| //===- InductionVariable.cpp - Induction variable classification ----------===// |
| // |
| // This file implements identification and classification of induction |
| // variables. Induction variables must contain a PHI node that exists in a |
| // loop header. Because of this, they are identified an managed by this PHI |
| // node. |
| // |
| // Induction variables are classified into a type. Knowing that an induction |
| // variable is of a specific type can constrain the values of the start and |
| // step. For example, a SimpleLinear induction variable must have a start and |
| // step values that are constants. |
| // |
| // Induction variables can be created with or without loop information. If no |
| // loop information is available, induction variables cannot be recognized to be |
| // more than SimpleLinear variables. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Analysis/InductionVariable.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/Expressions.h" |
| #include "llvm/BasicBlock.h" |
| #include "llvm/iPHINode.h" |
| #include "llvm/iOperators.h" |
| #include "llvm/iTerminators.h" |
| #include "llvm/Type.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "Support/Debug.h" |
| |
| static bool isLoopInvariant(const Value *V, const Loop *L) { |
| if (const Instruction *I = dyn_cast<Instruction>(V)) |
| return !L->contains(I->getParent()); |
| // non-instructions all dominate instructions/blocks |
| return true; |
| } |
| |
| enum InductionVariable::iType |
| InductionVariable::Classify(const Value *Start, const Value *Step, |
| const Loop *L) { |
| // Check for canonical and simple linear expressions now... |
| if (const ConstantInt *CStart = dyn_cast<ConstantInt>(Start)) |
| if (const ConstantInt *CStep = dyn_cast<ConstantInt>(Step)) { |
| if (CStart->isNullValue() && CStep->equalsInt(1)) |
| return Canonical; |
| else |
| return SimpleLinear; |
| } |
| |
| // Without loop information, we cannot do any better, so bail now... |
| if (L == 0) return Unknown; |
| |
| if (isLoopInvariant(Start, L) && isLoopInvariant(Step, L)) |
| return Linear; |
| return Unknown; |
| } |
| |
| // Create an induction variable for the specified value. If it is a PHI, and |
| // if it's recognizable, classify it and fill in instance variables. |
| // |
| InductionVariable::InductionVariable(PHINode *P, LoopInfo *LoopInfo): End(0) { |
| InductionType = Unknown; // Assume the worst |
| Phi = P; |
| |
| // If the PHI node has more than two predecessors, we don't know how to |
| // handle it. |
| // |
| if (Phi->getNumIncomingValues() != 2) return; |
| |
| // FIXME: Handle FP induction variables. |
| if (Phi->getType() == Type::FloatTy || Phi->getType() == Type::DoubleTy) |
| return; |
| |
| // If we have loop information, make sure that this PHI node is in the header |
| // of a loop... |
| // |
| const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0; |
| if (L && L->getHeader() != Phi->getParent()) |
| return; |
| |
| Value *V1 = Phi->getIncomingValue(0); |
| Value *V2 = Phi->getIncomingValue(1); |
| |
| if (L == 0) { // No loop information? Base everything on expression analysis |
| ExprType E1 = ClassifyExpression(V1); |
| ExprType E2 = ClassifyExpression(V2); |
| |
| if (E1.ExprTy > E2.ExprTy) // Make E1 be the simpler expression |
| std::swap(E1, E2); |
| |
| // E1 must be a constant incoming value, and E2 must be a linear expression |
| // with respect to the PHI node. |
| // |
| if (E1.ExprTy > ExprType::Constant || E2.ExprTy != ExprType::Linear || |
| E2.Var != Phi) |
| return; |
| |
| // Okay, we have found an induction variable. Save the start and step values |
| const Type *ETy = Phi->getType(); |
| if (isa<PointerType>(ETy)) ETy = Type::ULongTy; |
| |
| Start = (Value*)(E1.Offset ? E1.Offset : ConstantInt::get(ETy, 0)); |
| Step = (Value*)(E2.Offset ? E2.Offset : ConstantInt::get(ETy, 0)); |
| } else { |
| // Okay, at this point, we know that we have loop information... |
| |
| // Make sure that V1 is the incoming value, and V2 is from the backedge of |
| // the loop. |
| if (L->contains(Phi->getIncomingBlock(0))) // Wrong order. Swap now. |
| std::swap(V1, V2); |
| |
| Start = V1; // We know that Start has to be loop invariant... |
| Step = 0; |
| |
| if (V2 == Phi) { // referencing the PHI directly? Must have zero step |
| Step = Constant::getNullValue(Phi->getType()); |
| } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(V2)) { |
| // TODO: This could be much better... |
| if (I->getOpcode() == Instruction::Add) { |
| if (I->getOperand(0) == Phi) |
| Step = I->getOperand(1); |
| else if (I->getOperand(1) == Phi) |
| Step = I->getOperand(0); |
| } |
| } |
| |
| if (Step == 0) { // Unrecognized step value... |
| ExprType StepE = ClassifyExpression(V2); |
| if (StepE.ExprTy != ExprType::Linear || |
| StepE.Var != Phi) return; |
| |
| const Type *ETy = Phi->getType(); |
| if (isa<PointerType>(ETy)) ETy = Type::ULongTy; |
| Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy, 0)); |
| } else { // We were able to get a step value, simplify with expr analysis |
| ExprType StepE = ClassifyExpression(Step); |
| if (StepE.ExprTy == ExprType::Linear && StepE.Offset == 0) { |
| // No offset from variable? Grab the variable |
| Step = StepE.Var; |
| } else if (StepE.ExprTy == ExprType::Constant) { |
| if (StepE.Offset) |
| Step = (Value*)StepE.Offset; |
| else |
| Step = Constant::getNullValue(Step->getType()); |
| const Type *ETy = Phi->getType(); |
| if (isa<PointerType>(ETy)) ETy = Type::ULongTy; |
| Step = (Value*)(StepE.Offset ? StepE.Offset : ConstantInt::get(ETy,0)); |
| } |
| } |
| } |
| |
| // Classify the induction variable type now... |
| InductionType = InductionVariable::Classify(Start, Step, L); |
| } |
| |
| |
| Value *InductionVariable::getExecutionCount(LoopInfo *LoopInfo) { |
| if (InductionType != Canonical) return 0; |
| |
| DEBUG(std::cerr << "entering getExecutionCount\n"); |
| |
| // Don't recompute if already available |
| if (End) { |
| DEBUG(std::cerr << "returning cached End value.\n"); |
| return End; |
| } |
| |
| const Loop *L = LoopInfo ? LoopInfo->getLoopFor(Phi->getParent()) : 0; |
| if (!L) { |
| DEBUG(std::cerr << "null loop. oops\n"); |
| return 0; |
| } |
| |
| // >1 backedge => cannot predict number of iterations |
| if (Phi->getNumIncomingValues() != 2) { |
| DEBUG(std::cerr << ">2 incoming values. oops\n"); |
| return 0; |
| } |
| |
| // Find final node: predecesor of the loop header that's also an exit |
| BasicBlock *terminator = 0; |
| for (pred_iterator PI = pred_begin(L->getHeader()), |
| PE = pred_end(L->getHeader()); PI != PE; ++PI) |
| if (L->isLoopExit(*PI)) { |
| terminator = *PI; |
| break; |
| } |
| |
| // Break in the loop => cannot predict number of iterations |
| // break: any block which is an exit node whose successor is not in loop, |
| // and this block is not marked as the terminator |
| // |
| const std::vector<BasicBlock*> &blocks = L->getBlocks(); |
| for (std::vector<BasicBlock*>::const_iterator I = blocks.begin(), |
| e = blocks.end(); I != e; ++I) |
| if (L->isLoopExit(*I) && *I != terminator) |
| for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) |
| if (!L->contains(*SI)) { |
| DEBUG(std::cerr << "break found in loop"); |
| return 0; |
| } |
| |
| BranchInst *B = dyn_cast<BranchInst>(terminator->getTerminator()); |
| if (!B) { |
| DEBUG(std::cerr << "Terminator is not a cond branch!"); |
| return 0; |
| } |
| SetCondInst *SCI = dyn_cast<SetCondInst>(B->getCondition()); |
| if (!SCI) { |
| DEBUG(std::cerr << "Not a cond branch on setcc!\n"); |
| return 0; |
| } |
| |
| DEBUG(std::cerr << "sci:" << *SCI); |
| Value *condVal0 = SCI->getOperand(0); |
| Value *condVal1 = SCI->getOperand(1); |
| Value *indVar = 0; |
| |
| // the induction variable is the one coming from the backedge |
| indVar = Phi->getIncomingValue(L->contains(Phi->getIncomingBlock(1))); |
| |
| |
| // Check to see if indVar is one of the parameters in SCI and if the other is |
| // loop-invariant, it is the UB |
| if (indVar == condVal0) { |
| if (isLoopInvariant(condVal1, L)) |
| End = condVal1; |
| else { |
| DEBUG(std::cerr << "not loop invariant 1\n"); |
| return 0; |
| } |
| } else if (indVar == condVal1) { |
| if (isLoopInvariant(condVal0, L)) |
| End = condVal0; |
| else { |
| DEBUG(std::cerr << "not loop invariant 0\n"); |
| return 0; |
| } |
| } else { |
| DEBUG(std::cerr << "Loop condition doesn't directly uses indvar\n"); |
| return 0; |
| } |
| |
| switch (SCI->getOpcode()) { |
| case Instruction::SetLT: |
| case Instruction::SetNE: return End; // already done |
| case Instruction::SetLE: |
| // if compared to a constant int N, then predict N+1 iterations |
| if (ConstantSInt *ubSigned = dyn_cast<ConstantSInt>(End)) { |
| DEBUG(std::cerr << "signed int constant\n"); |
| return ConstantSInt::get(ubSigned->getType(), ubSigned->getValue()+1); |
| } else if (ConstantUInt *ubUnsigned = dyn_cast<ConstantUInt>(End)) { |
| DEBUG(std::cerr << "unsigned int constant\n"); |
| return ConstantUInt::get(ubUnsigned->getType(), |
| ubUnsigned->getValue()+1); |
| } else { |
| DEBUG(std::cerr << "symbolic bound\n"); |
| // new expression N+1, insert right before the SCI. FIXME: If End is loop |
| // invariant, then so is this expression. We should insert it in the loop |
| // preheader if it exists. |
| return BinaryOperator::create(Instruction::Add, End, |
| ConstantInt::get(End->getType(), 1), |
| "tripcount", SCI); |
| } |
| |
| default: |
| return 0; // cannot predict |
| } |
| } |
| |
| |
| void InductionVariable::print(std::ostream &o) const { |
| switch (InductionType) { |
| case InductionVariable::Canonical: o << "Canonical "; break; |
| case InductionVariable::SimpleLinear: o << "SimpleLinear "; break; |
| case InductionVariable::Linear: o << "Linear "; break; |
| case InductionVariable::Unknown: o << "Unrecognized "; break; |
| } |
| o << "Induction Variable: "; |
| if (Phi) { |
| WriteAsOperand(o, Phi); |
| o << ":\n" << Phi; |
| } else { |
| o << "\n"; |
| } |
| if (InductionType == InductionVariable::Unknown) return; |
| |
| o << " Start = "; WriteAsOperand(o, Start); |
| o << " Step = " ; WriteAsOperand(o, Step); |
| if (End) { |
| o << " End = " ; WriteAsOperand(o, End); |
| } |
| o << "\n"; |
| } |