolver(this).getGOTIndexForAddr((void*)BufferBegin); |
| if (((void**)MemMgr.getGOTBase())[idx] != (void*)BufferBegin) { |
| DEBUG(std::cerr << "GOT was out of date for " << (void*)BufferBegin |
| << " pointing at " << ((void**)MemMgr.getGOTBase())[idx] << "\n"); |
| ((void**)MemMgr.getGOTBase())[idx] = (void*)BufferBegin; |
| } |
| } |
| |
| // Invalidate the icache if necessary. |
| synchronizeICache(FnStart, FnEnd-FnStart); |
| |
| DEBUG(std::cerr << "JIT: Finished CodeGen of [" << (void*)FnStart |
| << "] Function: " << F.getFunction()->getName() |
| << ": " << (FnEnd-FnStart) << " bytes of text, " |
| << Relocations.size() << " relocations\n"); |
| Relocations.clear(); |
| return false; |
| } |
| |
| void JITEmitter::emitConstantPool(MachineConstantPool *MCP) { |
| const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants(); |
| if (Constants.empty()) return; |
| |
| MachineConstantPoolEntry CPE = Constants.back(); |
| unsigned Size = CPE.Offset; |
| const Type *Ty = CPE.isMachineConstantPoolEntry() |
| ? CPE.Val.MachineCPVal->getType() : CPE.Val.ConstVal->getType(); |
| Size += TheJIT->getTargetData()->getTypeSize(Ty); |
| |
| ConstantPoolBase = allocateSpace(Size, 1 << MCP->getConstantPoolAlignment()); |
| ConstantPool = MCP; |
| |
| if (ConstantPoolBase == 0) return; // Buffer overflow. |
| |
| // Initialize the memory for all of the constant pool entries. |
| for (unsigned i = 0, e = Constants.size(); i != e; ++i) { |
| void *CAddr = (char*)ConstantPoolBase+Constants[i].Offset; |
| if (Constants[i].isMachineConstantPoolEntry()) { |
| // FIXME: add support to lower machine constant pool values into bytes! |
| std::cerr << "Initialize memory with machine specific constant pool entry" |
| << " has not been implemented!\n"; |
| abort(); |
| } |
| TheJIT->InitializeMemory(Constants[i].Val.ConstVal, CAddr); |
| } |
| } |
| |
| void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) { |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return; |
| |
| unsigned NumEntries = 0; |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) |
| NumEntries += JT[i].MBBs.size(); |
| |
| unsigned EntrySize = MJTI->getEntrySize(); |
| |
| // Just allocate space for all the jump tables now. We will fix up the actual |
| // MBB entries in the tables after we emit the code for each block, since then |
| // we will know the final locations of the MBBs in memory. |
| JumpTable = MJTI; |
| JumpTableBase = allocateSpace(NumEntries * EntrySize, MJTI->getAlignment()); |
| } |
| |
| void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) { |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty() || JumpTableBase == 0) return; |
| |
| unsigned Offset = 0; |
| assert(MJTI->getEntrySize() == sizeof(void*) && "Cross JIT'ing?"); |
| |
| // For each jump table, map each target in the jump table to the address of |
| // an emitted MachineBasicBlock. |
| intptr_t *SlotPtr = (intptr_t*)JumpTableBase; |
| |
| for (unsigned i = 0, e = JT.size(); i != e; ++i) { |
| const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs; |
| // Store the address of the basic block for this jump table slot in the |
| // memory we allocated for the jump table in 'initJumpTableInfo' |
| for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) |
| *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]); |
| } |
| } |
| |
| void JITEmitter::startFunctionStub(unsigned StubSize) { |
| SavedBufferBegin = BufferBegin; |
| SavedBufferEnd = BufferEnd; |
| SavedCurBufferPtr = CurBufferPtr; |
| |
| BufferBegin = CurBufferPtr = MemMgr.allocateStub(StubSize); |
| BufferEnd = BufferBegin+StubSize+1; |
| } |
| |
| void *JITEmitter::finishFunctionStub(const Function *F) { |
| NumBytes += getCurrentPCOffset(); |
| std::swap(SavedBufferBegin, BufferBegin); |
| BufferEnd = SavedBufferEnd; |
| CurBufferPtr = SavedCurBufferPtr; |
| return SavedBufferBegin; |
| } |
| |
| // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry |
| // in the constant pool that was last emitted with the 'emitConstantPool' |
| // method. |
| // |
| intptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const { |
| assert(ConstantNum < ConstantPool->getConstants().size() && |
| "Invalid ConstantPoolIndex!"); |
| return (intptr_t)ConstantPoolBase + |
| ConstantPool->getConstants()[ConstantNum].Offset; |
| } |
| |
| // getJumpTableEntryAddress - Return the address of the JumpTable with index |
| // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo' |
| // |
| intptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const { |
| const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables(); |
| assert(Index < JT.size() && "Invalid jump table index!"); |
| |
| unsigned Offset = 0; |
| unsigned EntrySize = JumpTable->getEntrySize(); |
| |
| for (unsigned i = 0; i < Index; ++i) |
| Offset += JT[i].MBBs.size() * EntrySize; |
| |
| return (intptr_t)((char *)JumpTableBase + Offset); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Public interface to this file |
| //===----------------------------------------------------------------------===// |
| |
| MachineCodeEmitter *JIT::createEmitter(JIT &jit) { |
| return new JITEmitter(jit); |
| } |
| |
| // getPointerToNamedFunction - This function is used as a global wrapper to |
| // JIT::getPointerToNamedFunction for the purpose of resolving symbols when |
| // bugpoint is debugging the JIT. In that scenario, we are loading an .so and |
| // need to resolve function(s) that are being mis-codegenerated, so we need to |
| // resolve their addresses at runtime, and this is the way to do it. |
| extern "C" { |
| void *getPointerToNamedFunction(const char *Name) { |
| if (Function *F = TheJIT->FindFunctionNamed(Name)) |
| return TheJIT->getPointerToFunction(F); |
| return TheJIT->getPointerToNamedFunction(Name); |
| } |
| } |
| |
| // getPointerToFunctionOrStub - If the specified function has been |
| // code-gen'd, return a pointer to the function. If not, compile it, or use |
| // a stub to implement lazy compilation if available. |
| // |
| void *JIT::getPointerToFunctionOrStub(Function *F) { |
| // If we have already code generated the function, just return the address. |
| if (void *Addr = getPointerToGlobalIfAvailable(F)) |
| return Addr; |
| |
| // Get a stub if the target supports it |
| return getJITResolver(MCE).getFunctionStub(F); |
| } |
| |
| /// freeMachineCodeForFunction - release machine code memory for given Function. |
| /// |
| void JIT::freeMachineCodeForFunction(Function *F) { |
| // Delete translation for this from the ExecutionEngine, so it will get |
| // retranslated next time it is used. |
| updateGlobalMapping(F, 0); |
| |
| // Free the actual memory for the function body and related stuff. |
| assert(dynamic_cast<JITEmitter*>(MCE) && "Unexpected MCE?"); |
| dynamic_cast<JITEmitter*>(MCE)->deallocateMemForFunction(F); |
| } |
| |