blob: 7b3308b5825c76d17534e471a7d2c4d069e090f9 [file] [log] [blame]
//===- MipsInstrInfo.td - Target Description for Mips Target -*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the Mips implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Instruction format superclass
//===----------------------------------------------------------------------===//
include "MipsInstrFormats.td"
//===----------------------------------------------------------------------===//
// Mips profiles and nodes
//===----------------------------------------------------------------------===//
def SDT_MipsRet : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_MipsJmpLink : SDTypeProfile<0, 1, [SDTCisVT<0, iPTR>]>;
def SDT_MipsCMov : SDTypeProfile<1, 4, [SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisSameAs<3, 4>,
SDTCisInt<4>]>;
def SDT_MipsCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>]>;
def SDT_MipsCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
def SDT_MipsMAddMSub : SDTypeProfile<0, 4,
[SDTCisVT<0, i32>, SDTCisSameAs<0, 1>,
SDTCisSameAs<1, 2>,
SDTCisSameAs<2, 3>]>;
def SDT_MipsDivRem : SDTypeProfile<0, 2,
[SDTCisInt<0>,
SDTCisSameAs<0, 1>]>;
def SDT_MipsThreadPointer : SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>;
def SDT_MipsDynAlloc : SDTypeProfile<1, 1, [SDTCisVT<0, iPTR>,
SDTCisSameAs<0, 1>]>;
def SDT_Sync : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
def SDT_Ext : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
SDTCisVT<2, i32>, SDTCisSameAs<2, 3>]>;
def SDT_Ins : SDTypeProfile<1, 4, [SDTCisInt<0>, SDTCisSameAs<0, 1>,
SDTCisVT<2, i32>, SDTCisSameAs<2, 3>,
SDTCisSameAs<0, 4>]>;
// Call
def MipsJmpLink : SDNode<"MipsISD::JmpLink",SDT_MipsJmpLink,
[SDNPHasChain, SDNPOutGlue, SDNPOptInGlue,
SDNPVariadic]>;
// Hi and Lo nodes are used to handle global addresses. Used on
// MipsISelLowering to lower stuff like GlobalAddress, ExternalSymbol
// static model. (nothing to do with Mips Registers Hi and Lo)
def MipsHi : SDNode<"MipsISD::Hi", SDTIntUnaryOp>;
def MipsLo : SDNode<"MipsISD::Lo", SDTIntUnaryOp>;
def MipsGPRel : SDNode<"MipsISD::GPRel", SDTIntUnaryOp>;
// TlsGd node is used to handle General Dynamic TLS
def MipsTlsGd : SDNode<"MipsISD::TlsGd", SDTIntUnaryOp>;
// TprelHi and TprelLo nodes are used to handle Local Exec TLS
def MipsTprelHi : SDNode<"MipsISD::TprelHi", SDTIntUnaryOp>;
def MipsTprelLo : SDNode<"MipsISD::TprelLo", SDTIntUnaryOp>;
// Thread pointer
def MipsThreadPointer: SDNode<"MipsISD::ThreadPointer", SDT_MipsThreadPointer>;
// Return
def MipsRet : SDNode<"MipsISD::Ret", SDT_MipsRet, [SDNPHasChain,
SDNPOptInGlue]>;
// These are target-independent nodes, but have target-specific formats.
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_MipsCallSeqStart,
[SDNPHasChain, SDNPOutGlue]>;
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_MipsCallSeqEnd,
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
// MAdd*/MSub* nodes
def MipsMAdd : SDNode<"MipsISD::MAdd", SDT_MipsMAddMSub,
[SDNPOptInGlue, SDNPOutGlue]>;
def MipsMAddu : SDNode<"MipsISD::MAddu", SDT_MipsMAddMSub,
[SDNPOptInGlue, SDNPOutGlue]>;
def MipsMSub : SDNode<"MipsISD::MSub", SDT_MipsMAddMSub,
[SDNPOptInGlue, SDNPOutGlue]>;
def MipsMSubu : SDNode<"MipsISD::MSubu", SDT_MipsMAddMSub,
[SDNPOptInGlue, SDNPOutGlue]>;
// DivRem(u) nodes
def MipsDivRem : SDNode<"MipsISD::DivRem", SDT_MipsDivRem,
[SDNPOutGlue]>;
def MipsDivRemU : SDNode<"MipsISD::DivRemU", SDT_MipsDivRem,
[SDNPOutGlue]>;
// Target constant nodes that are not part of any isel patterns and remain
// unchanged can cause instructions with illegal operands to be emitted.
// Wrapper node patterns give the instruction selector a chance to replace
// target constant nodes that would otherwise remain unchanged with ADDiu
// nodes. Without these wrapper node patterns, the following conditional move
// instrucion is emitted when function cmov2 in test/CodeGen/Mips/cmov.ll is
// compiled:
// movn %got(d)($gp), %got(c)($gp), $4
// This instruction is illegal since movn can take only register operands.
def MipsWrapper : SDNode<"MipsISD::Wrapper", SDTIntBinOp>;
// Pointer to dynamically allocated stack area.
def MipsDynAlloc : SDNode<"MipsISD::DynAlloc", SDT_MipsDynAlloc,
[SDNPHasChain, SDNPInGlue]>;
def MipsSync : SDNode<"MipsISD::Sync", SDT_Sync, [SDNPHasChain]>;
def MipsExt : SDNode<"MipsISD::Ext", SDT_Ext>;
def MipsIns : SDNode<"MipsISD::Ins", SDT_Ins>;
//===----------------------------------------------------------------------===//
// Mips Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def HasSEInReg : Predicate<"Subtarget.hasSEInReg()">;
def HasBitCount : Predicate<"Subtarget.hasBitCount()">;
def HasSwap : Predicate<"Subtarget.hasSwap()">;
def HasCondMov : Predicate<"Subtarget.hasCondMov()">;
def HasMips32 : Predicate<"Subtarget.hasMips32()">;
def HasMips32r2 : Predicate<"Subtarget.hasMips32r2()">;
def HasMips64 : Predicate<"Subtarget.hasMips64()">;
def HasMips32r2Or64 : Predicate<"Subtarget.hasMips32r2Or64()">;
def NotMips64 : Predicate<"!Subtarget.hasMips64()">;
def HasMips64r2 : Predicate<"Subtarget.hasMips64r2()">;
def IsN64 : Predicate<"Subtarget.isABI_N64()">;
def NotN64 : Predicate<"!Subtarget.isABI_N64()">;
def RelocStatic : Predicate<"TM.getRelocationModel() == Reloc::Static">;
def RelocPIC : Predicate<"TM.getRelocationModel() == Reloc::PIC_">;
def NoNaNsFPMath : Predicate<"TM.Options.NoNaNsFPMath">;
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Instruction operand types
def jmptarget : Operand<OtherVT> {
let EncoderMethod = "getJumpTargetOpValue";
}
def brtarget : Operand<OtherVT> {
let EncoderMethod = "getBranchTargetOpValue";
let OperandType = "OPERAND_PCREL";
}
def calltarget : Operand<iPTR> {
let EncoderMethod = "getJumpTargetOpValue";
}
def calltarget64: Operand<i64>;
def simm16 : Operand<i32>;
def simm16_64 : Operand<i64>;
def shamt : Operand<i32>;
// Unsigned Operand
def uimm16 : Operand<i32> {
let PrintMethod = "printUnsignedImm";
}
// Address operand
def mem : Operand<i32> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops CPURegs, simm16);
let EncoderMethod = "getMemEncoding";
}
def mem64 : Operand<i64> {
let PrintMethod = "printMemOperand";
let MIOperandInfo = (ops CPU64Regs, simm16_64);
}
def mem_ea : Operand<i32> {
let PrintMethod = "printMemOperandEA";
let MIOperandInfo = (ops CPURegs, simm16);
let EncoderMethod = "getMemEncoding";
}
def mem_ea_64 : Operand<i64> {
let PrintMethod = "printMemOperandEA";
let MIOperandInfo = (ops CPU64Regs, simm16_64);
let EncoderMethod = "getMemEncoding";
}
// size operand of ext instruction
def size_ext : Operand<i32> {
let EncoderMethod = "getSizeExtEncoding";
}
// size operand of ins instruction
def size_ins : Operand<i32> {
let EncoderMethod = "getSizeInsEncoding";
}
// Transformation Function - get the lower 16 bits.
def LO16 : SDNodeXForm<imm, [{
return getImm(N, N->getZExtValue() & 0xFFFF);
}]>;
// Transformation Function - get the higher 16 bits.
def HI16 : SDNodeXForm<imm, [{
return getImm(N, (N->getZExtValue() >> 16) & 0xFFFF);
}]>;
// Node immediate fits as 16-bit sign extended on target immediate.
// e.g. addi, andi
def immSExt16 : PatLeaf<(imm), [{ return isInt<16>(N->getSExtValue()); }]>;
// Node immediate fits as 16-bit zero extended on target immediate.
// The LO16 param means that only the lower 16 bits of the node
// immediate are caught.
// e.g. addiu, sltiu
def immZExt16 : PatLeaf<(imm), [{
if (N->getValueType(0) == MVT::i32)
return (uint32_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
else
return (uint64_t)N->getZExtValue() == (unsigned short)N->getZExtValue();
}], LO16>;
// Immediate can be loaded with LUi (32-bit int with lower 16-bit cleared).
def immLow16Zero : PatLeaf<(imm), [{
int64_t Val = N->getSExtValue();
return isInt<32>(Val) && !(Val & 0xffff);
}]>;
// shamt field must fit in 5 bits.
def immZExt5 : ImmLeaf<i32, [{return Imm == (Imm & 0x1f);}]>;
// Mips Address Mode! SDNode frameindex could possibily be a match
// since load and store instructions from stack used it.
def addr : ComplexPattern<iPTR, 2, "SelectAddr", [frameindex], [SDNPWantParent]>;
//===----------------------------------------------------------------------===//
// Pattern fragment for load/store
//===----------------------------------------------------------------------===//
class UnalignedLoad<PatFrag Node> :
PatFrag<(ops node:$ptr), (Node node:$ptr), [{
LoadSDNode *LD = cast<LoadSDNode>(N);
return LD->getMemoryVT().getSizeInBits()/8 > LD->getAlignment();
}]>;
class AlignedLoad<PatFrag Node> :
PatFrag<(ops node:$ptr), (Node node:$ptr), [{
LoadSDNode *LD = cast<LoadSDNode>(N);
return LD->getMemoryVT().getSizeInBits()/8 <= LD->getAlignment();
}]>;
class UnalignedStore<PatFrag Node> :
PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr), [{
StoreSDNode *SD = cast<StoreSDNode>(N);
return SD->getMemoryVT().getSizeInBits()/8 > SD->getAlignment();
}]>;
class AlignedStore<PatFrag Node> :
PatFrag<(ops node:$val, node:$ptr), (Node node:$val, node:$ptr), [{
StoreSDNode *SD = cast<StoreSDNode>(N);
return SD->getMemoryVT().getSizeInBits()/8 <= SD->getAlignment();
}]>;
// Load/Store PatFrags.
def sextloadi16_a : AlignedLoad<sextloadi16>;
def zextloadi16_a : AlignedLoad<zextloadi16>;
def extloadi16_a : AlignedLoad<extloadi16>;
def load_a : AlignedLoad<load>;
def sextloadi32_a : AlignedLoad<sextloadi32>;
def zextloadi32_a : AlignedLoad<zextloadi32>;
def extloadi32_a : AlignedLoad<extloadi32>;
def truncstorei16_a : AlignedStore<truncstorei16>;
def store_a : AlignedStore<store>;
def truncstorei32_a : AlignedStore<truncstorei32>;
def sextloadi16_u : UnalignedLoad<sextloadi16>;
def zextloadi16_u : UnalignedLoad<zextloadi16>;
def extloadi16_u : UnalignedLoad<extloadi16>;
def load_u : UnalignedLoad<load>;
def sextloadi32_u : UnalignedLoad<sextloadi32>;
def zextloadi32_u : UnalignedLoad<zextloadi32>;
def extloadi32_u : UnalignedLoad<extloadi32>;
def truncstorei16_u : UnalignedStore<truncstorei16>;
def store_u : UnalignedStore<store>;
def truncstorei32_u : UnalignedStore<truncstorei32>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Arithmetic and logical instructions with 3 register operands.
class ArithLogicR<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
!strconcat(instr_asm, "\t$rd, $rs, $rt"),
[(set RC:$rd, (OpNode RC:$rs, RC:$rt))], itin> {
let shamt = 0;
let isCommutable = isComm;
}
class ArithOverflowR<bits<6> op, bits<6> func, string instr_asm,
InstrItinClass itin, RegisterClass RC, bit isComm = 0>:
FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
!strconcat(instr_asm, "\t$rd, $rs, $rt"), [], itin> {
let shamt = 0;
let isCommutable = isComm;
}
// Arithmetic and logical instructions with 2 register operands.
class ArithLogicI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type, RegisterClass RC> :
FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
!strconcat(instr_asm, "\t$rt, $rs, $imm16"),
[(set RC:$rt, (OpNode RC:$rs, imm_type:$imm16))], IIAlu>;
class ArithOverflowI<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type, RegisterClass RC> :
FI<op, (outs RC:$rt), (ins RC:$rs, Od:$imm16),
!strconcat(instr_asm, "\t$rt, $rs, $imm16"), [], IIAlu>;
// Arithmetic Multiply ADD/SUB
let rd = 0, shamt = 0, Defs = [HI, LO], Uses = [HI, LO] in
class MArithR<bits<6> func, string instr_asm, SDNode op, bit isComm = 0> :
FR<0x1c, func, (outs), (ins CPURegs:$rs, CPURegs:$rt),
!strconcat(instr_asm, "\t$rs, $rt"),
[(op CPURegs:$rs, CPURegs:$rt, LO, HI)], IIImul> {
let rd = 0;
let shamt = 0;
let isCommutable = isComm;
}
// Logical
class LogicNOR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
FR<op, func, (outs RC:$rd), (ins RC:$rs, RC:$rt),
!strconcat(instr_asm, "\t$rd, $rs, $rt"),
[(set RC:$rd, (not (or RC:$rs, RC:$rt)))], IIAlu> {
let shamt = 0;
let isCommutable = 1;
}
// Shifts
class shift_rotate_imm<bits<6> func, bits<5> isRotate, string instr_asm,
SDNode OpNode, PatFrag PF, Operand ImmOpnd,
RegisterClass RC>:
FR<0x00, func, (outs RC:$rd), (ins RC:$rt, ImmOpnd:$shamt),
!strconcat(instr_asm, "\t$rd, $rt, $shamt"),
[(set RC:$rd, (OpNode RC:$rt, PF:$shamt))], IIAlu> {
let rs = isRotate;
}
// 32-bit shift instructions.
class shift_rotate_imm32<bits<6> func, bits<5> isRotate, string instr_asm,
SDNode OpNode>:
shift_rotate_imm<func, isRotate, instr_asm, OpNode, immZExt5, shamt, CPURegs>;
class shift_rotate_reg<bits<6> func, bits<5> isRotate, string instr_asm,
SDNode OpNode, RegisterClass RC>:
FR<0x00, func, (outs RC:$rd), (ins CPURegs:$rs, RC:$rt),
!strconcat(instr_asm, "\t$rd, $rt, $rs"),
[(set RC:$rd, (OpNode RC:$rt, CPURegs:$rs))], IIAlu> {
let shamt = isRotate;
}
// Load Upper Imediate
class LoadUpper<bits<6> op, string instr_asm, RegisterClass RC, Operand Imm>:
FI<op, (outs RC:$rt), (ins Imm:$imm16),
!strconcat(instr_asm, "\t$rt, $imm16"), [], IIAlu> {
let rs = 0;
}
class FMem<bits<6> op, dag outs, dag ins, string asmstr, list<dag> pattern,
InstrItinClass itin>: FFI<op, outs, ins, asmstr, pattern> {
bits<21> addr;
let Inst{25-21} = addr{20-16};
let Inst{15-0} = addr{15-0};
}
// Memory Load/Store
let canFoldAsLoad = 1 in
class LoadM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
Operand MemOpnd, bit Pseudo>:
FMem<op, (outs RC:$rt), (ins MemOpnd:$addr),
!strconcat(instr_asm, "\t$rt, $addr"),
[(set RC:$rt, (OpNode addr:$addr))], IILoad> {
let isPseudo = Pseudo;
}
class StoreM<bits<6> op, string instr_asm, PatFrag OpNode, RegisterClass RC,
Operand MemOpnd, bit Pseudo>:
FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr),
!strconcat(instr_asm, "\t$rt, $addr"),
[(OpNode RC:$rt, addr:$addr)], IIStore> {
let isPseudo = Pseudo;
}
// Unaligned Memory Load/Store
let canFoldAsLoad = 1 in
class LoadUnAlign<bits<6> op, RegisterClass RC, Operand MemOpnd>:
FMem<op, (outs RC:$rt), (ins MemOpnd:$addr), "", [], IILoad> {}
class StoreUnAlign<bits<6> op, RegisterClass RC, Operand MemOpnd>:
FMem<op, (outs), (ins RC:$rt, MemOpnd:$addr), "", [], IIStore> {}
// 32-bit load.
multiclass LoadM32<bits<6> op, string instr_asm, PatFrag OpNode,
bit Pseudo = 0> {
def #NAME# : LoadM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
Requires<[NotN64]>;
def _P8 : LoadM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
Requires<[IsN64]>;
}
// 64-bit load.
multiclass LoadM64<bits<6> op, string instr_asm, PatFrag OpNode,
bit Pseudo = 0> {
def #NAME# : LoadM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
Requires<[NotN64]>;
def _P8 : LoadM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
Requires<[IsN64]>;
}
// 32-bit load.
multiclass LoadUnAlign32<bits<6> op> {
def #NAME# : LoadUnAlign<op, CPURegs, mem>,
Requires<[NotN64]>;
def _P8 : LoadUnAlign<op, CPURegs, mem64>,
Requires<[IsN64]>;
}
// 32-bit store.
multiclass StoreM32<bits<6> op, string instr_asm, PatFrag OpNode,
bit Pseudo = 0> {
def #NAME# : StoreM<op, instr_asm, OpNode, CPURegs, mem, Pseudo>,
Requires<[NotN64]>;
def _P8 : StoreM<op, instr_asm, OpNode, CPURegs, mem64, Pseudo>,
Requires<[IsN64]>;
}
// 64-bit store.
multiclass StoreM64<bits<6> op, string instr_asm, PatFrag OpNode,
bit Pseudo = 0> {
def #NAME# : StoreM<op, instr_asm, OpNode, CPU64Regs, mem, Pseudo>,
Requires<[NotN64]>;
def _P8 : StoreM<op, instr_asm, OpNode, CPU64Regs, mem64, Pseudo>,
Requires<[IsN64]>;
}
// 32-bit store.
multiclass StoreUnAlign32<bits<6> op> {
def #NAME# : StoreUnAlign<op, CPURegs, mem>,
Requires<[NotN64]>;
def _P8 : StoreUnAlign<op, CPURegs, mem64>,
Requires<[IsN64]>;
}
// Conditional Branch
class CBranch<bits<6> op, string instr_asm, PatFrag cond_op, RegisterClass RC>:
BranchBase<op, (outs), (ins RC:$rs, RC:$rt, brtarget:$imm16),
!strconcat(instr_asm, "\t$rs, $rt, $imm16"),
[(brcond (i32 (cond_op RC:$rs, RC:$rt)), bb:$imm16)], IIBranch> {
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
}
class CBranchZero<bits<6> op, bits<5> _rt, string instr_asm, PatFrag cond_op,
RegisterClass RC>:
BranchBase<op, (outs), (ins RC:$rs, brtarget:$imm16),
!strconcat(instr_asm, "\t$rs, $imm16"),
[(brcond (i32 (cond_op RC:$rs, 0)), bb:$imm16)], IIBranch> {
let rt = _rt;
let isBranch = 1;
let isTerminator = 1;
let hasDelaySlot = 1;
}
// SetCC
class SetCC_R<bits<6> op, bits<6> func, string instr_asm, PatFrag cond_op,
RegisterClass RC>:
FR<op, func, (outs CPURegs:$rd), (ins RC:$rs, RC:$rt),
!strconcat(instr_asm, "\t$rd, $rs, $rt"),
[(set CPURegs:$rd, (cond_op RC:$rs, RC:$rt))],
IIAlu> {
let shamt = 0;
}
class SetCC_I<bits<6> op, string instr_asm, PatFrag cond_op, Operand Od,
PatLeaf imm_type, RegisterClass RC>:
FI<op, (outs CPURegs:$rt), (ins RC:$rs, Od:$imm16),
!strconcat(instr_asm, "\t$rt, $rs, $imm16"),
[(set CPURegs:$rt, (cond_op RC:$rs, imm_type:$imm16))],
IIAlu>;
// Jump
class JumpFJ<bits<6> op, string instr_asm>:
FJ<op, (outs), (ins jmptarget:$target),
!strconcat(instr_asm, "\t$target"), [(br bb:$target)], IIBranch> {
let isBranch=1;
let isTerminator=1;
let isBarrier=1;
let hasDelaySlot = 1;
let Predicates = [RelocStatic];
}
// Unconditional branch
class UncondBranch<bits<6> op, string instr_asm>:
BranchBase<op, (outs), (ins brtarget:$imm16),
!strconcat(instr_asm, "\t$imm16"), [(br bb:$imm16)], IIBranch> {
let rs = 0;
let rt = 0;
let isBranch = 1;
let isTerminator = 1;
let isBarrier = 1;
let hasDelaySlot = 1;
let Predicates = [RelocPIC];
}
let isBranch=1, isTerminator=1, isBarrier=1, rd=0, hasDelaySlot = 1,
isIndirectBranch = 1 in
class JumpFR<bits<6> op, bits<6> func, string instr_asm, RegisterClass RC>:
FR<op, func, (outs), (ins RC:$rs),
!strconcat(instr_asm, "\t$rs"), [(brind RC:$rs)], IIBranch> {
let rt = 0;
let rd = 0;
let shamt = 0;
}
// Jump and Link (Call)
let isCall=1, hasDelaySlot=1 in {
class JumpLink<bits<6> op, string instr_asm>:
FJ<op, (outs), (ins calltarget:$target, variable_ops),
!strconcat(instr_asm, "\t$target"), [(MipsJmpLink imm:$target)],
IIBranch>;
class JumpLinkReg<bits<6> op, bits<6> func, string instr_asm,
RegisterClass RC>:
FR<op, func, (outs), (ins RC:$rs, variable_ops),
!strconcat(instr_asm, "\t$rs"), [(MipsJmpLink RC:$rs)], IIBranch> {
let rt = 0;
let rd = 31;
let shamt = 0;
}
class BranchLink<string instr_asm, bits<5> _rt, RegisterClass RC>:
FI<0x1, (outs), (ins RC:$rs, brtarget:$imm16, variable_ops),
!strconcat(instr_asm, "\t$rs, $imm16"), [], IIBranch> {
let rt = _rt;
}
}
// Mul, Div
class Mult<bits<6> func, string instr_asm, InstrItinClass itin,
RegisterClass RC, list<Register> DefRegs>:
FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
!strconcat(instr_asm, "\t$rs, $rt"), [], itin> {
let rd = 0;
let shamt = 0;
let isCommutable = 1;
let Defs = DefRegs;
}
class Mult32<bits<6> func, string instr_asm, InstrItinClass itin>:
Mult<func, instr_asm, itin, CPURegs, [HI, LO]>;
class Div<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin,
RegisterClass RC, list<Register> DefRegs>:
FR<0x00, func, (outs), (ins RC:$rs, RC:$rt),
!strconcat(instr_asm, "\t$$zero, $rs, $rt"),
[(op RC:$rs, RC:$rt)], itin> {
let rd = 0;
let shamt = 0;
let Defs = DefRegs;
}
class Div32<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
Div<op, func, instr_asm, itin, CPURegs, [HI, LO]>;
// Move from Hi/Lo
class MoveFromLOHI<bits<6> func, string instr_asm, RegisterClass RC,
list<Register> UseRegs>:
FR<0x00, func, (outs RC:$rd), (ins),
!strconcat(instr_asm, "\t$rd"), [], IIHiLo> {
let rs = 0;
let rt = 0;
let shamt = 0;
let Uses = UseRegs;
}
class MoveToLOHI<bits<6> func, string instr_asm, RegisterClass RC,
list<Register> DefRegs>:
FR<0x00, func, (outs), (ins RC:$rs),
!strconcat(instr_asm, "\t$rs"), [], IIHiLo> {
let rt = 0;
let rd = 0;
let shamt = 0;
let Defs = DefRegs;
}
class EffectiveAddress<string instr_asm, RegisterClass RC, Operand Mem> :
FMem<0x09, (outs RC:$rt), (ins Mem:$addr),
instr_asm, [(set RC:$rt, addr:$addr)], IIAlu>;
// Count Leading Ones/Zeros in Word
class CountLeading0<bits<6> func, string instr_asm, RegisterClass RC>:
FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
!strconcat(instr_asm, "\t$rd, $rs"),
[(set RC:$rd, (ctlz RC:$rs))], IIAlu>,
Requires<[HasBitCount]> {
let shamt = 0;
let rt = rd;
}
class CountLeading1<bits<6> func, string instr_asm, RegisterClass RC>:
FR<0x1c, func, (outs RC:$rd), (ins RC:$rs),
!strconcat(instr_asm, "\t$rd, $rs"),
[(set RC:$rd, (ctlz (not RC:$rs)))], IIAlu>,
Requires<[HasBitCount]> {
let shamt = 0;
let rt = rd;
}
// Sign Extend in Register.
class SignExtInReg<bits<5> sa, string instr_asm, ValueType vt,
RegisterClass RC>:
FR<0x1f, 0x20, (outs RC:$rd), (ins RC:$rt),
!strconcat(instr_asm, "\t$rd, $rt"),
[(set RC:$rd, (sext_inreg RC:$rt, vt))], NoItinerary> {
let rs = 0;
let shamt = sa;
let Predicates = [HasSEInReg];
}
// Subword Swap
class SubwordSwap<bits<6> func, bits<5> sa, string instr_asm, RegisterClass RC>:
FR<0x1f, func, (outs RC:$rd), (ins RC:$rt),
!strconcat(instr_asm, "\t$rd, $rt"), [], NoItinerary> {
let rs = 0;
let shamt = sa;
let Predicates = [HasSwap];
}
// Read Hardware
class ReadHardware<RegisterClass CPURegClass, RegisterClass HWRegClass>
: FR<0x1f, 0x3b, (outs CPURegClass:$rt), (ins HWRegClass:$rd),
"rdhwr\t$rt, $rd", [], IIAlu> {
let rs = 0;
let shamt = 0;
}
// Ext and Ins
class ExtBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
FR<0x1f, _funct, (outs RC:$rt), (ins RC:$rs, uimm16:$pos, size_ext:$sz),
!strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
[(set RC:$rt, (MipsExt RC:$rs, imm:$pos, imm:$sz))], NoItinerary> {
bits<5> pos;
bits<5> sz;
let rd = sz;
let shamt = pos;
let Predicates = [HasMips32r2];
}
class InsBase<bits<6> _funct, string instr_asm, RegisterClass RC>:
FR<0x1f, _funct, (outs RC:$rt),
(ins RC:$rs, uimm16:$pos, size_ins:$sz, RC:$src),
!strconcat(instr_asm, " $rt, $rs, $pos, $sz"),
[(set RC:$rt, (MipsIns RC:$rs, imm:$pos, imm:$sz, RC:$src))],
NoItinerary> {
bits<5> pos;
bits<5> sz;
let rd = sz;
let shamt = pos;
let Predicates = [HasMips32r2];
let Constraints = "$src = $rt";
}
// Atomic instructions with 2 source operands (ATOMIC_SWAP & ATOMIC_LOAD_*).
class Atomic2Ops<PatFrag Op, string Opstr, RegisterClass DRC,
RegisterClass PRC> :
MipsPseudo<(outs DRC:$dst), (ins PRC:$ptr, DRC:$incr),
!strconcat("atomic_", Opstr, "\t$dst, $ptr, $incr"),
[(set DRC:$dst, (Op PRC:$ptr, DRC:$incr))]>;
multiclass Atomic2Ops32<PatFrag Op, string Opstr> {
def #NAME# : Atomic2Ops<Op, Opstr, CPURegs, CPURegs>, Requires<[NotN64]>;
def _P8 : Atomic2Ops<Op, Opstr, CPURegs, CPU64Regs>, Requires<[IsN64]>;
}
// Atomic Compare & Swap.
class AtomicCmpSwap<PatFrag Op, string Width, RegisterClass DRC,
RegisterClass PRC> :
MipsPseudo<(outs DRC:$dst), (ins PRC:$ptr, DRC:$cmp, DRC:$swap),
!strconcat("atomic_cmp_swap_", Width, "\t$dst, $ptr, $cmp, $swap"),
[(set DRC:$dst, (Op PRC:$ptr, DRC:$cmp, DRC:$swap))]>;
multiclass AtomicCmpSwap32<PatFrag Op, string Width> {
def #NAME# : AtomicCmpSwap<Op, Width, CPURegs, CPURegs>, Requires<[NotN64]>;
def _P8 : AtomicCmpSwap<Op, Width, CPURegs, CPU64Regs>, Requires<[IsN64]>;
}
class LLBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
FMem<Opc, (outs RC:$rt), (ins Mem:$addr),
!strconcat(opstring, "\t$rt, $addr"), [], IILoad> {
let mayLoad = 1;
}
class SCBase<bits<6> Opc, string opstring, RegisterClass RC, Operand Mem> :
FMem<Opc, (outs RC:$dst), (ins RC:$rt, Mem:$addr),
!strconcat(opstring, "\t$rt, $addr"), [], IIStore> {
let mayStore = 1;
let Constraints = "$rt = $dst";
}
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
// As stack alignment is always done with addiu, we need a 16-bit immediate
let Defs = [SP], Uses = [SP] in {
def ADJCALLSTACKDOWN : MipsPseudo<(outs), (ins uimm16:$amt),
"!ADJCALLSTACKDOWN $amt",
[(callseq_start timm:$amt)]>;
def ADJCALLSTACKUP : MipsPseudo<(outs), (ins uimm16:$amt1, uimm16:$amt2),
"!ADJCALLSTACKUP $amt1",
[(callseq_end timm:$amt1, timm:$amt2)]>;
}
// Some assembly macros need to avoid pseudoinstructions and assembler
// automatic reodering, we should reorder ourselves.
def MACRO : MipsPseudo<(outs), (ins), ".set\tmacro", []>;
def REORDER : MipsPseudo<(outs), (ins), ".set\treorder", []>;
def NOMACRO : MipsPseudo<(outs), (ins), ".set\tnomacro", []>;
def NOREORDER : MipsPseudo<(outs), (ins), ".set\tnoreorder", []>;
// These macros are inserted to prevent GAS from complaining
// when using the AT register.
def NOAT : MipsPseudo<(outs), (ins), ".set\tnoat", []>;
def ATMACRO : MipsPseudo<(outs), (ins), ".set\tat", []>;
// When handling PIC code the assembler needs .cpload and .cprestore
// directives. If the real instructions corresponding these directives
// are used, we have the same behavior, but get also a bunch of warnings
// from the assembler.
def CPLOAD : MipsPseudo<(outs), (ins CPURegs:$picreg), ".cpload\t$picreg", []>;
def CPRESTORE : MipsPseudo<(outs), (ins i32imm:$loc), ".cprestore\t$loc", []>;
// For O32 ABI & PIC & non-fixed global base register, the following instruction
// seqeunce is emitted to set the global base register:
//
// 0. lui $2, %hi(_gp_disp)
// 1. addiu $2, $2, %lo(_gp_disp)
// 2. addu $globalbasereg, $2, $t9
//
// SETGP01 is emitted during Prologue/Epilogue insertion and then converted to
// instructions 0 and 1 in the sequence above during MC lowering.
// SETGP2 is emitted just before register allocation and converted to
// instruction 2 just prior to post-RA scheduling.
def SETGP01 : MipsPseudo<(outs CPURegs:$dst), (ins), "", []>;
def SETGP2 : MipsPseudo<(outs CPURegs:$globalreg), (ins CPURegs:$picreg), "",
[]>;
let usesCustomInserter = 1 in {
defm ATOMIC_LOAD_ADD_I8 : Atomic2Ops32<atomic_load_add_8, "load_add_8">;
defm ATOMIC_LOAD_ADD_I16 : Atomic2Ops32<atomic_load_add_16, "load_add_16">;
defm ATOMIC_LOAD_ADD_I32 : Atomic2Ops32<atomic_load_add_32, "load_add_32">;
defm ATOMIC_LOAD_SUB_I8 : Atomic2Ops32<atomic_load_sub_8, "load_sub_8">;
defm ATOMIC_LOAD_SUB_I16 : Atomic2Ops32<atomic_load_sub_16, "load_sub_16">;
defm ATOMIC_LOAD_SUB_I32 : Atomic2Ops32<atomic_load_sub_32, "load_sub_32">;
defm ATOMIC_LOAD_AND_I8 : Atomic2Ops32<atomic_load_and_8, "load_and_8">;
defm ATOMIC_LOAD_AND_I16 : Atomic2Ops32<atomic_load_and_16, "load_and_16">;
defm ATOMIC_LOAD_AND_I32 : Atomic2Ops32<atomic_load_and_32, "load_and_32">;
defm ATOMIC_LOAD_OR_I8 : Atomic2Ops32<atomic_load_or_8, "load_or_8">;
defm ATOMIC_LOAD_OR_I16 : Atomic2Ops32<atomic_load_or_16, "load_or_16">;
defm ATOMIC_LOAD_OR_I32 : Atomic2Ops32<atomic_load_or_32, "load_or_32">;
defm ATOMIC_LOAD_XOR_I8 : Atomic2Ops32<atomic_load_xor_8, "load_xor_8">;
defm ATOMIC_LOAD_XOR_I16 : Atomic2Ops32<atomic_load_xor_16, "load_xor_16">;
defm ATOMIC_LOAD_XOR_I32 : Atomic2Ops32<atomic_load_xor_32, "load_xor_32">;
defm ATOMIC_LOAD_NAND_I8 : Atomic2Ops32<atomic_load_nand_8, "load_nand_8">;
defm ATOMIC_LOAD_NAND_I16 : Atomic2Ops32<atomic_load_nand_16, "load_nand_16">;
defm ATOMIC_LOAD_NAND_I32 : Atomic2Ops32<atomic_load_nand_32, "load_nand_32">;
defm ATOMIC_SWAP_I8 : Atomic2Ops32<atomic_swap_8, "swap_8">;
defm ATOMIC_SWAP_I16 : Atomic2Ops32<atomic_swap_16, "swap_16">;
defm ATOMIC_SWAP_I32 : Atomic2Ops32<atomic_swap_32, "swap_32">;
defm ATOMIC_CMP_SWAP_I8 : AtomicCmpSwap32<atomic_cmp_swap_8, "8">;
defm ATOMIC_CMP_SWAP_I16 : AtomicCmpSwap32<atomic_cmp_swap_16, "16">;
defm ATOMIC_CMP_SWAP_I32 : AtomicCmpSwap32<atomic_cmp_swap_32, "32">;
}
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MipsI Instructions
//===----------------------------------------------------------------------===//
/// Arithmetic Instructions (ALU Immediate)
def ADDiu : ArithLogicI<0x09, "addiu", add, simm16, immSExt16, CPURegs>;
def ADDi : ArithOverflowI<0x08, "addi", add, simm16, immSExt16, CPURegs>;
def SLTi : SetCC_I<0x0a, "slti", setlt, simm16, immSExt16, CPURegs>;
def SLTiu : SetCC_I<0x0b, "sltiu", setult, simm16, immSExt16, CPURegs>;
def ANDi : ArithLogicI<0x0c, "andi", and, uimm16, immZExt16, CPURegs>;
def ORi : ArithLogicI<0x0d, "ori", or, uimm16, immZExt16, CPURegs>;
def XORi : ArithLogicI<0x0e, "xori", xor, uimm16, immZExt16, CPURegs>;
def LUi : LoadUpper<0x0f, "lui", CPURegs, uimm16>;
/// Arithmetic Instructions (3-Operand, R-Type)
def ADDu : ArithLogicR<0x00, 0x21, "addu", add, IIAlu, CPURegs, 1>;
def SUBu : ArithLogicR<0x00, 0x23, "subu", sub, IIAlu, CPURegs>;
def ADD : ArithOverflowR<0x00, 0x20, "add", IIAlu, CPURegs, 1>;
def SUB : ArithOverflowR<0x00, 0x22, "sub", IIAlu, CPURegs>;
def SLT : SetCC_R<0x00, 0x2a, "slt", setlt, CPURegs>;
def SLTu : SetCC_R<0x00, 0x2b, "sltu", setult, CPURegs>;
def AND : ArithLogicR<0x00, 0x24, "and", and, IIAlu, CPURegs, 1>;
def OR : ArithLogicR<0x00, 0x25, "or", or, IIAlu, CPURegs, 1>;
def XOR : ArithLogicR<0x00, 0x26, "xor", xor, IIAlu, CPURegs, 1>;
def NOR : LogicNOR<0x00, 0x27, "nor", CPURegs>;
/// Shift Instructions
def SLL : shift_rotate_imm32<0x00, 0x00, "sll", shl>;
def SRL : shift_rotate_imm32<0x02, 0x00, "srl", srl>;
def SRA : shift_rotate_imm32<0x03, 0x00, "sra", sra>;
def SLLV : shift_rotate_reg<0x04, 0x00, "sllv", shl, CPURegs>;
def SRLV : shift_rotate_reg<0x06, 0x00, "srlv", srl, CPURegs>;
def SRAV : shift_rotate_reg<0x07, 0x00, "srav", sra, CPURegs>;
// Rotate Instructions
let Predicates = [HasMips32r2] in {
def ROTR : shift_rotate_imm32<0x02, 0x01, "rotr", rotr>;
def ROTRV : shift_rotate_reg<0x06, 0x01, "rotrv", rotr, CPURegs>;
}
/// Load and Store Instructions
/// aligned
defm LB : LoadM32<0x20, "lb", sextloadi8>;
defm LBu : LoadM32<0x24, "lbu", zextloadi8>;
defm LH : LoadM32<0x21, "lh", sextloadi16_a>;
defm LHu : LoadM32<0x25, "lhu", zextloadi16_a>;
defm LW : LoadM32<0x23, "lw", load_a>;
defm SB : StoreM32<0x28, "sb", truncstorei8>;
defm SH : StoreM32<0x29, "sh", truncstorei16_a>;
defm SW : StoreM32<0x2b, "sw", store_a>;
/// unaligned
defm ULH : LoadM32<0x21, "ulh", sextloadi16_u, 1>;
defm ULHu : LoadM32<0x25, "ulhu", zextloadi16_u, 1>;
defm ULW : LoadM32<0x23, "ulw", load_u, 1>;
defm USH : StoreM32<0x29, "ush", truncstorei16_u, 1>;
defm USW : StoreM32<0x2b, "usw", store_u, 1>;
/// Primitives for unaligned
defm LWL : LoadUnAlign32<0x22>;
defm LWR : LoadUnAlign32<0x26>;
defm SWL : StoreUnAlign32<0x2A>;
defm SWR : StoreUnAlign32<0x2E>;
let hasSideEffects = 1 in
def SYNC : MipsInst<(outs), (ins i32imm:$stype), "sync $stype",
[(MipsSync imm:$stype)], NoItinerary, FrmOther>
{
bits<5> stype;
let Opcode = 0;
let Inst{25-11} = 0;
let Inst{10-6} = stype;
let Inst{5-0} = 15;
}
/// Load-linked, Store-conditional
def LL : LLBase<0x30, "ll", CPURegs, mem>, Requires<[NotN64]>;
def LL_P8 : LLBase<0x30, "ll", CPURegs, mem64>, Requires<[IsN64]>;
def SC : SCBase<0x38, "sc", CPURegs, mem>, Requires<[NotN64]>;
def SC_P8 : SCBase<0x38, "sc", CPURegs, mem64>, Requires<[IsN64]>;
/// Jump and Branch Instructions
def J : JumpFJ<0x02, "j">;
def JR : JumpFR<0x00, 0x08, "jr", CPURegs>;
def B : UncondBranch<0x04, "b">;
def BEQ : CBranch<0x04, "beq", seteq, CPURegs>;
def BNE : CBranch<0x05, "bne", setne, CPURegs>;
def BGEZ : CBranchZero<0x01, 1, "bgez", setge, CPURegs>;
def BGTZ : CBranchZero<0x07, 0, "bgtz", setgt, CPURegs>;
def BLEZ : CBranchZero<0x06, 0, "blez", setle, CPURegs>;
def BLTZ : CBranchZero<0x01, 0, "bltz", setlt, CPURegs>;
// All calls clobber the non-callee saved registers...
let Defs = [AT, V0, V1, A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9,
K0, K1, GP, D0, D1, D2, D3, D4, D5, D6, D7, D8, D9] in {
def JAL : JumpLink<0x03, "jal">;
def JALR : JumpLinkReg<0x00, 0x09, "jalr", CPURegs>;
def BGEZAL : BranchLink<"bgezal", 0x11, CPURegs>;
def BLTZAL : BranchLink<"bltzal", 0x10, CPURegs>;
}
let isReturn=1, isTerminator=1, hasDelaySlot=1,
isBarrier=1, hasCtrlDep=1, rd=0, rt=0, shamt=0 in
def RET : FR <0x00, 0x08, (outs), (ins CPURegs:$target),
"jr\t$target", [(MipsRet CPURegs:$target)], IIBranch>;
/// Multiply and Divide Instructions.
def MULT : Mult32<0x18, "mult", IIImul>;
def MULTu : Mult32<0x19, "multu", IIImul>;
def SDIV : Div32<MipsDivRem, 0x1a, "div", IIIdiv>;
def UDIV : Div32<MipsDivRemU, 0x1b, "divu", IIIdiv>;
def MTHI : MoveToLOHI<0x11, "mthi", CPURegs, [HI]>;
def MTLO : MoveToLOHI<0x13, "mtlo", CPURegs, [LO]>;
def MFHI : MoveFromLOHI<0x10, "mfhi", CPURegs, [HI]>;
def MFLO : MoveFromLOHI<0x12, "mflo", CPURegs, [LO]>;
/// Sign Ext In Register Instructions.
def SEB : SignExtInReg<0x10, "seb", i8, CPURegs>;
def SEH : SignExtInReg<0x18, "seh", i16, CPURegs>;
/// Count Leading
def CLZ : CountLeading0<0x20, "clz", CPURegs>;
def CLO : CountLeading1<0x21, "clo", CPURegs>;
/// Word Swap Bytes Within Halfwords
def WSBH : SubwordSwap<0x20, 0x2, "wsbh", CPURegs>;
/// No operation
let addr=0 in
def NOP : FJ<0, (outs), (ins), "nop", [], IIAlu>;
// FrameIndexes are legalized when they are operands from load/store
// instructions. The same not happens for stack address copies, so an
// add op with mem ComplexPattern is used and the stack address copy
// can be matched. It's similar to Sparc LEA_ADDRi
def LEA_ADDiu : EffectiveAddress<"addiu\t$rt, $addr", CPURegs, mem_ea>;
// DynAlloc node points to dynamically allocated stack space.
// $sp is added to the list of implicitly used registers to prevent dead code
// elimination from removing instructions that modify $sp.
let Uses = [SP] in
def DynAlloc : EffectiveAddress<"addiu\t$rt, $addr", CPURegs, mem_ea>;
// MADD*/MSUB*
def MADD : MArithR<0, "madd", MipsMAdd, 1>;
def MADDU : MArithR<1, "maddu", MipsMAddu, 1>;
def MSUB : MArithR<4, "msub", MipsMSub>;
def MSUBU : MArithR<5, "msubu", MipsMSubu>;
// MUL is a assembly macro in the current used ISAs. In recent ISA's
// it is a real instruction.
def MUL : ArithLogicR<0x1c, 0x02, "mul", mul, IIImul, CPURegs, 1>,
Requires<[HasMips32]>;
def RDHWR : ReadHardware<CPURegs, HWRegs>;
def EXT : ExtBase<0, "ext", CPURegs>;
def INS : InsBase<4, "ins", CPURegs>;
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// Small immediates
def : Pat<(i32 immSExt16:$in),
(ADDiu ZERO, imm:$in)>;
def : Pat<(i32 immZExt16:$in),
(ORi ZERO, imm:$in)>;
def : Pat<(i32 immLow16Zero:$in),
(LUi (HI16 imm:$in))>;
// Arbitrary immediates
def : Pat<(i32 imm:$imm),
(ORi (LUi (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Carry patterns
def : Pat<(subc CPURegs:$lhs, CPURegs:$rhs),
(SUBu CPURegs:$lhs, CPURegs:$rhs)>;
def : Pat<(addc CPURegs:$lhs, CPURegs:$rhs),
(ADDu CPURegs:$lhs, CPURegs:$rhs)>;
def : Pat<(addc CPURegs:$src, immSExt16:$imm),
(ADDiu CPURegs:$src, imm:$imm)>;
// Call
def : Pat<(MipsJmpLink (i32 tglobaladdr:$dst)),
(JAL tglobaladdr:$dst)>;
def : Pat<(MipsJmpLink (i32 texternalsym:$dst)),
(JAL texternalsym:$dst)>;
//def : Pat<(MipsJmpLink CPURegs:$dst),
// (JALR CPURegs:$dst)>;
// hi/lo relocs
def : Pat<(MipsHi tglobaladdr:$in), (LUi tglobaladdr:$in)>;
def : Pat<(MipsHi tblockaddress:$in), (LUi tblockaddress:$in)>;
def : Pat<(MipsHi tjumptable:$in), (LUi tjumptable:$in)>;
def : Pat<(MipsHi tconstpool:$in), (LUi tconstpool:$in)>;
def : Pat<(MipsHi tglobaltlsaddr:$in), (LUi tglobaltlsaddr:$in)>;
def : Pat<(MipsLo tglobaladdr:$in), (ADDiu ZERO, tglobaladdr:$in)>;
def : Pat<(MipsLo tblockaddress:$in), (ADDiu ZERO, tblockaddress:$in)>;
def : Pat<(MipsLo tjumptable:$in), (ADDiu ZERO, tjumptable:$in)>;
def : Pat<(MipsLo tconstpool:$in), (ADDiu ZERO, tconstpool:$in)>;
def : Pat<(MipsLo tglobaltlsaddr:$in), (ADDiu ZERO, tglobaltlsaddr:$in)>;
def : Pat<(add CPURegs:$hi, (MipsLo tglobaladdr:$lo)),
(ADDiu CPURegs:$hi, tglobaladdr:$lo)>;
def : Pat<(add CPURegs:$hi, (MipsLo tblockaddress:$lo)),
(ADDiu CPURegs:$hi, tblockaddress:$lo)>;
def : Pat<(add CPURegs:$hi, (MipsLo tjumptable:$lo)),
(ADDiu CPURegs:$hi, tjumptable:$lo)>;
def : Pat<(add CPURegs:$hi, (MipsLo tconstpool:$lo)),
(ADDiu CPURegs:$hi, tconstpool:$lo)>;
def : Pat<(add CPURegs:$hi, (MipsLo tglobaltlsaddr:$lo)),
(ADDiu CPURegs:$hi, tglobaltlsaddr:$lo)>;
// gp_rel relocs
def : Pat<(add CPURegs:$gp, (MipsGPRel tglobaladdr:$in)),
(ADDiu CPURegs:$gp, tglobaladdr:$in)>;
def : Pat<(add CPURegs:$gp, (MipsGPRel tconstpool:$in)),
(ADDiu CPURegs:$gp, tconstpool:$in)>;
// wrapper_pic
class WrapperPat<SDNode node, Instruction ADDiuOp, RegisterClass RC>:
Pat<(MipsWrapper RC:$gp, node:$in),
(ADDiuOp RC:$gp, node:$in)>;
def : WrapperPat<tglobaladdr, ADDiu, CPURegs>;
def : WrapperPat<tconstpool, ADDiu, CPURegs>;
def : WrapperPat<texternalsym, ADDiu, CPURegs>;
def : WrapperPat<tblockaddress, ADDiu, CPURegs>;
def : WrapperPat<tjumptable, ADDiu, CPURegs>;
def : WrapperPat<tglobaltlsaddr, ADDiu, CPURegs>;
// Mips does not have "not", so we expand our way
def : Pat<(not CPURegs:$in),
(NOR CPURegs:$in, ZERO)>;
// extended loads
let Predicates = [NotN64] in {
def : Pat<(i32 (extloadi1 addr:$src)), (LBu addr:$src)>;
def : Pat<(i32 (extloadi8 addr:$src)), (LBu addr:$src)>;
def : Pat<(i32 (extloadi16_a addr:$src)), (LHu addr:$src)>;
def : Pat<(i32 (extloadi16_u addr:$src)), (ULHu addr:$src)>;
}
let Predicates = [IsN64] in {
def : Pat<(i32 (extloadi1 addr:$src)), (LBu_P8 addr:$src)>;
def : Pat<(i32 (extloadi8 addr:$src)), (LBu_P8 addr:$src)>;
def : Pat<(i32 (extloadi16_a addr:$src)), (LHu_P8 addr:$src)>;
def : Pat<(i32 (extloadi16_u addr:$src)), (ULHu_P8 addr:$src)>;
}
// peepholes
let Predicates = [NotN64] in {
def : Pat<(store_a (i32 0), addr:$dst), (SW ZERO, addr:$dst)>;
def : Pat<(store_u (i32 0), addr:$dst), (USW ZERO, addr:$dst)>;
}
let Predicates = [IsN64] in {
def : Pat<(store_a (i32 0), addr:$dst), (SW_P8 ZERO, addr:$dst)>;
def : Pat<(store_u (i32 0), addr:$dst), (USW_P8 ZERO, addr:$dst)>;
}
// brcond patterns
multiclass BrcondPats<RegisterClass RC, Instruction BEQOp, Instruction BNEOp,
Instruction SLTOp, Instruction SLTuOp, Instruction SLTiOp,
Instruction SLTiuOp, Register ZEROReg> {
def : Pat<(brcond (i32 (setne RC:$lhs, 0)), bb:$dst),
(BNEOp RC:$lhs, ZEROReg, bb:$dst)>;
def : Pat<(brcond (i32 (seteq RC:$lhs, 0)), bb:$dst),
(BEQOp RC:$lhs, ZEROReg, bb:$dst)>;
def : Pat<(brcond (i32 (setge RC:$lhs, RC:$rhs)), bb:$dst),
(BEQ (SLTOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (i32 (setuge RC:$lhs, RC:$rhs)), bb:$dst),
(BEQ (SLTuOp RC:$lhs, RC:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (i32 (setge RC:$lhs, immSExt16:$rhs)), bb:$dst),
(BEQ (SLTiOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (i32 (setuge RC:$lhs, immSExt16:$rhs)), bb:$dst),
(BEQ (SLTiuOp RC:$lhs, immSExt16:$rhs), ZERO, bb:$dst)>;
def : Pat<(brcond (i32 (setle RC:$lhs, RC:$rhs)), bb:$dst),
(BEQ (SLTOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond (i32 (setule RC:$lhs, RC:$rhs)), bb:$dst),
(BEQ (SLTuOp RC:$rhs, RC:$lhs), ZERO, bb:$dst)>;
def : Pat<(brcond RC:$cond, bb:$dst),
(BNEOp RC:$cond, ZEROReg, bb:$dst)>;
}
defm : BrcondPats<CPURegs, BEQ, BNE, SLT, SLTu, SLTi, SLTiu, ZERO>;
// setcc patterns
multiclass SeteqPats<RegisterClass RC, Instruction SLTiuOp, Instruction XOROp,
Instruction SLTuOp, Register ZEROReg> {
def : Pat<(seteq RC:$lhs, RC:$rhs),
(SLTiuOp (XOROp RC:$lhs, RC:$rhs), 1)>;
def : Pat<(setne RC:$lhs, RC:$rhs),
(SLTuOp ZEROReg, (XOROp RC:$lhs, RC:$rhs))>;
}
multiclass SetlePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
def : Pat<(setle RC:$lhs, RC:$rhs),
(XORi (SLTOp RC:$rhs, RC:$lhs), 1)>;
def : Pat<(setule RC:$lhs, RC:$rhs),
(XORi (SLTuOp RC:$rhs, RC:$lhs), 1)>;
}
multiclass SetgtPats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
def : Pat<(setgt RC:$lhs, RC:$rhs),
(SLTOp RC:$rhs, RC:$lhs)>;
def : Pat<(setugt RC:$lhs, RC:$rhs),
(SLTuOp RC:$rhs, RC:$lhs)>;
}
multiclass SetgePats<RegisterClass RC, Instruction SLTOp, Instruction SLTuOp> {
def : Pat<(setge RC:$lhs, RC:$rhs),
(XORi (SLTOp RC:$lhs, RC:$rhs), 1)>;
def : Pat<(setuge RC:$lhs, RC:$rhs),
(XORi (SLTuOp RC:$lhs, RC:$rhs), 1)>;
}
multiclass SetgeImmPats<RegisterClass RC, Instruction SLTiOp,
Instruction SLTiuOp> {
def : Pat<(setge RC:$lhs, immSExt16:$rhs),
(XORi (SLTiOp RC:$lhs, immSExt16:$rhs), 1)>;
def : Pat<(setuge RC:$lhs, immSExt16:$rhs),
(XORi (SLTiuOp RC:$lhs, immSExt16:$rhs), 1)>;
}
defm : SeteqPats<CPURegs, SLTiu, XOR, SLTu, ZERO>;
defm : SetlePats<CPURegs, SLT, SLTu>;
defm : SetgtPats<CPURegs, SLT, SLTu>;
defm : SetgePats<CPURegs, SLT, SLTu>;
defm : SetgeImmPats<CPURegs, SLTi, SLTiu>;
// select MipsDynAlloc
def : Pat<(MipsDynAlloc addr:$f), (DynAlloc addr:$f)>;
// bswap pattern
def : Pat<(bswap CPURegs:$rt), (ROTR (WSBH CPURegs:$rt), 16)>;
//===----------------------------------------------------------------------===//
// Floating Point Support
//===----------------------------------------------------------------------===//
include "MipsInstrFPU.td"
include "Mips64InstrInfo.td"
include "MipsCondMov.td"