| //===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Owen Anderson and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass eliminates machine instruction PHI nodes by inserting copy |
| // instructions, using an intelligent copy-folding technique based on |
| // dominator information. This is technique is derived from: |
| // |
| // Budimlic, et al. Fast copy coalescing and live-range identification. |
| // In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language |
| // Design and Implementation (Berlin, Germany, June 17 - 19, 2002). |
| // PLDI '02. ACM, New York, NY, 25-32. |
| // DOI= http://doi.acm.org/10.1145/512529.512534 |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "strongphielim" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/BreakCriticalMachineEdge.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/Compiler.h" |
| using namespace llvm; |
| |
| |
| namespace { |
| struct VISIBILITY_HIDDEN StrongPHIElimination : public MachineFunctionPass { |
| static char ID; // Pass identification, replacement for typeid |
| StrongPHIElimination() : MachineFunctionPass((intptr_t)&ID) {} |
| |
| bool runOnMachineFunction(MachineFunction &Fn); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addPreserved<LiveVariables>(); |
| AU.addPreservedID(PHIEliminationID); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<LiveVariables>(); |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| virtual void releaseMemory() { |
| preorder.clear(); |
| maxpreorder.clear(); |
| |
| waiting.clear(); |
| } |
| |
| private: |
| struct DomForestNode { |
| private: |
| std::vector<DomForestNode*> children; |
| unsigned reg; |
| |
| void addChild(DomForestNode* DFN) { children.push_back(DFN); } |
| |
| public: |
| typedef std::vector<DomForestNode*>::iterator iterator; |
| |
| DomForestNode(unsigned r, DomForestNode* parent) : reg(r) { |
| if (parent) |
| parent->addChild(this); |
| } |
| |
| ~DomForestNode() { |
| for (iterator I = begin(), E = end(); I != E; ++I) |
| delete *I; |
| } |
| |
| inline unsigned getReg() { return reg; } |
| |
| inline DomForestNode::iterator begin() { return children.begin(); } |
| inline DomForestNode::iterator end() { return children.end(); } |
| }; |
| |
| DenseMap<MachineBasicBlock*, unsigned> preorder; |
| DenseMap<MachineBasicBlock*, unsigned> maxpreorder; |
| |
| DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > waiting; |
| |
| |
| void computeDFS(MachineFunction& MF); |
| void processBlock(MachineBasicBlock* MBB); |
| |
| std::vector<DomForestNode*> computeDomForest(std::set<unsigned>& instrs); |
| void breakCriticalEdges(MachineFunction &Fn); |
| |
| }; |
| |
| char StrongPHIElimination::ID = 0; |
| RegisterPass<StrongPHIElimination> X("strong-phi-node-elimination", |
| "Eliminate PHI nodes for register allocation, intelligently"); |
| } |
| |
| const PassInfo *llvm::StrongPHIEliminationID = X.getPassInfo(); |
| |
| /// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree |
| /// of the given MachineFunction. These numbers are then used in other parts |
| /// of the PHI elimination process. |
| void StrongPHIElimination::computeDFS(MachineFunction& MF) { |
| SmallPtrSet<MachineDomTreeNode*, 8> frontier; |
| SmallPtrSet<MachineDomTreeNode*, 8> visited; |
| |
| unsigned time = 0; |
| |
| MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>(); |
| |
| MachineDomTreeNode* node = DT.getRootNode(); |
| |
| std::vector<MachineDomTreeNode*> worklist; |
| worklist.push_back(node); |
| |
| while (!worklist.empty()) { |
| MachineDomTreeNode* currNode = worklist.back(); |
| |
| if (!frontier.count(currNode)) { |
| frontier.insert(currNode); |
| ++time; |
| preorder.insert(std::make_pair(currNode->getBlock(), time)); |
| } |
| |
| bool inserted = false; |
| for (MachineDomTreeNode::iterator I = node->begin(), E = node->end(); |
| I != E; ++I) |
| if (!frontier.count(*I) && !visited.count(*I)) { |
| worklist.push_back(*I); |
| inserted = true; |
| break; |
| } |
| |
| if (!inserted) { |
| frontier.erase(currNode); |
| visited.insert(currNode); |
| maxpreorder.insert(std::make_pair(currNode->getBlock(), time)); |
| |
| worklist.pop_back(); |
| } |
| } |
| } |
| |
| /// PreorderSorter - a helper class that is used to sort registers |
| /// according to the preorder number of their defining blocks |
| class PreorderSorter { |
| private: |
| DenseMap<MachineBasicBlock*, unsigned>& preorder; |
| LiveVariables& LV; |
| |
| public: |
| PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p, |
| LiveVariables& L) : preorder(p), LV(L) { } |
| |
| bool operator()(unsigned A, unsigned B) { |
| if (A == B) |
| return false; |
| |
| MachineBasicBlock* ABlock = LV.getVarInfo(A).DefInst->getParent(); |
| MachineBasicBlock* BBlock = LV.getVarInfo(A).DefInst->getParent(); |
| |
| if (preorder[ABlock] < preorder[BBlock]) |
| return true; |
| else if (preorder[ABlock] > preorder[BBlock]) |
| return false; |
| |
| assert(0 && "Error sorting by dominance!"); |
| return false; |
| } |
| }; |
| |
| /// computeDomForest - compute the subforest of the DomTree corresponding |
| /// to the defining blocks of the registers in question |
| std::vector<StrongPHIElimination::DomForestNode*> |
| StrongPHIElimination::computeDomForest(std::set<unsigned>& regs) { |
| LiveVariables& LV = getAnalysis<LiveVariables>(); |
| |
| DomForestNode* VirtualRoot = new DomForestNode(0, 0); |
| maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL)); |
| |
| std::vector<unsigned> worklist; |
| worklist.reserve(regs.size()); |
| for (std::set<unsigned>::iterator I = regs.begin(), E = regs.end(); |
| I != E; ++I) |
| worklist.push_back(*I); |
| |
| PreorderSorter PS(preorder, LV); |
| std::sort(worklist.begin(), worklist.end(), PS); |
| |
| DomForestNode* CurrentParent = VirtualRoot; |
| std::vector<DomForestNode*> stack; |
| stack.push_back(VirtualRoot); |
| |
| for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end(); |
| I != E; ++I) { |
| unsigned pre = preorder[LV.getVarInfo(*I).DefInst->getParent()]; |
| MachineBasicBlock* parentBlock = |
| LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent(); |
| |
| while (pre > maxpreorder[parentBlock]) { |
| stack.pop_back(); |
| CurrentParent = stack.back(); |
| |
| parentBlock = LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent(); |
| } |
| |
| DomForestNode* child = new DomForestNode(*I, CurrentParent); |
| stack.push_back(child); |
| CurrentParent = child; |
| } |
| |
| std::vector<DomForestNode*> ret; |
| ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end()); |
| return ret; |
| } |
| |
| /// isLiveIn - helper method that determines, from a VarInfo, if a register |
| /// is live into a block |
| bool isLiveIn(LiveVariables::VarInfo& V, MachineBasicBlock* MBB) { |
| if (V.AliveBlocks.test(MBB->getNumber())) |
| return true; |
| |
| if (V.DefInst->getParent() != MBB && |
| V.UsedBlocks.test(MBB->getNumber())) |
| return true; |
| |
| return false; |
| } |
| |
| /// isLiveOut - help method that determines, from a VarInfo, if a register is |
| /// live out of a block. |
| bool isLiveOut(LiveVariables::VarInfo& V, MachineBasicBlock* MBB) { |
| if (MBB == V.DefInst->getParent() || |
| V.UsedBlocks.test(MBB->getNumber())) { |
| for (std::vector<MachineInstr*>::iterator I = V.Kills.begin(), |
| E = V.Kills.end(); I != E; ++I) |
| if ((*I)->getParent() == MBB) |
| return false; |
| |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// processBlock - Eliminate PHIs in the given block |
| void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) { |
| LiveVariables& LV = getAnalysis<LiveVariables>(); |
| |
| // Holds names that have been added to a set in any PHI within this block |
| // before the current one. |
| std::set<unsigned> ProcessedNames; |
| |
| MachineBasicBlock::iterator P = MBB->begin(); |
| while (P->getOpcode() == TargetInstrInfo::PHI) { |
| LiveVariables::VarInfo& PHIInfo = LV.getVarInfo(P->getOperand(0).getReg()); |
| |
| // Hold the names that are currently in the candidate set. |
| std::set<unsigned> PHIUnion; |
| std::set<MachineBasicBlock*> UnionedBlocks; |
| |
| for (int i = P->getNumOperands() - 1; i >= 2; i-=2) { |
| unsigned SrcReg = P->getOperand(i-1).getReg(); |
| LiveVariables::VarInfo& SrcInfo = LV.getVarInfo(SrcReg); |
| |
| if (isLiveIn(SrcInfo, P->getParent())) { |
| // add a copy from a_i to p in Waiting[From[a_i]] |
| } else if (isLiveOut(PHIInfo, SrcInfo.DefInst->getParent())) { |
| // add a copy to Waiting[From[a_i]] |
| } else if (PHIInfo.DefInst->getOpcode() == TargetInstrInfo::PHI && |
| isLiveIn(PHIInfo, SrcInfo.DefInst->getParent())) { |
| // add a copy to Waiting[From[a_i]] |
| } else if (ProcessedNames.count(SrcReg)) { |
| // add a copy to Waiting[From[a_i]] |
| } else if (UnionedBlocks.count(SrcInfo.DefInst->getParent())) { |
| // add a copy to Waiting[From[a_i]] |
| } else { |
| PHIUnion.insert(SrcReg); |
| UnionedBlocks.insert(SrcInfo.DefInst->getParent()); |
| } |
| } |
| |
| std::vector<StrongPHIElimination::DomForestNode*> DF = |
| computeDomForest(PHIUnion); |
| |
| // DO STUFF HERE |
| |
| ProcessedNames.insert(PHIUnion.begin(), PHIUnion.end()); |
| ++P; |
| } |
| } |
| |
| /// breakCriticalEdges - Break critical edges coming into blocks with PHI |
| /// nodes, preserving dominator and livevariable info. |
| void StrongPHIElimination::breakCriticalEdges(MachineFunction &Fn) { |
| typedef std::pair<MachineBasicBlock*, MachineBasicBlock*> MBB_pair; |
| |
| MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>(); |
| LiveVariables& LV = getAnalysis<LiveVariables>(); |
| |
| // Find critical edges |
| std::vector<MBB_pair> criticals; |
| for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| if (!I->empty() && |
| I->begin()->getOpcode() == TargetInstrInfo::PHI && |
| I->pred_size() > 1) |
| for (MachineBasicBlock::pred_iterator PI = I->pred_begin(), |
| PE = I->pred_end(); PI != PE; ++PI) |
| if ((*PI)->succ_size() > 1) |
| criticals.push_back(std::make_pair(*PI, I)); |
| |
| for (std::vector<MBB_pair>::iterator I = criticals.begin(), |
| E = criticals.end(); I != E; ++I) { |
| // Split the edge |
| MachineBasicBlock* new_bb = SplitCriticalMachineEdge(I->first, I->second); |
| |
| // Update dominators |
| MDT.splitBlock(I->first); |
| |
| // Update livevariables |
| for (unsigned var = 1024; var < Fn.getSSARegMap()->getLastVirtReg(); ++var) |
| if (isLiveOut(LV.getVarInfo(var), I->first)) |
| LV.getVarInfo(var).AliveBlocks.set(new_bb->getNumber()); |
| } |
| } |
| |
| bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) { |
| breakCriticalEdges(Fn); |
| computeDFS(Fn); |
| |
| for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| if (!I->empty() && |
| I->begin()->getOpcode() == TargetInstrInfo::PHI) |
| processBlock(I); |
| |
| return false; |
| } |