| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| "http://www.w3.org/TR/html4/strict.dtd"> |
| <html> |
| <head> |
| <title>Writing an LLVM Compiler Backend</title> |
| <link rel="stylesheet" href="llvm.css" type="text/css"> |
| </head> |
| |
| <body> |
| |
| <div class="doc_title"> |
| Writing an LLVM Compiler Backend |
| </div> |
| |
| <ol> |
| <li><a href="#intro">Introduction</a> |
| <ul> |
| <li><a href="#Audience">Audience</a></li> |
| <li><a href="#Prerequisite">Prerequisite Reading</a></li> |
| <li><a href="#Basic">Basic Steps</a></li> |
| <li><a href="#Preliminaries">Preliminaries</a></li> |
| </ul> |
| <li><a href="#TargetMachine">Target Machine</a></li> |
| <li><a href="#RegisterSet">Register Set and Register Classes</a> |
| <ul> |
| <li><a href="#RegisterDef">Defining a Register</a></li> |
| <li><a href="#RegisterClassDef">Defining a Register Class</a></li> |
| <li><a href="#implementRegister">Implement a subclass of TargetRegisterInfo</a></li> |
| </ul></li> |
| <li><a href="#InstructionSet">Instruction Set</a> |
| <ul> |
| <li><a href="#operandMapping">Instruction Operand Mapping</a></li> |
| <li><a href="#implementInstr">Implement a subclass of TargetInstrInfo</a></li> |
| <li><a href="#branchFolding">Branch Folding and If Conversion</a></li> |
| </ul></li> |
| <li><a href="#InstructionSelector">Instruction Selector</a> |
| <ul> |
| <li><a href="#LegalizePhase">The SelectionDAG Legalize Phase</a> |
| <ul> |
| <li><a href="#promote">Promote</a></li> |
| <li><a href="#expand">Expand</a></li> |
| <li><a href="#custom">Custom</a></li> |
| <li><a href="#legal">Legal</a></li> |
| </ul></li> |
| <li><a href="#callingConventions">Calling Conventions</a></li> |
| </ul></li> |
| <li><a href="#assemblyPrinter">Assembly Printer</a></li> |
| <li><a href="#subtargetSupport">Subtarget Support</a></li> |
| <li><a href="#jitSupport">JIT Support</a> |
| <ul> |
| <li><a href="#mce">Machine Code Emitter</a></li> |
| <li><a href="#targetJITInfo">Target JIT Info</a></li> |
| </ul></li> |
| </ol> |
| |
| <div class="doc_author"> |
| <p>Written by <a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a></p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="intro">Introduction</a> |
| </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| <p>This document describes techniques for writing compiler backends |
| that convert the LLVM IR (intermediate representation) to code for a specified |
| machine or other languages. Code intended for a specific machine can take the |
| form of either assembly code or binary code (usable for a JIT compiler). </p> |
| |
| <p>The backend of LLVM features a target-independent code generator |
| that may create output for several types of target CPUs, including X86, |
| PowerPC, Alpha, and SPARC. The backend may also be used to generate code |
| targeted at SPUs of the Cell processor or GPUs to support the execution of |
| compute kernels.</p> |
| |
| <p>The document focuses on existing examples found in subdirectories |
| of <tt>llvm/lib/Target</tt> in a downloaded LLVM release. In particular, this document |
| focuses on the example of creating a static compiler (one that emits text |
| assembly) for a SPARC target, because SPARC has fairly standard |
| characteristics, such as a RISC instruction set and straightforward calling |
| conventions.</p> |
| </div> |
| |
| <div class="doc_subsection"> |
| <a name="Audience">Audience</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p>The audience for this document is anyone who needs to write an |
| LLVM backend to generate code for a specific hardware or software target.</p> |
| </div> |
| |
| <div class="doc_subsection"> |
| <a name="Prerequisite">Prerequisite Reading</a> |
| </div> |
| |
| <div class="doc_text"> |
| These essential documents must be read before reading this document: |
| <ul> |
| <li> |
| <i><a href="http://www.llvm.org/docs/LangRef.html">LLVM Language Reference Manual</a></i> - |
| a reference manual for the LLVM assembly language |
| </li> |
| <li> |
| <i><a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM Target-Independent Code Generator </a></i> - |
| a guide to the components (classes and code generation algorithms) for translating |
| the LLVM internal representation to the machine code for a specified target. |
| Pay particular attention to the descriptions of code generation stages: |
| Instruction Selection, Scheduling and Formation, SSA-based Optimization, |
| Register Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations, |
| and Code Emission. |
| </li> |
| <li> |
| <i><a href="http://www.llvm.org/docs/TableGenFundamentals.html">TableGen Fundamentals</a></i> - |
| a document that describes the TableGen (tblgen) application that manages domain-specific |
| information to support LLVM code generation. TableGen processes input from a |
| target description file (.td suffix) and generates C++ code that can be used |
| for code generation. |
| </li> |
| <li> |
| <i><a href="http://www.llvm.org/docs/WritingAnLLVMPass.html">Writing an LLVM Pass</a></i> - |
| The assembly printer is a FunctionPass, as are several SelectionDAG processing steps. |
| </li> |
| </ul> |
| To follow the SPARC examples in this document, have a copy of |
| <i><a href="http://www.sparc.org/standards/V8.pdf">The SPARC Architecture Manual, Version 8</a></i> |
| for reference. For details about the ARM instruction set, refer to the |
| <i><a href="http://infocenter.arm.com/">ARM Architecture Reference Manual</a></i> |
| For more about the GNU Assembler format (GAS), see |
| <i><a href="http://sourceware.org/binutils/docs/as/index.html">Using As</a></i> |
| especially for the assembly printer. <i>Using As</i> contains lists of target machine dependent features. |
| </div> |
| |
| <div class="doc_subsection"> |
| <a name="Basic">Basic Steps</a> |
| </div> |
| <div class="doc_text"> |
| <p>To write a compiler |
| backend for LLVM that converts the LLVM IR (intermediate representation) |
| to code for a specified target (machine or other language), follow these steps:</p> |
| |
| <ul> |
| <li> |
| Create a subclass of the TargetMachine class that describes |
| characteristics of your target machine. Copy existing examples of specific |
| TargetMachine class and header files; for example, start with <tt>SparcTargetMachine.cpp</tt> |
| and <tt>SparcTargetMachine.h</tt>, but change the file names for your target. Similarly, |
| change code that references "Sparc" to reference your target. </li> |
| |
| <li>Describe the register set of the target. Use TableGen to generate |
| code for register definition, register aliases, and register classes from a |
| target-specific <tt>RegisterInfo.td</tt> input file. You should also write additional |
| code for a subclass of TargetRegisterInfo class that represents the class |
| register file data used for register allocation and also describes the |
| interactions between registers.</li> |
| |
| <li>Describe the instruction set of the target. Use TableGen to |
| generate code for target-specific instructions from target-specific versions of |
| <tt>TargetInstrFormats.td</tt> and <tt>TargetInstrInfo.td</tt>. You should write additional code |
| for a subclass of the TargetInstrInfo |
| class to represent machine |
| instructions supported by the target machine. </li> |
| |
| <li>Describe the selection and conversion of the LLVM IR from a DAG (directed |
| acyclic graph) representation of instructions to native target-specific |
| instructions. Use TableGen to generate code that matches patterns and selects |
| instructions based on additional information in a target-specific version of |
| <tt>TargetInstrInfo.td</tt>. Write code for <tt>XXXISelDAGToDAG.cpp</tt> |
| (where XXX identifies the specific target) to perform pattern |
| matching and DAG-to-DAG instruction selection. Also write code in <tt>XXXISelLowering.cpp</tt> |
| to replace or remove operations and data types that are not supported natively |
| in a SelectionDAG. </li> |
| |
| <li>Write code for an |
| assembly printer that converts LLVM IR to a GAS format for your target machine. |
| You should add assembly strings to the instructions defined in your |
| target-specific version of <tt>TargetInstrInfo.td</tt>. You should also write code for a |
| subclass of AsmPrinter that performs the LLVM-to-assembly conversion and a |
| trivial subclass of TargetAsmInfo.</li> |
| |
| <li>Optionally, add support for subtargets (that is, variants with |
| different capabilities). You should also write code for a subclass of the |
| TargetSubtarget class, which allows you to use the <tt>-mcpu=</tt> |
| and <tt>-mattr=</tt> command-line options.</li> |
| |
| <li>Optionally, add JIT support and create a machine code emitter (subclass |
| of TargetJITInfo) that is used to emit binary code directly into memory. </li> |
| </ul> |
| |
| <p>In the .cpp and .h files, initially stub up these methods and |
| then implement them later. Initially, you may not know which private members |
| that the class will need and which components will need to be subclassed.</p> |
| </div> |
| |
| <div class="doc_subsection"> |
| <a name="Preliminaries">Preliminaries</a> |
| </div> |
| <div class="doc_text"> |
| <p>To actually create |
| your compiler backend, you need to create and modify a few files. The absolute |
| minimum is discussed here, but to actually use the LLVM target-independent code |
| generator, you must perform the steps described in the <a |
| href="http://www.llvm.org/docs/CodeGenerator.html">LLVM |
| Target-Independent Code Generator</a> document.</p> |
| |
| <p>First, you should |
| create a subdirectory under <tt>lib/Target</tt> to hold all the files related to your |
| target. If your target is called "Dummy", create the directory |
| <tt>lib/Target/Dummy</tt>.</p> |
| |
| <p>In this new |
| directory, create a <tt>Makefile</tt>. It is easiest to copy a <tt>Makefile</tt> of another |
| target and modify it. It should at least contain the <tt>LEVEL</tt>, <tt>LIBRARYNAME</tt> and |
| <tt>TARGET</tt> variables, and then include <tt>$(LEVEL)/Makefile.common</tt>. The library can be |
| named LLVMDummy (for example, see the MIPS target). Alternatively, you can |
| split the library into LLVMDummyCodeGen and LLVMDummyAsmPrinter, the latter of |
| which should be implemented in a subdirectory below <tt>lib/Target/Dummy</tt> (for |
| example, see the PowerPC target).</p> |
| |
| <p>Note that these two |
| naming schemes are hardcoded into <tt>llvm-config</tt>. Using any other naming scheme |
| will confuse <tt>llvm-config</tt> and produce lots of (seemingly unrelated) linker |
| errors when linking <tt>llc</tt>.</p> |
| |
| <p>To make your target |
| actually do something, you need to implement a subclass of TargetMachine. This |
| implementation should typically be in the file |
| <tt>lib/Target/DummyTargetMachine.cpp</tt>, but any file in the <tt>lib/Target</tt> directory will |
| be built and should work. To use LLVM's target |
| independent code generator, you should do what all current machine backends do: create a subclass |
| of LLVMTargetMachine. (To create a target from scratch, create a subclass of |
| TargetMachine.)</p> |
| |
| <p>To get LLVM to |
| actually build and link your target, you need to add it to the <tt>TARGETS_TO_BUILD</tt> |
| variable. To do this, you modify the configure script to know about your target |
| when parsing the <tt>--enable-targets</tt> option. Search the configure script for <tt>TARGETS_TO_BUILD</tt>, |
| add your target to the lists there (some creativity required) and then |
| reconfigure. Alternatively, you can change <tt>autotools/configure.ac</tt> and |
| regenerate configure by running <tt>./autoconf/AutoRegen.sh</tt></p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="TargetMachine">Target Machine</a> |
| </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_text"> |
| <p>LLVMTargetMachine is designed as a base class for targets |
| implemented with the LLVM target-independent code generator. The |
| LLVMTargetMachine class should be specialized by a concrete target class that |
| implements the various virtual methods. LLVMTargetMachine is defined as a |
| subclass of TargetMachine in <tt>include/llvm/Target/TargetMachine.h</tt>. The |
| TargetMachine class implementation (<tt>TargetMachine.cpp</tt>) also processes numerous |
| command-line options. </p> |
| |
| <p>To create a concrete target-specific subclass of |
| LLVMTargetMachine, start by copying an existing TargetMachine class and header. |
| You should name the files that you create to reflect your specific target. For |
| instance, for the SPARC target, name the files <tt>SparcTargetMachine.h</tt> and |
| <tt>SparcTargetMachine.cpp</tt></p> |
| |
| <p>For a target machine XXX, the implementation of XXXTargetMachine |
| must have access methods to obtain objects that represent target components. |
| These methods are named <tt>get*Info</tt> and are intended to obtain the instruction set |
| (<tt>getInstrInfo</tt>), register set (<tt>getRegisterInfo</tt>), stack frame layout |
| (<tt>getFrameInfo</tt>), and similar information. XXXTargetMachine must also implement |
| the <tt>getTargetData</tt> method to access an object with target-specific data |
| characteristics, such as data type size and alignment requirements. </p> |
| |
| <p>For instance, for the SPARC target, the header file <tt>SparcTargetMachine.h</tt> |
| declares prototypes for several <tt>get*Info</tt> and <tt>getTargetData</tt> methods that simply |
| return a class member. </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>namespace llvm { |
| |
| class Module; |
| |
| class SparcTargetMachine : public LLVMTargetMachine { |
| const TargetData DataLayout; // Calculates type size & alignment |
| SparcSubtarget Subtarget; |
| SparcInstrInfo InstrInfo; |
| TargetFrameInfo FrameInfo; |
| |
| protected: |
| virtual const TargetAsmInfo *createTargetAsmInfo() |
| const; |
| |
| public: |
| SparcTargetMachine(const Module &M, const std::string &FS); |
| |
| virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; } |
| virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; } |
| virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; } |
| virtual const TargetRegisterInfo *getRegisterInfo() const { |
| return &InstrInfo.getRegisterInfo(); |
| } |
| virtual const TargetData *getTargetData() const { return &DataLayout; } |
| static unsigned getModuleMatchQuality(const Module &M); |
| |
| // Pass Pipeline Configuration |
| virtual bool addInstSelector(PassManagerBase &PM, bool Fast); |
| virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast); |
| virtual bool addAssemblyEmitter(PassManagerBase &PM, bool Fast, |
| std::ostream &Out); |
| }; |
| |
| } // end namespace llvm |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <ul> |
| <li><tt>getInstrInfo </tt></li> |
| <li><tt>getRegisterInfo</tt></li> |
| <li><tt>getFrameInfo</tt></li> |
| <li><tt>getTargetData</tt></li> |
| <li><tt>getSubtargetImpl</tt></li> |
| </ul> |
| <p>For some targets, you also need to support the following methods: |
| </p> |
| |
| <ul> |
| <li><tt>getTargetLowering </tt></li> |
| <li><tt>getJITInfo</tt></li> |
| </ul> |
| <p>In addition, the XXXTargetMachine constructor should specify a |
| TargetDescription string that determines the data layout for the target machine, |
| including characteristics such as pointer size, alignment, and endianness. For |
| example, the constructor for SparcTargetMachine contains the following: </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre> |
| SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS) |
| : DataLayout("E-p:32:32-f128:128:128"), |
| Subtarget(M, FS), InstrInfo(Subtarget), |
| FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) { |
| } |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>Hyphens separate portions of the TargetDescription string. </p> |
| <ul> |
| <li>The "E" in the string indicates a big-endian target data model; a |
| lower-case "e" would indicate little-endian. </li> |
| <li>"p:" is followed by pointer information: size, ABI alignment, and |
| preferred alignment. If only two figures follow "p:", then the first value is |
| pointer size, and the second value is both ABI and preferred alignment.</li> |
| <li>then a letter for numeric type alignment: "i", "f", "v", or "a" |
| (corresponding to integer, floating point, vector, or aggregate). "i", "v", or |
| "a" are followed by ABI alignment and preferred alignment. "f" is followed by |
| three values, the first indicates the size of a long double, then ABI alignment |
| and preferred alignment.</li> |
| </ul> |
| <p>You must also register your target using the RegisterTarget |
| template. (See the TargetMachineRegistry class.) For example, in <tt>SparcTargetMachine.cpp</tt>, |
| the target is registered with:</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre> |
| namespace { |
| // Register the target. |
| RegisterTarget<SparcTargetMachine>X("sparc", "SPARC"); |
| } |
| </pre> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="RegisterSet">Register Set and Register Classes</a> |
| </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_text"> |
| <p>You should describe |
| a concrete target-specific class |
| that represents the register file of a target machine. This class is |
| called XXXRegisterInfo (where XXX identifies the target) and represents the |
| class register file data that is used for register allocation and also |
| describes the interactions between registers. </p> |
| |
| <p>You also need to |
| define register classes to categorize related registers. A register class |
| should be added for groups of registers that are all treated the same way for |
| some instruction. Typical examples are register classes that include integer, |
| floating-point, or vector registers. A register allocator allows an |
| instruction to use any register in a specified register class to perform the |
| instruction in a similar manner. Register classes allocate virtual registers to |
| instructions from these sets, and register classes let the target-independent |
| register allocator automatically choose the actual registers.</p> |
| |
| <p>Much of the code for registers, including register definition, |
| register aliases, and register classes, is generated by TableGen from |
| <tt>XXXRegisterInfo.td</tt> input files and placed in <tt>XXXGenRegisterInfo.h.inc</tt> and |
| <tt>XXXGenRegisterInfo.inc</tt> output files. Some of the code in the implementation of |
| XXXRegisterInfo requires hand-coding. </p> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="RegisterDef">Defining a Register</a> |
| </div> |
| <div class="doc_text"> |
| <p>The <tt>XXXRegisterInfo.td</tt> file typically starts with register definitions |
| for a target machine. The Register class (specified in <tt>Target.td</tt>) is used to |
| define an object for each register. The specified string n becomes the Name of |
| the register. The basic Register object does not have any subregisters and does |
| not specify any aliases.</p> |
| </div> |
| <div class="doc_code"> |
| <pre> |
| class Register<string n> { |
| string Namespace = ""; |
| string AsmName = n; |
| string Name = n; |
| int SpillSize = 0; |
| int SpillAlignment = 0; |
| list<Register> Aliases = []; |
| list<Register> SubRegs = []; |
| list<int> DwarfNumbers = []; |
| } |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>For example, in the <tt>X86RegisterInfo.td</tt> file, there are register |
| definitions that utilize the Register class, such as:</p> |
| </div> |
| <div class="doc_code"> |
| <pre> |
| def AL : Register<"AL">, |
| DwarfRegNum<[0, 0, 0]>; |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>This defines the register AL and assigns it values (with |
| DwarfRegNum) that are used by <tt>gcc</tt>, <tt>gdb</tt>, or a debug information writer (such as |
| DwarfWriter in <tt>llvm/lib/CodeGen</tt>) to identify a register. For register AL, |
| DwarfRegNum takes an array of 3 values, representing 3 different modes: the |
| first element is for X86-64, the second for EH (exception handling) on X86-32, |
| and the third is generic. -1 is a special Dwarf number that indicates the gcc |
| number is undefined, and -2 indicates the register number is invalid for this |
| mode.</p> |
| |
| <p>From the previously described line in the <tt>X86RegisterInfo.td</tt> |
| file, TableGen generates this code in the <tt>X86GenRegisterInfo.inc</tt> file:</p> |
| </div> |
| <div class="doc_code"> |
| <pre> |
| static const unsigned GR8[] = { X86::AL, ... }; |
| |
| const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 }; |
| |
| const TargetRegisterDesc RegisterDescriptors[] = { |
| ... |
| { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ... |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>From the register info file, TableGen generates a |
| TargetRegisterDesc object for each register. TargetRegisterDesc is defined in |
| <tt>include/llvm/Target/TargetRegisterInfo.h</tt> with the following fields:</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre> |
| struct TargetRegisterDesc { |
| const char *AsmName; // Assembly language name for the register |
| const char *Name; // Printable name for the reg (for debugging) |
| const unsigned *AliasSet; // Register Alias Set |
| const unsigned *SubRegs; // Sub-register set |
| const unsigned *ImmSubRegs; // Immediate sub-register set |
| const unsigned *SuperRegs; // Super-register set |
| };</pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>TableGen uses the entire target description file (<tt>.td</tt>) to |
| determine text names for the register (in the AsmName and Name fields of |
| TargetRegisterDesc) and the relationships of other registers to the defined |
| register (in the other TargetRegisterDesc fields). In this example, other |
| definitions establish the registers "AX", "EAX", and "RAX" as aliases for one |
| another, so TableGen generates a null-terminated array (AL_AliasSet) for this |
| register alias set. </p> |
| |
| <p>The Register class is commonly used as a base class for more |
| complex classes. In <tt>Target.td</tt>, the Register class is the base for the |
| RegisterWithSubRegs class that is used to define registers that need to specify |
| subregisters in the SubRegs list, as shown here:</p> |
| </div> |
| <div class="doc_code"> |
| <pre> |
| class RegisterWithSubRegs<string n, |
| list<Register> subregs> : Register<n> { |
| let SubRegs = subregs; |
| }</pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>In <tt>SparcRegisterInfo.td</tt>, additional register classes are defined |
| for SPARC: a Register subclass, SparcReg, and further subclasses: Ri, Rf, and |
| Rd. SPARC registers are identified by 5-bit ID numbers, which is a feature |
| common to these subclasses. Note the use of ‘let’ expressions to override values |
| that are initially defined in a superclass (such as SubRegs field in the Rd |
| class). </p> |
| </div> |
| <div class="doc_code"> |
| <pre> |
| class SparcReg<string n> : Register<n> { |
| field bits<5> Num; |
| let Namespace = "SP"; |
| } |
| // Ri - 32-bit integer registers |
| class Ri<bits<5> num, string n> : |
| SparcReg<n> { |
| let Num = num; |
| } |
| // Rf - 32-bit floating-point registers |
| class Rf<bits<5> num, string n> : |
| SparcReg<n> { |
| let Num = num; |
| } |
| // Rd - Slots in the FP register file for 64-bit |
| floating-point values. |
| class Rd<bits<5> num, string n, |
| list<Register> subregs> : SparcReg<n> { |
| let Num = num; |
| let SubRegs = subregs; |
| }</pre> |
| </div> |
| <div class="doc_text"> |
| <p>In the <tt>SparcRegisterInfo.td</tt> file, there are register definitions |
| that utilize these subclasses of Register, such as:</p> |
| </div> |
| <div class="doc_code"> |
| <pre> |
| def G0 : Ri< 0, "G0">, |
| DwarfRegNum<[0]>; |
| def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>; |
| ... |
| def F0 : Rf< 0, "F0">, |
| DwarfRegNum<[32]>; |
| def F1 : Rf< 1, "F1">, |
| DwarfRegNum<[33]>; |
| ... |
| def D0 : Rd< 0, "F0", [F0, F1]>, |
| DwarfRegNum<[32]>; |
| def D1 : Rd< 2, "F2", [F2, F3]>, |
| DwarfRegNum<[34]>; |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>The last two registers shown above (D0 and D1) are double-precision |
| floating-point registers that are aliases for pairs of single-precision |
| floating-point sub-registers. In addition to aliases, the sub-register and |
| super-register relationships of the defined register are in fields of a |
| register’s TargetRegisterDesc.</p> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="RegisterClassDef">Defining a Register Class</a> |
| </div> |
| <div class="doc_text"> |
| <p>The RegisterClass class (specified in <tt>Target.td</tt>) is used to |
| define an object that represents a group of related registers and also defines |
| the default allocation order of the registers. A target description file |
| <tt>XXXRegisterInfo.td</tt> that uses <tt>Target.td</tt> can construct register classes using the |
| following class:</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre> |
| class RegisterClass<string namespace, |
| list<ValueType> regTypes, int alignment, |
| list<Register> regList> { |
| string Namespace = namespace; |
| list<ValueType> RegTypes = regTypes; |
| int Size = 0; // spill size, in bits; zero lets tblgen pick the size |
| int Alignment = alignment; |
| |
| // CopyCost is the cost of copying a value between two registers |
| // default value 1 means a single instruction |
| // A negative value means copying is extremely expensive or impossible |
| int CopyCost = 1; |
| list<Register> MemberList = regList; |
| |
| // for register classes that are subregisters of this class |
| list<RegisterClass> SubRegClassList = []; |
| |
| code MethodProtos = [{}]; // to insert arbitrary code |
| code MethodBodies = [{}]; |
| }</pre> |
| </div> |
| <div class="doc_text"> |
| <p>To define a RegisterClass, use the following 4 arguments:</p> |
| <ul> |
| <li>The first argument of the definition is the name of the |
| namespace. </li> |
| |
| <li>The second argument is a list of ValueType register type values |
| that are defined in <tt>include/llvm/CodeGen/ValueTypes.td</tt>. Defined values include |
| integer types (such as i16, i32, and i1 for Boolean), floating-point types |
| (f32, f64), and vector types (for example, v8i16 for an 8 x i16 vector). All |
| registers in a RegisterClass must have the same ValueType, but some registers |
| may store vector data in different configurations. For example a register that |
| can process a 128-bit vector may be able to handle 16 8-bit integer elements, 8 |
| 16-bit integers, 4 32-bit integers, and so on. </li> |
| |
| <li>The third argument of the RegisterClass definition specifies the |
| alignment required of the registers when they are stored or loaded to memory.</li> |
| |
| <li>The final argument, <tt>regList</tt>, specifies which registers are in |
| this class. If an <tt>allocation_order_*</tt> method is not specified, then <tt>regList</tt> also |
| defines the order of allocation used by the register allocator.</li> |
| </ul> |
| |
| <p>In <tt>SparcRegisterInfo.td</tt>, three RegisterClass objects are defined: |
| FPRegs, DFPRegs, and IntRegs. For all three register classes, the first |
| argument defines the namespace with the string “SP”. FPRegs defines a group of 32 |
| single-precision floating-point registers (F0 to F31); DFPRegs defines a group |
| of 16 double-precision registers (D0-D15). For IntRegs, the MethodProtos and |
| MethodBodies methods are used by TableGen to insert the specified code into generated |
| output.</p> |
| </div> |
| <div class="doc_code"> |
| <pre> |
| def FPRegs : RegisterClass<"SP", [f32], 32, [F0, F1, F2, F3, F4, F5, F6, F7, |
| F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21, F22, |
| F23, F24, F25, F26, F27, F28, F29, F30, F31]>; |
| |
| def DFPRegs : RegisterClass<"SP", [f64], 64, [D0, D1, D2, D3, D4, D5, D6, D7, |
| D8, D9, D10, D11, D12, D13, D14, D15]>; |
| |
| def IntRegs : RegisterClass<"SP", [i32], 32, [L0, L1, L2, L3, L4, L5, L6, L7, |
| I0, I1, I2, I3, I4, I5, |
| O0, O1, O2, O3, O4, O5, O7, |
| G1, |
| // Non-allocatable regs: |
| G2, G3, G4, |
| O6, // stack ptr |
| I6, // frame ptr |
| I7, // return address |
| G0, // constant zero |
| G5, G6, G7 // reserved for kernel |
| ]> { |
| let MethodProtos = [{ |
| iterator allocation_order_end(const MachineFunction &MF) const; |
| }]; |
| let MethodBodies = [{ |
| IntRegsClass::iterator |
| IntRegsClass::allocation_order_end(const MachineFunction &MF) const { |
| return end()-10 // Don't allocate special registers |
| -1; |
| } |
| }]; |
| } |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>Using <tt>SparcRegisterInfo.td</tt> with TableGen generates several output |
| files that are intended for inclusion in other source code that you write. |
| <tt>SparcRegisterInfo.td</tt> generates <tt>SparcGenRegisterInfo.h.inc</tt>, which should be |
| included in the header file for the implementation of the SPARC register |
| implementation that you write (<tt>SparcRegisterInfo.h</tt>). In |
| <tt>SparcGenRegisterInfo.h.inc</tt> a new structure is defined called |
| SparcGenRegisterInfo that uses TargetRegisterInfo as its base. It also |
| specifies types, based upon the defined register classes: DFPRegsClass, FPRegsClass, |
| and IntRegsClass. </p> |
| |
| <p><tt>SparcRegisterInfo.td</tt> also generates SparcGenRegisterInfo.inc, |
| which is included at the bottom of <tt>SparcRegisterInfo.cpp</tt>, the SPARC register |
| implementation. The code below shows only the generated integer registers and |
| associated register classes. The order of registers in IntRegs reflects the |
| order in the definition of IntRegs in the target description file. Take special |
| note of the use of MethodBodies in <tt>SparcRegisterInfo.td</tt> to create code in |
| <tt>SparcGenRegisterInfo.inc</tt>. MethodProtos generates similar code in |
| <tt>SparcGenRegisterInfo.h.inc</tt>.</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre> // IntRegs Register Class... |
| static const unsigned IntRegs[] = { |
| SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5, |
| SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5, SP::O0, SP::O1, |
| SP::O2, SP::O3, SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3, SP::G4, SP::O6, |
| SP::I6, SP::I7, SP::G0, SP::G5, SP::G6, SP::G7, |
| }; |
| |
| // IntRegsVTs Register Class Value Types... |
| static const MVT::ValueType IntRegsVTs[] = { |
| MVT::i32, MVT::Other |
| }; |
| namespace SP { // Register class instances |
| DFPRegsClass DFPRegsRegClass; |
| FPRegsClass FPRegsRegClass; |
| IntRegsClass IntRegsRegClass; |
| ... |
| |
| // IntRegs Sub-register Classess... |
| static const TargetRegisterClass* const IntRegsSubRegClasses [] = { |
| NULL |
| }; |
| ... |
| // IntRegs Super-register Classess... |
| static const TargetRegisterClass* const IntRegsSuperRegClasses [] = { |
| NULL |
| }; |
| |
| // IntRegs Register Class sub-classes... |
| static const TargetRegisterClass* const IntRegsSubclasses [] = { |
| NULL |
| }; |
| ... |
| |
| // IntRegs Register Class super-classes... |
| static const TargetRegisterClass* const IntRegsSuperclasses [] = { |
| NULL |
| }; |
| ... |
| |
| IntRegsClass::iterator |
| IntRegsClass::allocation_order_end(const MachineFunction &MF) const { |
| |
| return end()-10 // Don't allocate special registers |
| -1; |
| } |
| |
| IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID, |
| IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses, |
| IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {} |
| } |
| </pre> |
| </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="implementRegister">Implement a subclass of</a> |
| <a href="http://www.llvm.org/docs/CodeGenerator.html#targetregisterinfo">TargetRegisterInfo</a> |
| </div> |
| <div class="doc_text"> |
| <p>The final step is to hand code portions of XXXRegisterInfo, which |
| implements the interface described in <tt>TargetRegisterInfo.h</tt>. These functions |
| return 0, NULL, or false, unless overridden. Here’s a list of functions that |
| are overridden for the SPARC implementation in <tt>SparcRegisterInfo.cpp</tt>:</p> |
| <ul> |
| <li><tt>getCalleeSavedRegs</tt> (returns a list of callee-saved registers in |
| the order of the desired callee-save stack frame offset)</li> |
| |
| <li><tt>getCalleeSavedRegClasses</tt> (returns a list of preferred register |
| classes with which to spill each callee saved register)</li> |
| |
| <li><tt>getReservedRegs</tt> (returns a bitset indexed by physical register |
| numbers, indicating if a particular register is unavailable)</li> |
| |
| <li><tt>hasFP</tt> (return a Boolean indicating if a function should have a |
| dedicated frame pointer register)</li> |
| |
| <li><tt>eliminateCallFramePseudoInstr</tt> (if call frame setup or destroy |
| pseudo instructions are used, this can be called to eliminate them)</li> |
| |
| <li><tt>eliminateFrameIndex</tt> (eliminate abstract frame indices from |
| instructions that may use them)</li> |
| |
| <li><tt>emitPrologue</tt> (insert prologue code into the function)</li> |
| |
| <li><tt>emitEpilogue</tt> (insert epilogue code into the function)</li> |
| </ul> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="InstructionSet">Instruction Set</a> |
| </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_text"> |
| <p>During the early stages of code generation, the LLVM IR code is |
| converted to a SelectionDAG with nodes that are instances of the SDNode class |
| containing target instructions. An SDNode has an opcode, operands, type |
| requirements, and operation properties (for example, is an operation |
| commutative, does an operation load from memory). The various operation node |
| types are described in the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt> file (values |
| of the NodeType enum in the ISD namespace).</p> |
| |
| <p>TableGen uses the following target description (.td) input files |
| to generate much of the code for instruction definition:</p> |
| <ul> |
| <li><tt>Target.td</tt>, where the Instruction, Operand, InstrInfo, and other |
| fundamental classes are defined</li> |
| |
| <li><tt>TargetSelectionDAG.td</tt>, used by SelectionDAG instruction selection |
| generators, contains SDTC* classes (selection DAG type constraint), definitions |
| of SelectionDAG nodes (such as imm, cond, bb, add, fadd, sub), and pattern |
| support (Pattern, Pat, PatFrag, PatLeaf, ComplexPattern)</li> |
| |
| <li><tt>XXXInstrFormats.td</tt>, patterns for definitions of target-specific |
| instructions</li> |
| |
| <li><tt>XXXInstrInfo.td</tt>, target-specific definitions of instruction |
| templates, condition codes, and instructions of an instruction set. (For architecture |
| modifications, a different file name may be used. For example, for Pentium with |
| SSE instruction, this file is <tt>X86InstrSSE.td</tt>, and for Pentium with MMX, this |
| file is <tt>X86InstrMMX.td</tt>.)</li> |
| </ul> |
| <p>There is also a target-specific <tt>XXX.td</tt> file, where XXX is the |
| name of the target. The <tt>XXX.td</tt> file includes the other .td input files, but its |
| contents are only directly important for subtargets.</p> |
| |
| <p>You should describe |
| a concrete target-specific class |
| XXXInstrInfo that represents machine |
| instructions supported by a target machine. XXXInstrInfo contains an array of |
| XXXInstrDescriptor objects, each of which describes one instruction. An |
| instruction descriptor defines:</p> |
| <ul> |
| <li>opcode mnemonic</li> |
| |
| <li>number of operands</li> |
| |
| <li>list of implicit register definitions and uses</li> |
| |
| <li>target-independent properties (such as memory access, is |
| commutable)</li> |
| |
| <li>target-specific flags </li> |
| </ul> |
| |
| <p>The Instruction class (defined in <tt>Target.td</tt>) is mostly used as a |
| base for more complex instruction classes.</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>class Instruction { |
| string Namespace = ""; |
| dag OutOperandList; // An dag containing the MI def operand list. |
| dag InOperandList; // An dag containing the MI use operand list. |
| string AsmString = ""; // The .s format to print the instruction with. |
| list<dag> Pattern; // Set to the DAG pattern for this instruction |
| list<Register> Uses = []; |
| list<Register> Defs = []; |
| list<Predicate> Predicates = []; // predicates turned into isel match code |
| ... remainder not shown for space ... |
| } |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>A SelectionDAG node (SDNode) should contain an object |
| representing a target-specific instruction that is defined in <tt>XXXInstrInfo.td</tt>. The |
| instruction objects should represent instructions from the architecture manual |
| of the target machine (such as the |
| SPARC Architecture Manual for the SPARC target). </p> |
| |
| <p>A single |
| instruction from the architecture manual is often modeled as multiple target |
| instructions, depending upon its operands. For example, a manual might |
| describe an add instruction that takes a register or an immediate operand. An |
| LLVM target could model this with two instructions named ADDri and ADDrr.</p> |
| |
| <p>You should define a |
| class for each instruction category and define each opcode as a subclass of the |
| category with appropriate parameters such as the fixed binary encoding of |
| opcodes and extended opcodes. You should map the register bits to the bits of |
| the instruction in which they are encoded (for the JIT). Also you should specify |
| how the instruction should be printed when the automatic assembly printer is |
| used.</p> |
| |
| <p>As is described in |
| the SPARC Architecture Manual, Version 8, there are three major 32-bit formats |
| for instructions. Format 1 is only for the CALL instruction. Format 2 is for |
| branch on condition codes and SETHI (set high bits of a register) instructions. |
| Format 3 is for other instructions. </p> |
| |
| <p>Each of these |
| formats has corresponding classes in <tt>SparcInstrFormat.td</tt>. InstSP is a base |
| class for other instruction classes. Additional base classes are specified for |
| more precise formats: for example in <tt>SparcInstrFormat.td</tt>, F2_1 is for SETHI, |
| and F2_2 is for branches. There are three other base classes: F3_1 for |
| register/register operations, F3_2 for register/immediate operations, and F3_3 for |
| floating-point operations. <tt>SparcInstrInfo.td</tt> also adds the base class Pseudo for |
| synthetic SPARC instructions. </p> |
| |
| <p><tt>SparcInstrInfo.td</tt> |
| largely consists of operand and instruction definitions for the SPARC target. In |
| <tt>SparcInstrInfo.td</tt>, the following target description file entry, LDrr, defines |
| the Load Integer instruction for a Word (the LD SPARC opcode) from a memory |
| address to a register. The first parameter, the value 3 (11<sub>2</sub>), is |
| the operation value for this category of operation. The second parameter |
| (000000<sub>2</sub>) is the specific operation value for LD/Load Word. The |
| third parameter is the output destination, which is a register operand and |
| defined in the Register target description file (IntRegs). </p> |
| </div> |
| <div class="doc_code"> |
| <pre>def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr), |
| "ld [$addr], $dst", |
| [(set IntRegs:$dst, (load ADDRrr:$addr))]>; |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>The fourth |
| parameter is the input source, which uses the address operand MEMrr that is |
| defined earlier in <tt>SparcInstrInfo.td</tt>:</p> |
| </div> |
| <div class="doc_code"> |
| <pre>def MEMrr : Operand<i32> { |
| let PrintMethod = "printMemOperand"; |
| let MIOperandInfo = (ops IntRegs, IntRegs); |
| } |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>The fifth parameter is a string that is used by the assembly |
| printer and can be left as an empty string until the assembly printer interface |
| is implemented. The sixth and final parameter is the pattern used to match the |
| instruction during the SelectionDAG Select Phase described in |
| (<a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM Target-Independent Code Generator</a>). |
| This parameter is detailed in the next section, <a href="#InstructionSelector">Instruction Selector</a>.</p> |
| |
| <p>Instruction class definitions are not overloaded for different |
| operand types, so separate versions of instructions are needed for register, |
| memory, or immediate value operands. For example, to perform a |
| Load Integer instruction for a Word |
| from an immediate operand to a register, the following instruction class is |
| defined: </p> |
| </div> |
| <div class="doc_code"> |
| <pre>def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), |
| "ld [$addr], $dst", |
| [(set IntRegs:$dst, (load ADDRri:$addr))]>; |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>Writing these definitions for so many similar instructions can |
| involve a lot of cut and paste. In td files, the <tt>multiclass</tt> directive enables |
| the creation of templates to define several instruction classes at once (using |
| the <tt>defm</tt> directive). For example in |
| <tt>SparcInstrInfo.td</tt>, the <tt>multiclass</tt> pattern F3_12 is defined to create 2 |
| instruction classes each time F3_12 is invoked: </p> |
| </div> |
| <div class="doc_code"> |
| <pre>multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> { |
| def rr : F3_1 <2, Op3Val, |
| (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), |
| !strconcat(OpcStr, " $b, $c, $dst"), |
| [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>; |
| def ri : F3_2 <2, Op3Val, |
| (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), |
| !strconcat(OpcStr, " $b, $c, $dst"), |
| [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>; |
| } |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>So when the <tt>defm</tt> directive is used for the XOR and ADD |
| instructions, as seen below, it creates four instruction objects: XORrr, XORri, |
| ADDrr, and ADDri.</p> |
| </div> |
| <div class="doc_code"> |
| <pre>defm XOR : F3_12<"xor", 0b000011, xor>; |
| defm ADD : F3_12<"add", 0b000000, add>; |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p><tt>SparcInstrInfo.td</tt> |
| also includes definitions for condition codes that are referenced by branch |
| instructions. The following definitions in <tt>SparcInstrInfo.td</tt> indicate the bit location |
| of the SPARC condition code; for example, the 10<sup>th</sup> bit represents |
| the ‘greater than’ condition for integers, and the 22<sup>nd</sup> bit |
| represents the ‘greater than’ condition for floats. </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>def ICC_NE : ICC_VAL< 9>; // Not Equal |
| def ICC_E : ICC_VAL< 1>; // Equal |
| def ICC_G : ICC_VAL<10>; // Greater |
| ... |
| def FCC_U : FCC_VAL<23>; // Unordered |
| def FCC_G : FCC_VAL<22>; // Greater |
| def FCC_UG : FCC_VAL<21>; // Unordered or Greater |
| ... |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>(Note that <tt>Sparc.h</tt> |
| also defines enums that correspond to the same SPARC condition codes. Care must |
| be taken to ensure the values in <tt>Sparc.h</tt> correspond to the values in |
| <tt>SparcInstrInfo.td</tt>; that is, <tt>SPCC::ICC_NE = 9</tt>, <tt>SPCC::FCC_U = 23</tt> and so on.)</p> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="operandMapping">Instruction Operand Mapping</a> |
| </div> |
| <div class="doc_text"> |
| <p>The code generator backend maps instruction operands to fields in |
| the instruction. Operands are assigned to unbound fields in the instruction in |
| the order they are defined. Fields are bound when they are assigned a value. |
| For example, the Sparc target defines the XNORrr instruction as a F3_1 format |
| instruction having three operands.</p> |
| </div> |
| |
| <div class="doc_code"> <pre> |
| def XNORrr : F3_1<2, 0b000111, |
| (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), |
| "xnor $b, $c, $dst", |
| [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>; |
| </pre></div> |
| |
| <div class="doc_text"> |
| <p>The instruction templates in <tt>SparcInstrFormats.td</tt> show the base class for F3_1 is InstSP.</p> |
| </div> |
| |
| <div class="doc_code"> <pre> |
| class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction { |
| field bits<32> Inst; |
| let Namespace = "SP"; |
| bits<2> op; |
| let Inst{31-30} = op; |
| dag OutOperandList = outs; |
| dag InOperandList = ins; |
| let AsmString = asmstr; |
| let Pattern = pattern; |
| } |
| </pre></div> |
| <div class="doc_text"> |
| <p> |
| InstSP leaves the op field unbound. |
| </p> |
| </div> |
| |
| <div class="doc_code"> <pre> |
| class F3<dag outs, dag ins, string asmstr, list<dag> pattern> |
| : InstSP<outs, ins, asmstr, pattern> { |
| bits<5> rd; |
| bits<6> op3; |
| bits<5> rs1; |
| let op{1} = 1; // Op = 2 or 3 |
| let Inst{29-25} = rd; |
| let Inst{24-19} = op3; |
| let Inst{18-14} = rs1; |
| } |
| </pre></div> |
| <div class="doc_text"> |
| <p> |
| F3 binds the op field and defines the rd, op3, and rs1 fields. F3 format instructions will |
| bind the operands rd, op3, and rs1 fields. |
| </p> |
| </div> |
| |
| <div class="doc_code"> <pre> |
| class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins, |
| string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> { |
| bits<8> asi = 0; // asi not currently used |
| bits<5> rs2; |
| let op = opVal; |
| let op3 = op3val; |
| let Inst{13} = 0; // i field = 0 |
| let Inst{12-5} = asi; // address space identifier |
| let Inst{4-0} = rs2; |
| } |
| </pre></div> |
| <div class="doc_text"> |
| <p> |
| F3_1 binds the op3 field and defines the rs2 fields. F3_1 format instructions will |
| bind the operands to the rd, rs1, and rs2 fields. This results in the XNORrr instruction |
| binding $dst, $b, and $c operands to the rd, rs1, and rs2 fields respectively. |
| </p> |
| </div> |
| |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="implementInstr">Implement a subclass of </a> |
| <a href="http://www.llvm.org/docs/CodeGenerator.html#targetinstrinfo">TargetInstrInfo</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p>The final step is to hand code portions of XXXInstrInfo, which |
| implements the interface described in <tt>TargetInstrInfo.h</tt>. These functions return |
| 0 or a Boolean or they assert, unless overridden. Here's a list of functions |
| that are overridden for the SPARC implementation in <tt>SparcInstrInfo.cpp</tt>:</p> |
| <ul> |
| <li><tt>isMoveInstr</tt> (return true if the instruction is a register to |
| register move; false, otherwise)</li> |
| |
| <li><tt>isLoadFromStackSlot</tt> (if the specified machine instruction is a |
| direct load from a stack slot, return the register number of the destination |
| and the FrameIndex of the stack slot)</li> |
| |
| <li><tt>isStoreToStackSlot</tt> (if the specified machine instruction is a |
| direct store to a stack slot, return the register number of the destination and |
| the FrameIndex of the stack slot)</li> |
| |
| <li><tt>copyRegToReg</tt> (copy values between a pair of registers)</li> |
| |
| <li><tt>storeRegToStackSlot</tt> (store a register value to a stack slot)</li> |
| |
| <li><tt>loadRegFromStackSlot</tt> (load a register value from a stack slot)</li> |
| |
| <li><tt>storeRegToAddr</tt> (store a register value to memory)</li> |
| |
| <li><tt>loadRegFromAddr</tt> (load a register value from memory)</li> |
| |
| <li><tt>foldMemoryOperand</tt> (attempt to combine instructions of any load or |
| store instruction for the specified operand(s))</li> |
| </ul> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="branchFolding">Branch Folding and If Conversion</a> |
| </div> |
| <div class="doc_text"> |
| <p>Performance can be improved by combining instructions or by eliminating |
| instructions that are never reached. The <tt>AnalyzeBranch</tt> method in XXXInstrInfo may |
| be implemented to examine conditional instructions and remove unnecessary |
| instructions. <tt>AnalyzeBranch</tt> looks at the end of a machine basic block (MBB) for |
| opportunities for improvement, such as branch folding and if conversion. The |
| <tt>BranchFolder</tt> and <tt>IfConverter</tt> machine function passes (see the source files |
| <tt>BranchFolding.cpp</tt> and <tt>IfConversion.cpp</tt> in the <tt>lib/CodeGen</tt> directory) call |
| <tt>AnalyzeBranch</tt> to improve the control flow graph that represents the |
| instructions. </p> |
| |
| <p>Several implementations of <tt>AnalyzeBranch</tt> (for ARM, Alpha, and |
| X86) can be examined as models for your own <tt>AnalyzeBranch</tt> implementation. Since |
| SPARC does not implement a useful <tt>AnalyzeBranch</tt>, the ARM target implementation |
| is shown below.</p> |
| |
| <p><tt>AnalyzeBranch</tt> returns a Boolean value and takes four parameters:</p> |
| <ul> |
| <li>MachineBasicBlock &MBB – the incoming block to be |
| examined</li> |
| |
| <li>MachineBasicBlock *&TBB – a destination block that is |
| returned; for a conditional branch that evaluates to true, TBB is the |
| destination </li> |
| |
| <li>MachineBasicBlock *&FBB – for a conditional branch that |
| evaluates to false, FBB is returned as the destination</li> |
| |
| <li>std::vector<MachineOperand> &Cond – list of |
| operands to evaluate a condition for a conditional branch</li> |
| </ul> |
| |
| <p>In the simplest case, if a block ends without a branch, then it |
| falls through to the successor block. No destination blocks are specified for |
| either TBB or FBB, so both parameters return NULL. The start of the <tt>AnalyzeBranch</tt> |
| (see code below for the ARM target) shows the function parameters and the code |
| for the simplest case.</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, |
| MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, |
| std::vector<MachineOperand> &Cond) const |
| { |
| MachineBasicBlock::iterator I = MBB.end(); |
| if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) |
| return false; |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>If a block ends with a single unconditional branch instruction, |
| then <tt>AnalyzeBranch</tt> (shown below) should return the destination of that branch |
| in the TBB parameter. </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>if (LastOpc == ARM::B || LastOpc == ARM::tB) { |
| TBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>If a block ends with two unconditional branches, then the second |
| branch is never reached. In that situation, as shown below, remove the last |
| branch instruction and return the penultimate branch in the TBB parameter. </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) && |
| (LastOpc == ARM::B || LastOpc == ARM::tB)) { |
| TBB = SecondLastInst->getOperand(0).getMBB(); |
| I = LastInst; |
| I->eraseFromParent(); |
| return false; |
| } |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>A block may end with a single conditional branch instruction that |
| falls through to successor block if the condition evaluates to false. In that |
| case, <tt>AnalyzeBranch</tt> (shown below) should return the destination of that |
| conditional branch in the TBB parameter and a list of operands in the <tt>Cond</tt> |
| parameter to evaluate the condition. </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) { |
| // Block ends with fall-through condbranch. |
| TBB = LastInst->getOperand(0).getMBB(); |
| Cond.push_back(LastInst->getOperand(1)); |
| Cond.push_back(LastInst->getOperand(2)); |
| return false; |
| } |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>If a block ends with both a conditional branch and an ensuing |
| unconditional branch, then <tt>AnalyzeBranch</tt> (shown below) should return the |
| conditional branch destination (assuming it corresponds to a conditional |
| evaluation of ‘true’) in the TBB parameter and the unconditional branch |
| destination in the FBB (corresponding to a conditional evaluation of ‘false’). |
| A list of operands to evaluate the condition should be returned in the <tt>Cond</tt> |
| parameter.</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>unsigned SecondLastOpc = SecondLastInst->getOpcode(); |
| if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) || |
| (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) { |
| TBB = SecondLastInst->getOperand(0).getMBB(); |
| Cond.push_back(SecondLastInst->getOperand(1)); |
| Cond.push_back(SecondLastInst->getOperand(2)); |
| FBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>For the last two cases (ending with a single conditional branch or |
| ending with one conditional and one unconditional branch), the operands returned |
| in the <tt>Cond</tt> parameter can be passed to methods of other instructions to create |
| new branches or perform other operations. An implementation of <tt>AnalyzeBranch</tt> |
| requires the helper methods <tt>RemoveBranch</tt> and <tt>InsertBranch</tt> to manage subsequent |
| operations.</p> |
| |
| <p><tt>AnalyzeBranch</tt> should return false indicating success in most circumstances. |
| <tt>AnalyzeBranch</tt> should only return true when the method is stumped about what to |
| do, for example, if a block has three terminating branches. <tt>AnalyzeBranch</tt> may |
| return true if it encounters a terminator it cannot handle, such as an indirect |
| branch.</p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="InstructionSelector">Instruction Selector</a> |
| </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| <p>LLVM uses a SelectionDAG to represent LLVM IR instructions, and nodes |
| of the SelectionDAG ideally represent native target instructions. During code |
| generation, instruction selection passes are performed to convert non-native |
| DAG instructions into native target-specific instructions. The pass described |
| in <tt>XXXISelDAGToDAG.cpp</tt> is used to match patterns and perform DAG-to-DAG |
| instruction selection. Optionally, a pass may be defined (in |
| <tt>XXXBranchSelector.cpp</tt>) to perform similar DAG-to-DAG operations for branch |
| instructions. Later, |
| the code in <tt>XXXISelLowering.cpp</tt> replaces or removes operations and data types |
| not supported natively (legalizes) in a Selection DAG. </p> |
| |
| <p>TableGen generates code for instruction selection using the |
| following target description input files:</p> |
| <ul> |
| <li><tt>XXXInstrInfo.td</tt> contains definitions of instructions in a |
| target-specific instruction set, generates <tt>XXXGenDAGISel.inc</tt>, which is included |
| in <tt>XXXISelDAGToDAG.cpp</tt>. </li> |
| |
| <li><tt>XXXCallingConv.td</tt> contains the calling and return value conventions |
| for the target architecture, and it generates <tt>XXXGenCallingConv.inc</tt>, which is |
| included in <tt>XXXISelLowering.cpp</tt>.</li> |
| </ul> |
| |
| <p>The implementation of an instruction selection pass must include |
| a header that declares the FunctionPass class or a subclass of FunctionPass. In |
| <tt>XXXTargetMachine.cpp</tt>, a Pass Manager (PM) should add each instruction selection |
| pass into the queue of passes to run.</p> |
| |
| <p>The LLVM static |
| compiler (<tt>llc</tt>) is an excellent tool for visualizing the contents of DAGs. To display |
| the SelectionDAG before or after specific processing phases, use the command |
| line options for <tt>llc</tt>, described at <a |
| href="http://llvm.org/docs/CodeGenerator.html#selectiondag_process"> |
| SelectionDAG Instruction Selection Process</a>. |
| </p> |
| |
| <p>To describe instruction selector behavior, you should add |
| patterns for lowering LLVM code into a SelectionDAG as the last parameter of |
| the instruction definitions in <tt>XXXInstrInfo.td</tt>. For example, in |
| <tt>SparcInstrInfo.td</tt>, this entry defines a register store operation, and the last |
| parameter describes a pattern with the store DAG operator.</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>def STrr : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src), |
| "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]>; |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>ADDRrr is a memory mode that is also defined in <tt>SparcInstrInfo.td</tt>:</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>The definition of ADDRrr refers to SelectADDRrr, which is a function defined in an |
| implementation of the Instructor Selector (such as <tt>SparcISelDAGToDAG.cpp</tt>). </p> |
| |
| <p>In <tt>lib/Target/TargetSelectionDAG.td</tt>, the DAG operator for store |
| is defined below:</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>def store : PatFrag<(ops node:$val, node:$ptr), |
| (st node:$val, node:$ptr), [{ |
| if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) |
| return !ST->isTruncatingStore() && |
| ST->getAddressingMode() == ISD::UNINDEXED; |
| return false; |
| }]>; |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p><tt>XXXInstrInfo.td</tt> also generates (in <tt>XXXGenDAGISel.inc</tt>) the |
| <tt>SelectCode</tt> method that is used to call the appropriate processing method for an |
| instruction. In this example, <tt>SelectCode</tt> calls <tt>Select_ISD_STORE</tt> for the |
| ISD::STORE opcode.</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>SDNode *SelectCode(SDValue N) { |
| ... |
| MVT::ValueType NVT = N.getNode()->getValueType(0); |
| switch (N.getOpcode()) { |
| case ISD::STORE: { |
| switch (NVT) { |
| default: |
| return Select_ISD_STORE(N); |
| break; |
| } |
| break; |
| } |
| ... |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>The pattern for STrr is matched, so elsewhere in |
| <tt>XXXGenDAGISel.inc</tt>, code for STrr is created for <tt>Select_ISD_STORE</tt>. The <tt>Emit_22</tt> method |
| is also generated in <tt>XXXGenDAGISel.inc</tt> to complete the processing of this |
| instruction. </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>SDNode *Select_ISD_STORE(const SDValue &N) { |
| SDValue Chain = N.getOperand(0); |
| if (Predicate_store(N.getNode())) { |
| SDValue N1 = N.getOperand(1); |
| SDValue N2 = N.getOperand(2); |
| SDValue CPTmp0; |
| SDValue CPTmp1; |
| |
| // Pattern: (st:void IntRegs:i32:$src, |
| // ADDRrr:i32:$addr)<<P:Predicate_store>> |
| // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src) |
| // Pattern complexity = 13 cost = 1 size = 0 |
| if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) && |
| N1.getNode()->getValueType(0) == MVT::i32 && |
| N2.getNode()->getValueType(0) == MVT::i32) { |
| return Emit_22(N, SP::STrr, CPTmp0, CPTmp1); |
| } |
| ... |
| </pre> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="LegalizePhase">The SelectionDAG Legalize Phase</a> |
| </div> |
| <div class="doc_text"> |
| <p>The Legalize phase converts a DAG to use types and operations |
| that are natively supported by the target. For natively unsupported types and |
| operations, you need to add code to the target-specific XXXTargetLowering implementation |
| to convert unsupported types and operations to supported ones.</p> |
| |
| <p>In the constructor for the XXXTargetLowering class, first use the |
| <tt>addRegisterClass</tt> method to specify which types are supports and which register |
| classes are associated with them. The code for the register classes are generated |
| by TableGen from <tt>XXXRegisterInfo.td</tt> and placed in <tt>XXXGenRegisterInfo.h.inc</tt>. For |
| example, the implementation of the constructor for the SparcTargetLowering |
| class (in <tt>SparcISelLowering.cpp</tt>) starts with the following code:</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>addRegisterClass(MVT::i32, SP::IntRegsRegisterClass); |
| addRegisterClass(MVT::f32, SP::FPRegsRegisterClass); |
| addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass); |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>You should examine the node types in the ISD namespace |
| (<tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>) |
| and determine which operations the target natively supports. For operations |
| that do <b>not</b> have native support, add a callback to the constructor for |
| the XXXTargetLowering class, so the instruction selection process knows what to |
| do. The TargetLowering class callback methods (declared in |
| <tt>llvm/Target/TargetLowering.h</tt>) are:</p> |
| <ul> |
| <li><tt>setOperationAction</tt> (general operation)</li> |
| |
| <li><tt>setLoadExtAction</tt> (load with extension)</li> |
| |
| <li><tt>setTruncStoreAction</tt> (truncating store)</li> |
| |
| <li><tt>setIndexedLoadAction</tt> (indexed load)</li> |
| |
| <li><tt>setIndexedStoreAction</tt> (indexed store)</li> |
| |
| <li><tt>setConvertAction</tt> (type conversion)</li> |
| |
| <li><tt>setCondCodeAction</tt> (support for a given condition code)</li> |
| </ul> |
| |
| <p>Note: on older releases, <tt>setLoadXAction</tt> is used instead of <tt>setLoadExtAction</tt>. |
| Also, on older releases, <tt>setCondCodeAction</tt> may not be supported. Examine your |
| release to see what methods are specifically supported.</p> |
| |
| <p>These callbacks are used to determine that an operation does or |
| does not work with a specified type (or types). And in all cases, the third |
| parameter is a LegalAction type enum value: <tt>Promote</tt>, <tt>Expand</tt>, |
| <tt>Custom</tt>, or <tt>Legal</tt>. <tt>SparcISelLowering.cpp</tt> |
| contains examples of all four LegalAction values.</p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="promote">Promote</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p>For an operation without native support for a given type, the |
| specified type may be promoted to a larger type that is supported. For example, |
| SPARC does not support a sign-extending load for Boolean values (<tt>i1</tt> type), so |
| in <tt>SparcISelLowering.cpp</tt> the third |
| parameter below, <tt>Promote</tt>, changes <tt>i1</tt> type |
| values to a large type before loading.</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="expand">Expand</a> |
| </div> |
| <div class="doc_text"> |
| <p>For a type without native support, a value may need to be broken |
| down further, rather than promoted. For an operation without native support, a |
| combination of other operations may be used to similar effect. In SPARC, the |
| floating-point sine and cosine trig operations are supported by expansion to |
| other operations, as indicated by the third parameter, <tt>Expand</tt>, to |
| <tt>setOperationAction</tt>:</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f32, Expand); |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="custom">Custom</a> |
| </div> |
| <div class="doc_text"> |
| <p>For some operations, simple type promotion or operation expansion |
| may be insufficient. In some cases, a special intrinsic function must be |
| implemented. </p> |
| |
| <p>For example, a constant value may require special treatment, or |
| an operation may require spilling and restoring registers in the stack and |
| working with register allocators. </p> |
| |
| <p>As seen in <tt>SparcISelLowering.cpp</tt> code below, to perform a type |
| conversion from a floating point value to a signed integer, first the |
| <tt>setOperationAction</tt> should be called with <tt>Custom</tt> as the third parameter:</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>In the <tt>LowerOperation</tt> method, for each <tt>Custom</tt> operation, a case |
| statement should be added to indicate what function to call. In the following |
| code, an FP_TO_SINT opcode will call the <tt>LowerFP_TO_SINT</tt> method:</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>SDValue SparcTargetLowering::LowerOperation( |
| SDValue Op, SelectionDAG &DAG) { |
| switch (Op.getOpcode()) { |
| case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); |
| ... |
| } |
| } |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>Finally, the <tt>LowerFP_TO_SINT</tt> method is implemented, using an FP |
| register to convert the floating-point value to an integer.</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { |
| assert(Op.getValueType() == MVT::i32); |
| Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0)); |
| return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op); |
| } |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="legal">Legal</a> |
| </div> |
| <div class="doc_text"> |
| <p>The <tt>Legal</tt> LegalizeAction enum value simply indicates that an |
| operation <b>is</b> natively supported. <tt>Legal</tt> represents the default condition, |
| so it is rarely used. In <tt>SparcISelLowering.cpp</tt>, the action for CTPOP (an |
| operation to count the bits set in an integer) is natively supported only for |
| SPARC v9. The following code enables the <tt>Expand</tt> conversion technique for non-v9 |
| SPARC implementations.</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| ... |
| if (TM.getSubtarget<SparcSubtarget>().isV9()) |
| setOperationAction(ISD::CTPOP, MVT::i32, Legal); |
| case ISD::SETULT: return SPCC::ICC_CS; |
| case ISD::SETULE: return SPCC::ICC_LEU; |
| case ISD::SETUGT: return SPCC::ICC_GU; |
| case ISD::SETUGE: return SPCC::ICC_CC; |
| } |
| } |
| </pre> |
| </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="callingConventions">Calling Conventions</a> |
| </div> |
| <div class="doc_text"> |
| <p>To support target-specific calling conventions, <tt>XXXGenCallingConv.td</tt> |
| uses interfaces (such as CCIfType and CCAssignToReg) that are defined in |
| <tt>lib/Target/TargetCallingConv.td</tt>. TableGen can take the target descriptor file |
| <tt>XXXGenCallingConv.td</tt> and generate the header file <tt>XXXGenCallingConv.inc</tt>, which |
| is typically included in <tt>XXXISelLowering.cpp</tt>. You can use the interfaces in |
| <tt>TargetCallingConv.td</tt> to specify:</p> |
| <ul> |
| <li>the order of parameter allocation</li> |
| |
| <li>where parameters and return values are placed (that is, on the |
| stack or in registers)</li> |
| |
| <li>which registers may be used</li> |
| |
| <li>whether the caller or callee unwinds the stack</li> |
| </ul> |
| |
| <p>The following example demonstrates the use of the CCIfType and |
| CCAssignToReg interfaces. If the CCIfType predicate is true (that is, if the |
| current argument is of type f32 or f64), then the action is performed. In this |
| case, the CCAssignToReg action assigns the argument value to the first |
| available register: either R0 or R1. </p> |
| </div> |
| <div class="doc_code"> |
| <pre>CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>> |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p><tt>SparcCallingConv.td</tt> contains definitions for a target-specific return-value |
| calling convention (RetCC_Sparc32) and a basic 32-bit C calling convention |
| (CC_Sparc32). The definition of RetCC_Sparc32 (shown below) indicates which |
| registers are used for specified scalar return types. A single-precision float |
| is returned to register F0, and a double-precision float goes to register D0. A |
| 32-bit integer is returned in register I0 or I1. </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>def RetCC_Sparc32 : CallingConv<[ |
| CCIfType<[i32], CCAssignToReg<[I0, I1]>>, |
| CCIfType<[f32], CCAssignToReg<[F0]>>, |
| CCIfType<[f64], CCAssignToReg<[D0]>> |
| ]>; |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>The definition of CC_Sparc32 in <tt>SparcCallingConv.td</tt> introduces |
| CCAssignToStack, which assigns the value to a stack slot with the specified size |
| and alignment. In the example below, the first parameter, 4, indicates the size |
| of the slot, and the second parameter, also 4, indicates the stack alignment |
| along 4-byte units. (Special cases: if size is zero, then the ABI size is used; |
| if alignment is zero, then the ABI alignment is used.) </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>def CC_Sparc32 : CallingConv<[ |
| // All arguments get passed in integer registers if there is space. |
| CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>, |
| CCAssignToStack<4, 4> |
| ]>; |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>CCDelegateTo is another commonly used interface, which tries to find |
| a specified sub-calling convention and, if a match is found, it is invoked. In |
| the following example (in <tt>X86CallingConv.td</tt>), the definition of RetCC_X86_32_C |
| ends with CCDelegateTo. After the current value is assigned to the register ST0 |
| or ST1, the RetCC_X86Common is invoked.</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>def RetCC_X86_32_C : CallingConv<[ |
| CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>, |
| CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>, |
| CCDelegateTo<RetCC_X86Common> |
| ]>; |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>CCIfCC is an interface that attempts to match the given name to |
| the current calling convention. If the name identifies the current calling |
| convention, then a specified action is invoked. In the following example (in |
| <tt>X86CallingConv.td</tt>), if the Fast calling convention is in use, then RetCC_X86_32_Fast |
| is invoked. If the SSECall calling convention is in use, then RetCC_X86_32_SSE |
| is invoked. </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>def RetCC_X86_32 : CallingConv<[ |
| CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, |
| CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>, |
| CCDelegateTo<RetCC_X86_32_C> |
| ]>; |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>Other calling convention interfaces include:</p> |
| <ul> |
| <li>CCIf <predicate, action> - if the predicate matches, apply |
| the action</li> |
| |
| <li>CCIfInReg <action> - if the argument is marked with the |
| ‘inreg’ attribute, then apply the action </li> |
| |
| <li>CCIfNest <action> - if the argument is marked with the |
| ‘nest’ attribute, then apply the action</li> |
| |
| <li>CCIfNotVarArg <action> - if the current function does not |
| take a variable number of arguments, apply the action</li> |
| |
| <li>CCAssignToRegWithShadow <registerList, shadowList> - |
| similar to CCAssignToReg, but with a shadow list of registers</li> |
| |
| <li>CCPassByVal <size, align> - assign value to a stack slot |
| with the minimum specified size and alignment </li> |
| |
| <li>CCPromoteToType <type> - promote the current value to the specified |
| type</li> |
| |
| <li>CallingConv <[actions]> - define each calling convention |
| that is supported</li> |
| </ul> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="assemblyPrinter">Assembly Printer</a> |
| </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| <p>During the code |
| emission stage, the code generator may utilize an LLVM pass to produce assembly |
| output. To do this, you want to implement the code for a printer that converts |
| LLVM IR to a GAS-format assembly language for your target machine, using the |
| following steps:</p> |
| <ul> |
| <li>Define all the assembly strings for your target, adding them to |
| the instructions defined in the <tt>XXXInstrInfo.td</tt> file. |
| (See <a href="#InstructionSet">Instruction Set</a>.) |
| TableGen will produce an output file (<tt>XXXGenAsmWriter.inc</tt>) with an |
| implementation of the <tt>printInstruction</tt> method for the XXXAsmPrinter class.</li> |
| |
| <li>Write <tt>XXXTargetAsmInfo.h</tt>, which contains the bare-bones |
| declaration of the XXXTargetAsmInfo class (a subclass of TargetAsmInfo). </li> |
| |
| <li>Write <tt>XXXTargetAsmInfo.cpp</tt>, which contains target-specific values |
| for TargetAsmInfo properties and sometimes new implementations for methods</li> |
| |
| <li>Write <tt>XXXAsmPrinter.cpp</tt>, which implements the AsmPrinter class |
| that performs the LLVM-to-assembly conversion. </li> |
| </ul> |
| |
| <p>The code in <tt>XXXTargetAsmInfo.h</tt> is usually a trivial declaration |
| of the XXXTargetAsmInfo class for use in <tt>XXXTargetAsmInfo.cpp</tt>. Similarly, |
| <tt>XXXTargetAsmInfo.cpp</tt> usually has a few declarations of XXXTargetAsmInfo replacement |
| values that override the default values in <tt>TargetAsmInfo.cpp</tt>. For example in |
| <tt>SparcTargetAsmInfo.cpp</tt>, </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) { |
| Data16bitsDirective = "\t.half\t"; |
| Data32bitsDirective = "\t.word\t"; |
| Data64bitsDirective = 0; // .xword is only supported by V9. |
| ZeroDirective = "\t.skip\t"; |
| CommentString = "!"; |
| ConstantPoolSection = "\t.section \".rodata\",#alloc\n"; |
| } |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>The X86 assembly printer implementation (X86TargetAsmInfo) is an |
| example where the target specific TargetAsmInfo class uses overridden methods: |
| <tt>ExpandInlineAsm</tt> and <tt>PreferredEHDataFormat</tt>. </p> |
| |
| <p>A target-specific implementation of AsmPrinter is written in |
| <tt>XXXAsmPrinter.cpp</tt>, which implements the AsmPrinter class that converts the LLVM |
| to printable assembly. The implementation must include the following headers |
| that have declarations for the AsmPrinter and MachineFunctionPass classes. The |
| MachineFunctionPass is a subclass of FunctionPass. </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>#include "llvm/CodeGen/AsmPrinter.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>As a FunctionPass, AsmPrinter first calls <tt>doInitialization</tt> to set |
| up the AsmPrinter. In SparcAsmPrinter, a Mangler object is instantiated to |
| process variable names.</p> |
| |
| <p>In <tt>XXXAsmPrinter.cpp</tt>, the <tt>runOnMachineFunction</tt> method (declared |
| in MachineFunctionPass) must be implemented for XXXAsmPrinter. In |
| MachineFunctionPass, the <tt>runOnFunction</tt> method invokes <tt>runOnMachineFunction</tt>. |
| Target-specific implementations of <tt>runOnMachineFunction</tt> differ, but generally |
| do the following to process each machine function:</p> |
| <ul> |
| <li>call <tt>SetupMachineFunction</tt> to perform initialization</li> |
| |
| <li>call <tt>EmitConstantPool</tt> to print out (to the output stream) |
| constants which have been spilled to memory </li> |
| |
| <li>call <tt>EmitJumpTableInfo</tt> to print out jump tables used by the |
| current function </li> |
| |
| <li>print out the label for the current function</li> |
| |
| <li>print out the code for the function, including basic block labels |
| and the assembly for the instruction (using <tt>printInstruction</tt>)</li> |
| </ul> |
| <p>The XXXAsmPrinter implementation must also include the code |
| generated by TableGen that is output in the <tt>XXXGenAsmWriter.inc</tt> file. The code |
| in <tt>XXXGenAsmWriter.inc</tt> contains an implementation of the <tt>printInstruction</tt> |
| method that may call these methods:</p> |
| <ul> |
| <li><tt>printOperand</tt></li> |
| |
| <li><tt>printMemOperand</tt></li> |
| |
| <li><tt>printCCOperand (for conditional statements)</tt></li> |
| |
| <li><tt>printDataDirective</tt></li> |
| |
| <li><tt>printDeclare</tt></li> |
| |
| <li><tt>printImplicitDef</tt></li> |
| |
| <li><tt>printInlineAsm</tt></li> |
| |
| <li><tt>printLabel</tt></li> |
| |
| <li><tt>printPICJumpTableEntry</tt></li> |
| |
| <li><tt>printPICJumpTableSetLabel</tt></li> |
| </ul> |
| |
| <p>The implementations of <tt>printDeclare</tt>, <tt>printImplicitDef</tt>, |
| <tt>printInlineAsm</tt>, and <tt>printLabel</tt> in <tt>AsmPrinter.cpp</tt> are generally adequate for |
| printing assembly and do not need to be overridden. (<tt>printBasicBlockLabel</tt> is |
| another method that is implemented in <tt>AsmPrinter.cpp</tt> that may be directly used |
| in an implementation of XXXAsmPrinter.)</p> |
| |
| <p>The <tt>printOperand</tt> method is implemented with a long switch/case |
| statement for the type of operand: register, immediate, basic block, external |
| symbol, global address, constant pool index, or jump table index. For an |
| instruction with a memory address operand, the <tt>printMemOperand</tt> method should be |
| implemented to generate the proper output. Similarly, <tt>printCCOperand</tt> should be |
| used to print a conditional operand. </p> |
| |
| <p><tt>doFinalization</tt> should be overridden in XXXAsmPrinter, and |
| it should be called to shut down the assembly printer. During <tt>doFinalization</tt>, |
| global variables and constants are printed to output.</p> |
| </div> |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="subtargetSupport">Subtarget Support</a> |
| </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| <p>Subtarget support is used to inform the code generation process |
| of instruction set variations for a given chip set. For example, the LLVM |
| SPARC implementation provided covers three major versions of the SPARC |
| microprocessor architecture: Version 8 (V8, which is a 32-bit architecture), |
| Version 9 (V9, a 64-bit architecture), and the UltraSPARC architecture. V8 has |
| 16 double-precision floating-point registers that are also usable as either 32 |
| single-precision or 8 quad-precision registers. V8 is also purely big-endian. V9 |
| has 32 double-precision floating-point registers that are also usable as 16 |
| quad-precision registers, but cannot be used as single-precision registers. The |
| UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set |
| extensions.</p> |
| |
| <p>If subtarget support is needed, you should implement a |
| target-specific XXXSubtarget class for your architecture. This class should |
| process the command-line options <tt>–mcpu=</tt> and <tt>–mattr=</tt></p> |
| |
| <p>TableGen uses definitions in the <tt>Target.td</tt> and <tt>Sparc.td</tt> files to |
| generate code in <tt>SparcGenSubtarget.inc</tt>. In <tt>Target.td</tt>, shown below, the |
| SubtargetFeature interface is defined. The first 4 string parameters of the |
| SubtargetFeature interface are a feature name, an attribute set by the feature, |
| the value of the attribute, and a description of the feature. (The fifth |
| parameter is a list of features whose presence is implied, and its default |
| value is an empty array.)</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>class SubtargetFeature<string n, string a, string v, string d, |
| list<SubtargetFeature> i = []> { |
| string Name = n; |
| string Attribute = a; |
| string Value = v; |
| string Desc = d; |
| list<SubtargetFeature> Implies = i; |
| } |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>In the <tt>Sparc.td</tt> file, the SubtargetFeature is used to define the |
| following features. </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true", |
| "Enable SPARC-V9 instructions">; |
| def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8", |
| "V8DeprecatedInsts", "true", |
| "Enable deprecated V8 instructions in V9 mode">; |
| def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true", |
| "Enable UltraSPARC Visual Instruction Set extensions">; |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>Elsewhere in <tt>Sparc.td</tt>, the Proc class is defined and then is used |
| to define particular SPARC processor subtypes that may have the previously |
| described features. </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>class Proc<string Name, list<SubtargetFeature> Features> |
| : Processor<Name, NoItineraries, Features>; |
| |
| def : Proc<"generic", []>; |
| def : Proc<"v8", []>; |
| def : Proc<"supersparc", []>; |
| def : Proc<"sparclite", []>; |
| def : Proc<"f934", []>; |
| def : Proc<"hypersparc", []>; |
| def : Proc<"sparclite86x", []>; |
| def : Proc<"sparclet", []>; |
| def : Proc<"tsc701", []>; |
| def : Proc<"v9", [FeatureV9]>; |
| def : Proc<"ultrasparc", [FeatureV9, FeatureV8Deprecated]>; |
| def : Proc<"ultrasparc3", [FeatureV9, FeatureV8Deprecated]>; |
| def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>; |
| </pre> |
| </div> |
| |
| <div class="doc_text"> |
| <p>From <tt>Target.td</tt> and <tt>Sparc.td</tt> files, the resulting |
| SparcGenSubtarget.inc specifies enum values to identify the features, arrays of |
| constants to represent the CPU features and CPU subtypes, and the |
| ParseSubtargetFeatures method that parses the features string that sets |
| specified subtarget options. The generated <tt>SparcGenSubtarget.inc</tt> file should be |
| included in the <tt>SparcSubtarget.cpp</tt>. The target-specific implementation of the XXXSubtarget |
| method should follow this pseudocode:</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) { |
| // Set the default features |
| // Determine default and user specified characteristics of the CPU |
| // Call ParseSubtargetFeatures(FS, CPU) to parse the features string |
| // Perform any additional operations |
| } |
| </pre> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> |
| <a name="jitSupport">JIT Support</a> |
| </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| <p>The implementation of a target machine optionally includes a Just-In-Time |
| (JIT) code generator that emits machine code and auxiliary structures as binary |
| output that can be written directly to memory. |
| To do this, implement JIT code generation by performing the following |
| steps:</p> |
| <ul> |
| <li>Write an <tt>XXXCodeEmitter.cpp</tt> file that contains a machine function |
| pass that transforms target-machine instructions into relocatable machine code.</li> |
| |
| <li>Write an <tt>XXXJITInfo.cpp</tt> file that implements the JIT interfaces |
| for target-specific code-generation |
| activities, such as emitting machine code and stubs. </li> |
| |
| <li>Modify XXXTargetMachine so that it provides a TargetJITInfo |
| object through its <tt>getJITInfo</tt> method. </li> |
| </ul> |
| |
| <p>There are several different approaches to writing the JIT support |
| code. For instance, TableGen and target descriptor files may be used for |
| creating a JIT code generator, but are not mandatory. For the Alpha and PowerPC |
| target machines, TableGen is used to generate <tt>XXXGenCodeEmitter.inc</tt>, which |
| contains the binary coding of machine instructions and the |
| <tt>getBinaryCodeForInstr</tt> method to access those codes. Other JIT implementations |
| do not.</p> |
| |
| <p>Both <tt>XXXJITInfo.cpp</tt> and <tt>XXXCodeEmitter.cpp</tt> must include the |
| <tt>llvm/CodeGen/MachineCodeEmitter.h</tt> header file that defines the MachineCodeEmitter |
| class containing code for several callback functions that write data (in bytes, |
| words, strings, etc.) to the output stream.</p> |
| </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="mce">Machine Code Emitter</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p>In <tt>XXXCodeEmitter.cpp</tt>, a target-specific of the Emitter class is |
| implemented as a function pass (subclass of MachineFunctionPass). The |
| target-specific implementation of <tt>runOnMachineFunction</tt> (invoked by |
| <tt>runOnFunction</tt> in MachineFunctionPass) iterates through the MachineBasicBlock |
| calls <tt>emitInstruction</tt> to process each instruction and emit binary code. <tt>emitInstruction</tt> |
| is largely implemented with case statements on the instruction types defined in |
| <tt>XXXInstrInfo.h</tt>. For example, in <tt>X86CodeEmitter.cpp</tt>, the <tt>emitInstruction</tt> method |
| is built around the following switch/case statements:</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>switch (Desc->TSFlags & X86::FormMask) { |
| case X86II::Pseudo: // for not yet implemented instructions |
| ... // or pseudo-instructions |
| break; |
| case X86II::RawFrm: // for instructions with a fixed opcode value |
| ... |
| break; |
| case X86II::AddRegFrm: // for instructions that have one register operand |
| ... // added to their opcode |
| break; |
| case X86II::MRMDestReg:// for instructions that use the Mod/RM byte |
| ... // to specify a destination (register) |
| break; |
| case X86II::MRMDestMem:// for instructions that use the Mod/RM byte |
| ... // to specify a destination (memory) |
| break; |
| case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte |
| ... // to specify a source (register) |
| break; |
| case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte |
| ... // to specify a source (memory) |
| break; |
| case X86II::MRM0r: case X86II::MRM1r: // for instructions that operate on |
| case X86II::MRM2r: case X86II::MRM3r: // a REGISTER r/m operand and |
| case X86II::MRM4r: case X86II::MRM5r: // use the Mod/RM byte and a field |
| case X86II::MRM6r: case X86II::MRM7r: // to hold extended opcode data |
| ... |
| break; |
| case X86II::MRM0m: case X86II::MRM1m: // for instructions that operate on |
| case X86II::MRM2m: case X86II::MRM3m: // a MEMORY r/m operand and |
| case X86II::MRM4m: case X86II::MRM5m: // use the Mod/RM byte and a field |
| case X86II::MRM6m: case X86II::MRM7m: // to hold extended opcode data |
| ... |
| break; |
| case X86II::MRMInitReg: // for instructions whose source and |
| ... // destination are the same register |
| break; |
| } |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>The implementations of these case statements often first emit the |
| opcode and then get the operand(s). Then depending upon the operand, helper |
| methods may be called to process the operand(s). For example, in <tt>X86CodeEmitter.cpp</tt>, |
| for the <tt>X86II::AddRegFrm</tt> case, the first data emitted (by <tt>emitByte</tt>) is the |
| opcode added to the register operand. Then an object representing the machine |
| operand, MO1, is extracted. The helper methods such as <tt>isImmediate</tt>, |
| <tt>isGlobalAddress</tt>, <tt>isExternalSymbol</tt>, <tt>isConstantPoolIndex</tt>, and |
| <tt>isJumpTableIndex</tt> |
| determine the operand type. (<tt>X86CodeEmitter.cpp</tt> also has private methods such |
| as <tt>emitConstant</tt>, <tt>emitGlobalAddress</tt>, |
| <tt>emitExternalSymbolAddress</tt>, <tt>emitConstPoolAddress</tt>, |
| and <tt>emitJumpTableAddress</tt> that emit the data into the output stream.) </p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>case X86II::AddRegFrm: |
| MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); |
| |
| if (CurOp != NumOps) { |
| const MachineOperand &MO1 = MI.getOperand(CurOp++); |
| unsigned Size = X86InstrInfo::sizeOfImm(Desc); |
| if (MO1.isImmediate()) |
| emitConstant(MO1.getImm(), Size); |
| else { |
| unsigned rt = Is64BitMode ? X86::reloc_pcrel_word |
| : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); |
| if (Opcode == X86::MOV64ri) |
| rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? |
| if (MO1.isGlobalAddress()) { |
| bool NeedStub = isa<Function>(MO1.getGlobal()); |
| bool isLazy = gvNeedsLazyPtr(MO1.getGlobal()); |
| emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, |
| NeedStub, isLazy); |
| } else if (MO1.isExternalSymbol()) |
| emitExternalSymbolAddress(MO1.getSymbolName(), rt); |
| else if (MO1.isConstantPoolIndex()) |
| emitConstPoolAddress(MO1.getIndex(), rt); |
| else if (MO1.isJumpTableIndex()) |
| emitJumpTableAddress(MO1.getIndex(), rt); |
| } |
| } |
| break; |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>In the previous example, <tt>XXXCodeEmitter.cpp</tt> uses the variable <tt>rt</tt>, |
| which is a RelocationType enum that may be used to relocate addresses (for |
| example, a global address with a PIC base offset). The RelocationType enum for |
| that target is defined in the short target-specific <tt>XXXRelocations.h</tt> file. The |
| RelocationType is used by the <tt>relocate</tt> method defined in <tt>XXXJITInfo.cpp</tt> to |
| rewrite addresses for referenced global symbols.</p> |
| |
| <p>For example, <tt>X86Relocations.h</tt> specifies the following relocation |
| types for the X86 addresses. In all four cases, the relocated value is added to |
| the value already in memory. For <tt>reloc_pcrel_word</tt> and <tt>reloc_picrel_word</tt>, |
| there is an additional initial adjustment.</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>enum RelocationType { |
| reloc_pcrel_word = 0, // add reloc value after adjusting for the PC loc |
| reloc_picrel_word = 1, // add reloc value after adjusting for the PIC base |
| reloc_absolute_word = 2, // absolute relocation; no additional adjustment |
| reloc_absolute_dword = 3 // absolute relocation; no additional adjustment |
| }; |
| </pre> |
| </div> |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="targetJITInfo">Target JIT Info</a> |
| </div> |
| <div class="doc_text"> |
| <p><tt>XXXJITInfo.cpp</tt> implements the JIT interfaces for target-specific code-generation |
| activities, such as emitting machine code and stubs. At minimum, |
| a target-specific version of XXXJITInfo implements the following:</p> |
| <ul> |
| <li><tt>getLazyResolverFunction</tt> – initializes the JIT, gives the |
| target a function that is used for compilation </li> |
| |
| <li><tt>emitFunctionStub</tt> – returns a native function with a |
| specified address for a callback function</li> |
| |
| <li><tt>relocate</tt> – changes the addresses of referenced globals, |
| based on relocation types</li> |
| |
| <li>callback function that are wrappers to a function stub that is |
| used when the real target is not initially known </li> |
| </ul> |
| |
| <p><tt>getLazyResolverFunction</tt> is generally trivial to implement. It |
| makes the incoming parameter as the global JITCompilerFunction and returns the |
| callback function that will be used a function wrapper. For the Alpha target |
| (in <tt>AlphaJITInfo.cpp</tt>), the <tt>getLazyResolverFunction</tt> implementation is simply:</p> |
| </div> |
| |
| <div class="doc_code"> |
| <pre>TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction( |
| JITCompilerFn F) |
| { |
| JITCompilerFunction = F; |
| return AlphaCompilationCallback; |
| } |
| </pre> |
| </div> |
| <div class="doc_text"> |
| <p>For the X86 target, the <tt>getLazyResolverFunction</tt> implementation is |
| a little more complication, because it returns a different callback function |
| for processors with SSE instructions and XMM registers. </p> |
| |
| <p>The callback function initially saves and later restores the |
| callee register values, incoming arguments, and frame and return address. The |
| callback function needs low-level access to the registers or stack, so it is typically |
| implemented with assembler. </p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| |
| <hr> |
| <address> |
| <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a> |
| <a href="http://validator.w3.org/check/referer"><img |
| src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a> |
| |
| <a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a><br> |
| <a href="http://llvm.org">The LLVM Compiler Infrastructure</a> |
| <br> |
| Last modified: $Date$ |
| </address> |
| |
| </body> |
| </html> |