| //===-- SchedInfo.cpp - Generic code to support target schedulers ----------==// |
| // |
| // This file implements the generic part of a Scheduler description for a |
| // target. This functionality is defined in the llvm/Target/SchedInfo.h file. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Target/TargetSchedInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| |
| resourceId_t MachineResource::nextId = 0; |
| |
| // Check if fromRVec and toRVec have *any* common entries. |
| // Assume the vectors are sorted in increasing order. |
| // Algorithm copied from function set_intersection() for sorted ranges |
| // (stl_algo.h). |
| // |
| inline static bool |
| RUConflict(const std::vector<resourceId_t>& fromRVec, |
| const std::vector<resourceId_t>& toRVec) |
| { |
| |
| unsigned fN = fromRVec.size(), tN = toRVec.size(); |
| unsigned fi = 0, ti = 0; |
| |
| while (fi < fN && ti < tN) { |
| if (fromRVec[fi] < toRVec[ti]) |
| ++fi; |
| else if (toRVec[ti] < fromRVec[fi]) |
| ++ti; |
| else |
| return true; |
| } |
| return false; |
| } |
| |
| |
| static cycles_t |
| ComputeMinGap(const InstrRUsage &fromRU, |
| const InstrRUsage &toRU) |
| { |
| cycles_t minGap = 0; |
| |
| if (fromRU.numBubbles > 0) |
| minGap = fromRU.numBubbles; |
| |
| if (minGap < fromRU.numCycles) { |
| // only need to check from cycle `minGap' onwards |
| for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++) { |
| // check if instr. #2 can start executing `gap' cycles after #1 |
| // by checking for resource conflicts in each overlapping cycle |
| cycles_t numOverlap =std::min(fromRU.numCycles - gap, toRU.numCycles); |
| for (cycles_t c = 0; c <= numOverlap-1; c++) |
| if (RUConflict(fromRU.resourcesByCycle[gap + c], |
| toRU.resourcesByCycle[c])) { |
| // conflict found so minGap must be more than `gap' |
| minGap = gap+1; |
| break; |
| } |
| } |
| } |
| |
| return minGap; |
| } |
| |
| |
| //--------------------------------------------------------------------------- |
| // class TargetSchedInfo |
| // Interface to machine description for instruction scheduling |
| //--------------------------------------------------------------------------- |
| |
| TargetSchedInfo::TargetSchedInfo(const TargetMachine& tgt, |
| int NumSchedClasses, |
| const InstrClassRUsage* ClassRUsages, |
| const InstrRUsageDelta* UsageDeltas, |
| const InstrIssueDelta* IssueDeltas, |
| unsigned NumUsageDeltas, |
| unsigned NumIssueDeltas) |
| : target(tgt), |
| numSchedClasses(NumSchedClasses), mii(& tgt.getInstrInfo()), |
| classRUsages(ClassRUsages), usageDeltas(UsageDeltas), |
| issueDeltas(IssueDeltas), numUsageDeltas(NumUsageDeltas), |
| numIssueDeltas(NumIssueDeltas) |
| {} |
| |
| void |
| TargetSchedInfo::initializeResources() |
| { |
| assert(MAX_NUM_SLOTS >= (int)getMaxNumIssueTotal() |
| && "Insufficient slots for static data! Increase MAX_NUM_SLOTS"); |
| |
| // First, compute common resource usage info for each class because |
| // most instructions will probably behave the same as their class. |
| // Cannot allocate a vector of InstrRUsage so new each one. |
| // |
| std::vector<InstrRUsage> instrRUForClasses; |
| instrRUForClasses.resize(numSchedClasses); |
| for (InstrSchedClass sc = 0; sc < numSchedClasses; sc++) { |
| // instrRUForClasses.push_back(new InstrRUsage); |
| instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal()); |
| instrRUForClasses[sc].setTo(classRUsages[sc]); |
| } |
| |
| computeInstrResources(instrRUForClasses); |
| computeIssueGaps(instrRUForClasses); |
| } |
| |
| |
| void |
| TargetSchedInfo::computeInstrResources(const std::vector<InstrRUsage>& |
| instrRUForClasses) |
| { |
| int numOpCodes = mii->getNumRealOpCodes(); |
| instrRUsages.resize(numOpCodes); |
| |
| // First get the resource usage information from the class resource usages. |
| for (MachineOpCode op = 0; op < numOpCodes; ++op) { |
| InstrSchedClass sc = getSchedClass(op); |
| assert(sc < numSchedClasses); |
| instrRUsages[op] = instrRUForClasses[sc]; |
| } |
| |
| // Now, modify the resource usages as specified in the deltas. |
| for (unsigned i = 0; i < numUsageDeltas; ++i) { |
| MachineOpCode op = usageDeltas[i].opCode; |
| assert(op < numOpCodes); |
| instrRUsages[op].addUsageDelta(usageDeltas[i]); |
| } |
| |
| // Then modify the issue restrictions as specified in the deltas. |
| for (unsigned i = 0; i < numIssueDeltas; ++i) { |
| MachineOpCode op = issueDeltas[i].opCode; |
| assert(op < numOpCodes); |
| instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]); |
| } |
| } |
| |
| |
| void |
| TargetSchedInfo::computeIssueGaps(const std::vector<InstrRUsage>& |
| instrRUForClasses) |
| { |
| int numOpCodes = mii->getNumRealOpCodes(); |
| issueGaps.resize(numOpCodes); |
| conflictLists.resize(numOpCodes); |
| |
| assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1 |
| && "numOpCodes invalid for implementation of class OpCodePair!"); |
| |
| // First, compute issue gaps between pairs of classes based on common |
| // resources usages for each class, because most instruction pairs will |
| // usually behave the same as their class. |
| // |
| int classPairGaps[numSchedClasses][numSchedClasses]; |
| for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++) |
| for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++) { |
| int classPairGap = ComputeMinGap(instrRUForClasses[fromSC], |
| instrRUForClasses[toSC]); |
| classPairGaps[fromSC][toSC] = classPairGap; |
| } |
| |
| // Now, for each pair of instructions, use the class pair gap if both |
| // instructions have identical resource usage as their respective classes. |
| // If not, recompute the gap for the pair from scratch. |
| |
| longestIssueConflict = 0; |
| |
| for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++) |
| for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++) { |
| int instrPairGap = |
| (instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass) |
| ? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)] |
| : ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]); |
| |
| if (instrPairGap > 0) { |
| this->setGap(instrPairGap, fromOp, toOp); |
| conflictLists[fromOp].push_back(toOp); |
| longestIssueConflict=std::max(longestIssueConflict, instrPairGap); |
| } |
| } |
| } |
| |
| |
| void InstrRUsage::setTo(const InstrClassRUsage& classRU) { |
| sameAsClass = true; |
| isSingleIssue = classRU.isSingleIssue; |
| breaksGroup = classRU.breaksGroup; |
| numBubbles = classRU.numBubbles; |
| |
| for (unsigned i=0; i < classRU.numSlots; i++) { |
| unsigned slot = classRU.feasibleSlots[i]; |
| assert(slot < feasibleSlots.size() && "Invalid slot specified!"); |
| this->feasibleSlots[slot] = true; |
| } |
| |
| numCycles = classRU.totCycles; |
| resourcesByCycle.resize(this->numCycles); |
| |
| for (unsigned i=0; i < classRU.numRUEntries; i++) |
| for (unsigned c=classRU.V[i].startCycle, NC = c + classRU.V[i].numCycles; |
| c < NC; c++) |
| this->resourcesByCycle[c].push_back(classRU.V[i].resourceId); |
| |
| // Sort each resource usage vector by resourceId_t to speed up conflict |
| // checking |
| for (unsigned i=0; i < this->resourcesByCycle.size(); i++) |
| sort(resourcesByCycle[i].begin(), resourcesByCycle[i].end()); |
| } |
| |
| // Add the extra resource usage requirements specified in the delta. |
| // Note that a negative value of `numCycles' means one entry for that |
| // resource should be deleted for each cycle. |
| // |
| void InstrRUsage::addUsageDelta(const InstrRUsageDelta &delta) { |
| int NC = delta.numCycles; |
| sameAsClass = false; |
| |
| // resize the resources vector if more cycles are specified |
| unsigned maxCycles = this->numCycles; |
| maxCycles = std::max(maxCycles, delta.startCycle + abs(NC) - 1); |
| if (maxCycles > this->numCycles) { |
| this->resourcesByCycle.resize(maxCycles); |
| this->numCycles = maxCycles; |
| } |
| |
| if (NC >= 0) |
| for (unsigned c=delta.startCycle, last=c+NC-1; c <= last; c++) |
| this->resourcesByCycle[c].push_back(delta.resourceId); |
| else |
| // Remove the resource from all NC cycles. |
| for (unsigned c=delta.startCycle, last=(c-NC)-1; c <= last; c++) { |
| // Look for the resource backwards so we remove the last entry |
| // for that resource in each cycle. |
| std::vector<resourceId_t>& rvec = this->resourcesByCycle[c]; |
| int r; |
| for (r = rvec.size() - 1; r >= 0; r--) |
| if (rvec[r] == delta.resourceId) { |
| // found last entry for the resource |
| rvec.erase(rvec.begin() + r); |
| break; |
| } |
| assert(r >= 0 && "Resource to remove was unused in cycle c!"); |
| } |
| } |