| //===- LoopVR.cpp - Value Range analysis driven by loop information -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // FIXME: What does this do? |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "loopvr" |
| #include "llvm/Analysis/LoopVR.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| using namespace llvm; |
| |
| char LoopVR::ID = 0; |
| static RegisterPass<LoopVR> X("loopvr", "Loop Value Ranges", true, true); |
| |
| /// getRange - determine the range for a particular SCEV within a given Loop |
| ConstantRange LoopVR::getRange(SCEVHandle S, Loop *L, ScalarEvolution &SE) { |
| SCEVHandle T = SE.getBackedgeTakenCount(L); |
| if (isa<SCEVCouldNotCompute>(T)) |
| return ConstantRange(cast<IntegerType>(S->getType())->getBitWidth(), true); |
| |
| T = SE.getTruncateOrZeroExtend(T, S->getType()); |
| return getRange(S, T, SE); |
| } |
| |
| /// getRange - determine the range for a particular SCEV with a given trip count |
| ConstantRange LoopVR::getRange(SCEVHandle S, SCEVHandle T, ScalarEvolution &SE){ |
| |
| if (SCEVConstant *C = dyn_cast<SCEVConstant>(S)) |
| return ConstantRange(C->getValue()->getValue()); |
| |
| ConstantRange FullSet(cast<IntegerType>(S->getType())->getBitWidth(), true); |
| |
| // {x,+,y,+,...z}. We detect overflow by checking the size of the set after |
| // summing the upper and lower. |
| if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
| ConstantRange X = getRange(Add->getOperand(0), T, SE); |
| if (X.isFullSet()) return FullSet; |
| for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) { |
| ConstantRange Y = getRange(Add->getOperand(i), T, SE); |
| if (Y.isFullSet()) return FullSet; |
| |
| APInt Spread_X = X.getSetSize(), Spread_Y = Y.getSetSize(); |
| APInt NewLower = X.getLower() + Y.getLower(); |
| APInt NewUpper = X.getUpper() + Y.getUpper() - 1; |
| if (NewLower == NewUpper) |
| return FullSet; |
| |
| X = ConstantRange(NewLower, NewUpper); |
| if (X.getSetSize().ult(Spread_X) || X.getSetSize().ult(Spread_Y)) |
| return FullSet; // we've wrapped, therefore, full set. |
| } |
| return X; |
| } |
| |
| // {x,*,y,*,...,z}. In order to detect overflow, we use k*bitwidth where |
| // k is the number of terms being multiplied. |
| if (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { |
| ConstantRange X = getRange(Mul->getOperand(0), T, SE); |
| if (X.isFullSet()) return FullSet; |
| |
| const IntegerType *Ty = IntegerType::get(X.getBitWidth()); |
| const IntegerType *ExTy = IntegerType::get(X.getBitWidth() * |
| Mul->getNumOperands()); |
| ConstantRange XExt = X.zeroExtend(ExTy->getBitWidth()); |
| |
| for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) { |
| ConstantRange Y = getRange(Mul->getOperand(i), T, SE); |
| if (Y.isFullSet()) return FullSet; |
| |
| ConstantRange YExt = Y.zeroExtend(ExTy->getBitWidth()); |
| XExt = ConstantRange(XExt.getLower() * YExt.getLower(), |
| ((XExt.getUpper()-1) * (YExt.getUpper()-1)) + 1); |
| } |
| return XExt.truncate(Ty->getBitWidth()); |
| } |
| |
| // X smax Y smax ... Z is: range(smax(X_smin, Y_smin, ..., Z_smin), |
| // smax(X_smax, Y_smax, ..., Z_smax)) |
| // It doesn't matter if one of the SCEVs has FullSet because we're taking |
| // a maximum of the minimums across all of them. |
| if (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { |
| ConstantRange X = getRange(SMax->getOperand(0), T, SE); |
| if (X.isFullSet()) return FullSet; |
| |
| APInt smin = X.getSignedMin(), smax = X.getSignedMax(); |
| for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) { |
| ConstantRange Y = getRange(SMax->getOperand(i), T, SE); |
| smin = APIntOps::smax(smin, Y.getSignedMin()); |
| smax = APIntOps::smax(smax, Y.getSignedMax()); |
| } |
| if (smax + 1 == smin) return FullSet; |
| return ConstantRange(smin, smax + 1); |
| } |
| |
| // X umax Y umax ... Z is: range(umax(X_umin, Y_umin, ..., Z_umin), |
| // umax(X_umax, Y_umax, ..., Z_umax)) |
| // It doesn't matter if one of the SCEVs has FullSet because we're taking |
| // a maximum of the minimums across all of them. |
| if (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { |
| ConstantRange X = getRange(UMax->getOperand(0), T, SE); |
| if (X.isFullSet()) return FullSet; |
| |
| APInt umin = X.getUnsignedMin(), umax = X.getUnsignedMax(); |
| for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) { |
| ConstantRange Y = getRange(UMax->getOperand(i), T, SE); |
| umin = APIntOps::umax(umin, Y.getUnsignedMin()); |
| umax = APIntOps::umax(umax, Y.getUnsignedMax()); |
| } |
| if (umax + 1 == umin) return FullSet; |
| return ConstantRange(umin, umax + 1); |
| } |
| |
| // L udiv R. Luckily, there's only ever 2 sides to a udiv. |
| if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { |
| ConstantRange L = getRange(UDiv->getLHS(), T, SE); |
| ConstantRange R = getRange(UDiv->getRHS(), T, SE); |
| if (L.isFullSet() && R.isFullSet()) return FullSet; |
| |
| if (R.getUnsignedMax() == 0) { |
| // RHS must be single-element zero. Return an empty set. |
| return ConstantRange(R.getBitWidth(), false); |
| } |
| |
| APInt Lower = L.getUnsignedMin().udiv(R.getUnsignedMax()); |
| |
| APInt Upper; |
| |
| if (R.getUnsignedMin() == 0) { |
| // Just because it contains zero, doesn't mean it will also contain one. |
| // Use maximalIntersectWith to get the right behaviour. |
| ConstantRange NotZero(APInt(L.getBitWidth(), 1), |
| APInt::getNullValue(L.getBitWidth())); |
| R = R.maximalIntersectWith(NotZero); |
| } |
| |
| // But, the maximal intersection might still include zero. If it does, then |
| // we know it also included one. |
| if (R.contains(APInt::getNullValue(L.getBitWidth()))) |
| Upper = L.getUnsignedMax(); |
| else |
| Upper = L.getUnsignedMax().udiv(R.getUnsignedMin()); |
| |
| return ConstantRange(Lower, Upper); |
| } |
| |
| // ConstantRange already implements the cast operators. |
| |
| if (SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { |
| T = SE.getTruncateOrZeroExtend(T, ZExt->getOperand()->getType()); |
| ConstantRange X = getRange(ZExt->getOperand(), T, SE); |
| return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth()); |
| } |
| |
| if (SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { |
| T = SE.getTruncateOrZeroExtend(T, SExt->getOperand()->getType()); |
| ConstantRange X = getRange(SExt->getOperand(), T, SE); |
| return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth()); |
| } |
| |
| if (SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { |
| T = SE.getTruncateOrZeroExtend(T, Trunc->getOperand()->getType()); |
| ConstantRange X = getRange(Trunc->getOperand(), T, SE); |
| if (X.isFullSet()) return FullSet; |
| return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth()); |
| } |
| |
| if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { |
| SCEVConstant *Trip = dyn_cast<SCEVConstant>(T); |
| if (!Trip) return FullSet; |
| |
| if (AddRec->isAffine()) { |
| SCEVHandle StartHandle = AddRec->getStart(); |
| SCEVHandle StepHandle = AddRec->getOperand(1); |
| |
| SCEVConstant *Step = dyn_cast<SCEVConstant>(StepHandle); |
| if (!Step) return FullSet; |
| |
| uint32_t ExWidth = 2 * Trip->getValue()->getBitWidth(); |
| APInt TripExt = Trip->getValue()->getValue(); TripExt.zext(ExWidth); |
| APInt StepExt = Step->getValue()->getValue(); StepExt.zext(ExWidth); |
| if ((TripExt * StepExt).ugt(APInt::getLowBitsSet(ExWidth, ExWidth >> 1))) |
| return FullSet; |
| |
| SCEVHandle EndHandle = SE.getAddExpr(StartHandle, |
| SE.getMulExpr(T, StepHandle)); |
| SCEVConstant *Start = dyn_cast<SCEVConstant>(StartHandle); |
| SCEVConstant *End = dyn_cast<SCEVConstant>(EndHandle); |
| if (!Start || !End) return FullSet; |
| |
| const APInt &StartInt = Start->getValue()->getValue(); |
| const APInt &EndInt = End->getValue()->getValue(); |
| const APInt &StepInt = Step->getValue()->getValue(); |
| |
| if (StepInt.isNegative()) { |
| if (EndInt == StartInt + 1) return FullSet; |
| return ConstantRange(EndInt, StartInt + 1); |
| } else { |
| if (StartInt == EndInt + 1) return FullSet; |
| return ConstantRange(StartInt, EndInt + 1); |
| } |
| } |
| } |
| |
| // TODO: non-affine addrec, udiv, SCEVUnknown (narrowed from elsewhere)? |
| |
| return FullSet; |
| } |
| |
| bool LoopVR::runOnFunction(Function &F) { Map.clear(); return false; } |
| |
| void LoopVR::print(std::ostream &os, const Module *) const { |
| raw_os_ostream OS(os); |
| for (std::map<Value *, ConstantRange *>::const_iterator I = Map.begin(), |
| E = Map.end(); I != E; ++I) { |
| OS << *I->first << ": " << *I->second << '\n'; |
| } |
| } |
| |
| void LoopVR::releaseMemory() { |
| for (std::map<Value *, ConstantRange *>::iterator I = Map.begin(), |
| E = Map.end(); I != E; ++I) { |
| delete I->second; |
| } |
| |
| Map.clear(); |
| } |
| |
| ConstantRange LoopVR::compute(Value *V) { |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) |
| return ConstantRange(CI->getValue()); |
| |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false); |
| |
| LoopInfo &LI = getAnalysis<LoopInfo>(); |
| |
| Loop *L = LI.getLoopFor(I->getParent()); |
| if (!L || L->isLoopInvariant(I)) |
| return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false); |
| |
| ScalarEvolution &SE = getAnalysis<ScalarEvolution>(); |
| |
| SCEVHandle S = SE.getSCEV(I); |
| if (isa<SCEVUnknown>(S) || isa<SCEVCouldNotCompute>(S)) |
| return ConstantRange(cast<IntegerType>(V->getType())->getBitWidth(), false); |
| |
| return ConstantRange(getRange(S, L, SE)); |
| } |
| |
| ConstantRange LoopVR::get(Value *V) { |
| std::map<Value *, ConstantRange *>::iterator I = Map.find(V); |
| if (I == Map.end()) { |
| ConstantRange *CR = new ConstantRange(compute(V)); |
| Map[V] = CR; |
| return *CR; |
| } |
| |
| return *I->second; |
| } |
| |
| void LoopVR::remove(Value *V) { |
| std::map<Value *, ConstantRange *>::iterator I = Map.find(V); |
| if (I != Map.end()) { |
| delete I->second; |
| Map.erase(I); |
| } |
| } |
| |
| void LoopVR::narrow(Value *V, const ConstantRange &CR) { |
| if (CR.isFullSet()) return; |
| |
| std::map<Value *, ConstantRange *>::iterator I = Map.find(V); |
| if (I == Map.end()) |
| Map[V] = new ConstantRange(CR); |
| else |
| Map[V] = new ConstantRange(Map[V]->maximalIntersectWith(CR)); |
| } |