| //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that ARM uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "arm-isel" |
| #include "ARM.h" |
| #include "ARMAddressingModes.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMISelLowering.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "ARMPerfectShuffle.h" |
| #include "ARMRegisterInfo.h" |
| #include "ARMSubtarget.h" |
| #include "ARMTargetMachine.h" |
| #include "ARMTargetObjectFile.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalValue.h" |
| #include "llvm/Instruction.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Type.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/ADT/VectorExtras.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <sstream> |
| using namespace llvm; |
| |
| STATISTIC(NumTailCalls, "Number of tail calls"); |
| |
| // This option should go away when tail calls fully work. |
| static cl::opt<bool> |
| EnableARMTailCalls("arm-tail-calls", cl::Hidden, |
| cl::desc("Generate tail calls (TEMPORARY OPTION)."), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| EnableARMLongCalls("arm-long-calls", cl::Hidden, |
| cl::desc("Generate calls via indirect call instructions."), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| ARMInterworking("arm-interworking", cl::Hidden, |
| cl::desc("Enable / disable ARM interworking (for debugging only)"), |
| cl::init(true)); |
| |
| static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State); |
| |
| void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT, |
| EVT PromotedBitwiseVT) { |
| if (VT != PromotedLdStVT) { |
| setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); |
| AddPromotedToType (ISD::LOAD, VT.getSimpleVT(), |
| PromotedLdStVT.getSimpleVT()); |
| |
| setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); |
| AddPromotedToType (ISD::STORE, VT.getSimpleVT(), |
| PromotedLdStVT.getSimpleVT()); |
| } |
| |
| EVT ElemTy = VT.getVectorElementType(); |
| if (ElemTy != MVT::i64 && ElemTy != MVT::f64) |
| setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom); |
| if (ElemTy == MVT::i8 || ElemTy == MVT::i16) |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom); |
| if (ElemTy != MVT::i32) { |
| setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand); |
| setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand); |
| setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand); |
| setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand); |
| } |
| setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom); |
| if (llvm::ModelWithRegSequence()) |
| setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal); |
| else |
| setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand); |
| setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand); |
| setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand); |
| if (VT.isInteger()) { |
| setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom); |
| setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom); |
| setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom); |
| } |
| |
| // Promote all bit-wise operations. |
| if (VT.isInteger() && VT != PromotedBitwiseVT) { |
| setOperationAction(ISD::AND, VT.getSimpleVT(), Promote); |
| AddPromotedToType (ISD::AND, VT.getSimpleVT(), |
| PromotedBitwiseVT.getSimpleVT()); |
| setOperationAction(ISD::OR, VT.getSimpleVT(), Promote); |
| AddPromotedToType (ISD::OR, VT.getSimpleVT(), |
| PromotedBitwiseVT.getSimpleVT()); |
| setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote); |
| AddPromotedToType (ISD::XOR, VT.getSimpleVT(), |
| PromotedBitwiseVT.getSimpleVT()); |
| } |
| |
| // Neon does not support vector divide/remainder operations. |
| setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand); |
| setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand); |
| setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand); |
| setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand); |
| setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand); |
| setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand); |
| } |
| |
| void ARMTargetLowering::addDRTypeForNEON(EVT VT) { |
| addRegisterClass(VT, ARM::DPRRegisterClass); |
| addTypeForNEON(VT, MVT::f64, MVT::v2i32); |
| } |
| |
| void ARMTargetLowering::addQRTypeForNEON(EVT VT) { |
| addRegisterClass(VT, ARM::QPRRegisterClass); |
| addTypeForNEON(VT, MVT::v2f64, MVT::v4i32); |
| } |
| |
| static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) { |
| if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin()) |
| return new TargetLoweringObjectFileMachO(); |
| |
| return new ARMElfTargetObjectFile(); |
| } |
| |
| ARMTargetLowering::ARMTargetLowering(TargetMachine &TM) |
| : TargetLowering(TM, createTLOF(TM)) { |
| Subtarget = &TM.getSubtarget<ARMSubtarget>(); |
| |
| if (Subtarget->isTargetDarwin()) { |
| // Uses VFP for Thumb libfuncs if available. |
| if (Subtarget->isThumb() && Subtarget->hasVFP2()) { |
| // Single-precision floating-point arithmetic. |
| setLibcallName(RTLIB::ADD_F32, "__addsf3vfp"); |
| setLibcallName(RTLIB::SUB_F32, "__subsf3vfp"); |
| setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp"); |
| setLibcallName(RTLIB::DIV_F32, "__divsf3vfp"); |
| |
| // Double-precision floating-point arithmetic. |
| setLibcallName(RTLIB::ADD_F64, "__adddf3vfp"); |
| setLibcallName(RTLIB::SUB_F64, "__subdf3vfp"); |
| setLibcallName(RTLIB::MUL_F64, "__muldf3vfp"); |
| setLibcallName(RTLIB::DIV_F64, "__divdf3vfp"); |
| |
| // Single-precision comparisons. |
| setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp"); |
| setLibcallName(RTLIB::UNE_F32, "__nesf2vfp"); |
| setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp"); |
| setLibcallName(RTLIB::OLE_F32, "__lesf2vfp"); |
| setLibcallName(RTLIB::OGE_F32, "__gesf2vfp"); |
| setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp"); |
| setLibcallName(RTLIB::UO_F32, "__unordsf2vfp"); |
| setLibcallName(RTLIB::O_F32, "__unordsf2vfp"); |
| |
| setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); |
| |
| // Double-precision comparisons. |
| setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp"); |
| setLibcallName(RTLIB::UNE_F64, "__nedf2vfp"); |
| setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp"); |
| setLibcallName(RTLIB::OLE_F64, "__ledf2vfp"); |
| setLibcallName(RTLIB::OGE_F64, "__gedf2vfp"); |
| setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp"); |
| setLibcallName(RTLIB::UO_F64, "__unorddf2vfp"); |
| setLibcallName(RTLIB::O_F64, "__unorddf2vfp"); |
| |
| setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); |
| |
| // Floating-point to integer conversions. |
| // i64 conversions are done via library routines even when generating VFP |
| // instructions, so use the same ones. |
| setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp"); |
| setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp"); |
| setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp"); |
| setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp"); |
| |
| // Conversions between floating types. |
| setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp"); |
| setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp"); |
| |
| // Integer to floating-point conversions. |
| // i64 conversions are done via library routines even when generating VFP |
| // instructions, so use the same ones. |
| // FIXME: There appears to be some naming inconsistency in ARM libgcc: |
| // e.g., __floatunsidf vs. __floatunssidfvfp. |
| setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp"); |
| setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp"); |
| } |
| } |
| |
| // These libcalls are not available in 32-bit. |
| setLibcallName(RTLIB::SHL_I128, 0); |
| setLibcallName(RTLIB::SRL_I128, 0); |
| setLibcallName(RTLIB::SRA_I128, 0); |
| |
| // Libcalls should use the AAPCS base standard ABI, even if hard float |
| // is in effect, as per the ARM RTABI specification, section 4.1.2. |
| if (Subtarget->isAAPCS_ABI()) { |
| for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { |
| setLibcallCallingConv(static_cast<RTLIB::Libcall>(i), |
| CallingConv::ARM_AAPCS); |
| } |
| } |
| |
| if (Subtarget->isThumb1Only()) |
| addRegisterClass(MVT::i32, ARM::tGPRRegisterClass); |
| else |
| addRegisterClass(MVT::i32, ARM::GPRRegisterClass); |
| if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { |
| addRegisterClass(MVT::f32, ARM::SPRRegisterClass); |
| addRegisterClass(MVT::f64, ARM::DPRRegisterClass); |
| |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| } |
| |
| if (Subtarget->hasNEON()) { |
| addDRTypeForNEON(MVT::v2f32); |
| addDRTypeForNEON(MVT::v8i8); |
| addDRTypeForNEON(MVT::v4i16); |
| addDRTypeForNEON(MVT::v2i32); |
| addDRTypeForNEON(MVT::v1i64); |
| |
| addQRTypeForNEON(MVT::v4f32); |
| addQRTypeForNEON(MVT::v2f64); |
| addQRTypeForNEON(MVT::v16i8); |
| addQRTypeForNEON(MVT::v8i16); |
| addQRTypeForNEON(MVT::v4i32); |
| addQRTypeForNEON(MVT::v2i64); |
| |
| // v2f64 is legal so that QR subregs can be extracted as f64 elements, but |
| // neither Neon nor VFP support any arithmetic operations on it. |
| setOperationAction(ISD::FADD, MVT::v2f64, Expand); |
| setOperationAction(ISD::FSUB, MVT::v2f64, Expand); |
| setOperationAction(ISD::FMUL, MVT::v2f64, Expand); |
| setOperationAction(ISD::FDIV, MVT::v2f64, Expand); |
| setOperationAction(ISD::FREM, MVT::v2f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand); |
| setOperationAction(ISD::VSETCC, MVT::v2f64, Expand); |
| setOperationAction(ISD::FNEG, MVT::v2f64, Expand); |
| setOperationAction(ISD::FABS, MVT::v2f64, Expand); |
| setOperationAction(ISD::FSQRT, MVT::v2f64, Expand); |
| setOperationAction(ISD::FSIN, MVT::v2f64, Expand); |
| setOperationAction(ISD::FCOS, MVT::v2f64, Expand); |
| setOperationAction(ISD::FPOWI, MVT::v2f64, Expand); |
| setOperationAction(ISD::FPOW, MVT::v2f64, Expand); |
| setOperationAction(ISD::FLOG, MVT::v2f64, Expand); |
| setOperationAction(ISD::FLOG2, MVT::v2f64, Expand); |
| setOperationAction(ISD::FLOG10, MVT::v2f64, Expand); |
| setOperationAction(ISD::FEXP, MVT::v2f64, Expand); |
| setOperationAction(ISD::FEXP2, MVT::v2f64, Expand); |
| setOperationAction(ISD::FCEIL, MVT::v2f64, Expand); |
| setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand); |
| setOperationAction(ISD::FRINT, MVT::v2f64, Expand); |
| setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand); |
| setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand); |
| |
| // Neon does not support some operations on v1i64 and v2i64 types. |
| setOperationAction(ISD::MUL, MVT::v1i64, Expand); |
| setOperationAction(ISD::MUL, MVT::v2i64, Expand); |
| setOperationAction(ISD::VSETCC, MVT::v1i64, Expand); |
| setOperationAction(ISD::VSETCC, MVT::v2i64, Expand); |
| |
| setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); |
| setTargetDAGCombine(ISD::SHL); |
| setTargetDAGCombine(ISD::SRL); |
| setTargetDAGCombine(ISD::SRA); |
| setTargetDAGCombine(ISD::SIGN_EXTEND); |
| setTargetDAGCombine(ISD::ZERO_EXTEND); |
| setTargetDAGCombine(ISD::ANY_EXTEND); |
| setTargetDAGCombine(ISD::SELECT_CC); |
| } |
| |
| computeRegisterProperties(); |
| |
| // ARM does not have f32 extending load. |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); |
| |
| // ARM does not have i1 sign extending load. |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); |
| |
| // ARM supports all 4 flavors of integer indexed load / store. |
| if (!Subtarget->isThumb1Only()) { |
| for (unsigned im = (unsigned)ISD::PRE_INC; |
| im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { |
| setIndexedLoadAction(im, MVT::i1, Legal); |
| setIndexedLoadAction(im, MVT::i8, Legal); |
| setIndexedLoadAction(im, MVT::i16, Legal); |
| setIndexedLoadAction(im, MVT::i32, Legal); |
| setIndexedStoreAction(im, MVT::i1, Legal); |
| setIndexedStoreAction(im, MVT::i8, Legal); |
| setIndexedStoreAction(im, MVT::i16, Legal); |
| setIndexedStoreAction(im, MVT::i32, Legal); |
| } |
| } |
| |
| // i64 operation support. |
| if (Subtarget->isThumb1Only()) { |
| setOperationAction(ISD::MUL, MVT::i64, Expand); |
| setOperationAction(ISD::MULHU, MVT::i32, Expand); |
| setOperationAction(ISD::MULHS, MVT::i32, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); |
| setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); |
| } else { |
| setOperationAction(ISD::MUL, MVT::i64, Expand); |
| setOperationAction(ISD::MULHU, MVT::i32, Expand); |
| if (!Subtarget->hasV6Ops()) |
| setOperationAction(ISD::MULHS, MVT::i32, Expand); |
| } |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); |
| setOperationAction(ISD::SRL, MVT::i64, Custom); |
| setOperationAction(ISD::SRA, MVT::i64, Custom); |
| |
| // ARM does not have ROTL. |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| setOperationAction(ISD::CTTZ, MVT::i32, Custom); |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) |
| setOperationAction(ISD::CTLZ, MVT::i32, Expand); |
| |
| // Only ARMv6 has BSWAP. |
| if (!Subtarget->hasV6Ops()) |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| |
| // These are expanded into libcalls. |
| if (!Subtarget->hasDivide()) { |
| // v7M has a hardware divider |
| setOperationAction(ISD::SDIV, MVT::i32, Expand); |
| setOperationAction(ISD::UDIV, MVT::i32, Expand); |
| } |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); |
| setOperationAction(ISD::BlockAddress, MVT::i32, Custom); |
| |
| setOperationAction(ISD::TRAP, MVT::Other, Legal); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VAARG, MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); |
| // FIXME: Shouldn't need this, since no register is used, but the legalizer |
| // doesn't yet know how to not do that for SjLj. |
| setExceptionSelectorRegister(ARM::R0); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); |
| setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom); |
| |
| // If the subtarget does not have extract instructions, sign_extend_inreg |
| // needs to be expanded. Extract is available in ARM mode on v6 and up, |
| // and on most Thumb2 implementations. |
| if ((!Subtarget->isThumb() && !Subtarget->hasV6Ops()) |
| || (Subtarget->isThumb2() && !Subtarget->hasT2ExtractPack())) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); |
| } |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| |
| if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) |
| // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR |
| // iff target supports vfp2. |
| setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom); |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| setOperationAction(ISD::SETCC, MVT::i32, Expand); |
| setOperationAction(ISD::SETCC, MVT::f32, Expand); |
| setOperationAction(ISD::SETCC, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT, MVT::i32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| |
| setOperationAction(ISD::BRCOND, MVT::Other, Expand); |
| setOperationAction(ISD::BR_CC, MVT::i32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f32, Custom); |
| setOperationAction(ISD::BR_CC, MVT::f64, Custom); |
| setOperationAction(ISD::BR_JT, MVT::Other, Custom); |
| |
| // We don't support sin/cos/fmod/copysign/pow |
| setOperationAction(ISD::FSIN, MVT::f64, Expand); |
| setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f32, Expand); |
| setOperationAction(ISD::FCOS, MVT::f64, Expand); |
| setOperationAction(ISD::FREM, MVT::f64, Expand); |
| setOperationAction(ISD::FREM, MVT::f32, Expand); |
| if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| } |
| setOperationAction(ISD::FPOW, MVT::f64, Expand); |
| setOperationAction(ISD::FPOW, MVT::f32, Expand); |
| |
| // Various VFP goodness |
| if (!UseSoftFloat && !Subtarget->isThumb1Only()) { |
| // int <-> fp are custom expanded into bit_convert + ARMISD ops. |
| if (Subtarget->hasVFP2()) { |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| } |
| // Special handling for half-precision FP. |
| if (!Subtarget->hasFP16()) { |
| setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand); |
| setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand); |
| } |
| } |
| |
| // We have target-specific dag combine patterns for the following nodes: |
| // ARMISD::VMOVRRD - No need to call setTargetDAGCombine |
| setTargetDAGCombine(ISD::ADD); |
| setTargetDAGCombine(ISD::SUB); |
| setTargetDAGCombine(ISD::MUL); |
| |
| setStackPointerRegisterToSaveRestore(ARM::SP); |
| |
| if (UseSoftFloat || Subtarget->isThumb1Only() || !Subtarget->hasVFP2()) |
| setSchedulingPreference(Sched::RegPressure); |
| else |
| setSchedulingPreference(Sched::Hybrid); |
| |
| // FIXME: If-converter should use instruction latency to determine |
| // profitability rather than relying on fixed limits. |
| if (Subtarget->getCPUString() == "generic") { |
| // Generic (and overly aggressive) if-conversion limits. |
| setIfCvtBlockSizeLimit(10); |
| setIfCvtDupBlockSizeLimit(2); |
| } else if (Subtarget->hasV7Ops()) { |
| setIfCvtBlockSizeLimit(3); |
| setIfCvtDupBlockSizeLimit(1); |
| } else if (Subtarget->hasV6Ops()) { |
| setIfCvtBlockSizeLimit(2); |
| setIfCvtDupBlockSizeLimit(1); |
| } else { |
| setIfCvtBlockSizeLimit(3); |
| setIfCvtDupBlockSizeLimit(2); |
| } |
| |
| maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type |
| // Do not enable CodePlacementOpt for now: it currently runs after the |
| // ARMConstantIslandPass and messes up branch relaxation and placement |
| // of constant islands. |
| // benefitFromCodePlacementOpt = true; |
| } |
| |
| const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return 0; |
| case ARMISD::Wrapper: return "ARMISD::Wrapper"; |
| case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; |
| case ARMISD::CALL: return "ARMISD::CALL"; |
| case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; |
| case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; |
| case ARMISD::tCALL: return "ARMISD::tCALL"; |
| case ARMISD::BRCOND: return "ARMISD::BRCOND"; |
| case ARMISD::BR_JT: return "ARMISD::BR_JT"; |
| case ARMISD::BR2_JT: return "ARMISD::BR2_JT"; |
| case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; |
| case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; |
| case ARMISD::CMP: return "ARMISD::CMP"; |
| case ARMISD::CMPZ: return "ARMISD::CMPZ"; |
| case ARMISD::CMPFP: return "ARMISD::CMPFP"; |
| case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; |
| case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; |
| case ARMISD::CMOV: return "ARMISD::CMOV"; |
| case ARMISD::CNEG: return "ARMISD::CNEG"; |
| |
| case ARMISD::RBIT: return "ARMISD::RBIT"; |
| |
| case ARMISD::FTOSI: return "ARMISD::FTOSI"; |
| case ARMISD::FTOUI: return "ARMISD::FTOUI"; |
| case ARMISD::SITOF: return "ARMISD::SITOF"; |
| case ARMISD::UITOF: return "ARMISD::UITOF"; |
| |
| case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; |
| case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; |
| case ARMISD::RRX: return "ARMISD::RRX"; |
| |
| case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD"; |
| case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR"; |
| |
| case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP"; |
| case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP"; |
| |
| case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN"; |
| |
| case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; |
| |
| case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC"; |
| |
| case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER"; |
| case ARMISD::SYNCBARRIER: return "ARMISD::SYNCBARRIER"; |
| |
| case ARMISD::VCEQ: return "ARMISD::VCEQ"; |
| case ARMISD::VCGE: return "ARMISD::VCGE"; |
| case ARMISD::VCGEU: return "ARMISD::VCGEU"; |
| case ARMISD::VCGT: return "ARMISD::VCGT"; |
| case ARMISD::VCGTU: return "ARMISD::VCGTU"; |
| case ARMISD::VTST: return "ARMISD::VTST"; |
| |
| case ARMISD::VSHL: return "ARMISD::VSHL"; |
| case ARMISD::VSHRs: return "ARMISD::VSHRs"; |
| case ARMISD::VSHRu: return "ARMISD::VSHRu"; |
| case ARMISD::VSHLLs: return "ARMISD::VSHLLs"; |
| case ARMISD::VSHLLu: return "ARMISD::VSHLLu"; |
| case ARMISD::VSHLLi: return "ARMISD::VSHLLi"; |
| case ARMISD::VSHRN: return "ARMISD::VSHRN"; |
| case ARMISD::VRSHRs: return "ARMISD::VRSHRs"; |
| case ARMISD::VRSHRu: return "ARMISD::VRSHRu"; |
| case ARMISD::VRSHRN: return "ARMISD::VRSHRN"; |
| case ARMISD::VQSHLs: return "ARMISD::VQSHLs"; |
| case ARMISD::VQSHLu: return "ARMISD::VQSHLu"; |
| case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu"; |
| case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs"; |
| case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu"; |
| case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu"; |
| case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs"; |
| case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu"; |
| case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu"; |
| case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu"; |
| case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs"; |
| case ARMISD::VDUP: return "ARMISD::VDUP"; |
| case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE"; |
| case ARMISD::VEXT: return "ARMISD::VEXT"; |
| case ARMISD::VREV64: return "ARMISD::VREV64"; |
| case ARMISD::VREV32: return "ARMISD::VREV32"; |
| case ARMISD::VREV16: return "ARMISD::VREV16"; |
| case ARMISD::VZIP: return "ARMISD::VZIP"; |
| case ARMISD::VUZP: return "ARMISD::VUZP"; |
| case ARMISD::VTRN: return "ARMISD::VTRN"; |
| case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR"; |
| case ARMISD::FMAX: return "ARMISD::FMAX"; |
| case ARMISD::FMIN: return "ARMISD::FMIN"; |
| } |
| } |
| |
| /// getRegClassFor - Return the register class that should be used for the |
| /// specified value type. |
| TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const { |
| // Map v4i64 to QQ registers but do not make the type legal. Similarly map |
| // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to |
| // load / store 4 to 8 consecutive D registers. |
| if (Subtarget->hasNEON()) { |
| if (VT == MVT::v4i64) |
| return ARM::QQPRRegisterClass; |
| else if (VT == MVT::v8i64) |
| return ARM::QQQQPRRegisterClass; |
| } |
| return TargetLowering::getRegClassFor(VT); |
| } |
| |
| /// getFunctionAlignment - Return the Log2 alignment of this function. |
| unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const { |
| return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 0 : 1; |
| } |
| |
| Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const { |
| unsigned NumVals = N->getNumValues(); |
| if (!NumVals) |
| return Sched::RegPressure; |
| |
| for (unsigned i = 0; i != NumVals; ++i) { |
| EVT VT = N->getValueType(i); |
| if (VT.isFloatingPoint() || VT.isVector()) |
| return Sched::Latency; |
| } |
| |
| if (!N->isMachineOpcode()) |
| return Sched::RegPressure; |
| |
| // Load are scheduled for latency even if there instruction itinerary |
| // is not available. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| const TargetInstrDesc &TID = TII->get(N->getMachineOpcode()); |
| if (TID.mayLoad()) |
| return Sched::Latency; |
| |
| const InstrItineraryData &Itins = getTargetMachine().getInstrItineraryData(); |
| if (!Itins.isEmpty() && Itins.getStageLatency(TID.getSchedClass()) > 2) |
| return Sched::Latency; |
| return Sched::RegPressure; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lowering Code |
| //===----------------------------------------------------------------------===// |
| |
| /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC |
| static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: llvm_unreachable("Unknown condition code!"); |
| case ISD::SETNE: return ARMCC::NE; |
| case ISD::SETEQ: return ARMCC::EQ; |
| case ISD::SETGT: return ARMCC::GT; |
| case ISD::SETGE: return ARMCC::GE; |
| case ISD::SETLT: return ARMCC::LT; |
| case ISD::SETLE: return ARMCC::LE; |
| case ISD::SETUGT: return ARMCC::HI; |
| case ISD::SETUGE: return ARMCC::HS; |
| case ISD::SETULT: return ARMCC::LO; |
| case ISD::SETULE: return ARMCC::LS; |
| } |
| } |
| |
| /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. |
| static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, |
| ARMCC::CondCodes &CondCode2) { |
| CondCode2 = ARMCC::AL; |
| switch (CC) { |
| default: llvm_unreachable("Unknown FP condition!"); |
| case ISD::SETEQ: |
| case ISD::SETOEQ: CondCode = ARMCC::EQ; break; |
| case ISD::SETGT: |
| case ISD::SETOGT: CondCode = ARMCC::GT; break; |
| case ISD::SETGE: |
| case ISD::SETOGE: CondCode = ARMCC::GE; break; |
| case ISD::SETOLT: CondCode = ARMCC::MI; break; |
| case ISD::SETOLE: CondCode = ARMCC::LS; break; |
| case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; |
| case ISD::SETO: CondCode = ARMCC::VC; break; |
| case ISD::SETUO: CondCode = ARMCC::VS; break; |
| case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; |
| case ISD::SETUGT: CondCode = ARMCC::HI; break; |
| case ISD::SETUGE: CondCode = ARMCC::PL; break; |
| case ISD::SETLT: |
| case ISD::SETULT: CondCode = ARMCC::LT; break; |
| case ISD::SETLE: |
| case ISD::SETULE: CondCode = ARMCC::LE; break; |
| case ISD::SETNE: |
| case ISD::SETUNE: CondCode = ARMCC::NE; break; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Calling Convention Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARMGenCallingConv.inc" |
| |
| // APCS f64 is in register pairs, possibly split to stack |
| static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| CCState &State, bool CanFail) { |
| static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; |
| |
| // Try to get the first register. |
| if (unsigned Reg = State.AllocateReg(RegList, 4)) |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| else { |
| // For the 2nd half of a v2f64, do not fail. |
| if (CanFail) |
| return false; |
| |
| // Put the whole thing on the stack. |
| State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, |
| State.AllocateStack(8, 4), |
| LocVT, LocInfo)); |
| return true; |
| } |
| |
| // Try to get the second register. |
| if (unsigned Reg = State.AllocateReg(RegList, 4)) |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| else |
| State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, |
| State.AllocateStack(4, 4), |
| LocVT, LocInfo)); |
| return true; |
| } |
| |
| static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State) { |
| if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true)) |
| return false; |
| if (LocVT == MVT::v2f64 && |
| !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false)) |
| return false; |
| return true; // we handled it |
| } |
| |
| // AAPCS f64 is in aligned register pairs |
| static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| CCState &State, bool CanFail) { |
| static const unsigned HiRegList[] = { ARM::R0, ARM::R2 }; |
| static const unsigned LoRegList[] = { ARM::R1, ARM::R3 }; |
| |
| unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2); |
| if (Reg == 0) { |
| // For the 2nd half of a v2f64, do not just fail. |
| if (CanFail) |
| return false; |
| |
| // Put the whole thing on the stack. |
| State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, |
| State.AllocateStack(8, 8), |
| LocVT, LocInfo)); |
| return true; |
| } |
| |
| unsigned i; |
| for (i = 0; i < 2; ++i) |
| if (HiRegList[i] == Reg) |
| break; |
| |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], |
| LocVT, LocInfo)); |
| return true; |
| } |
| |
| static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State) { |
| if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true)) |
| return false; |
| if (LocVT == MVT::v2f64 && |
| !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false)) |
| return false; |
| return true; // we handled it |
| } |
| |
| static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, CCState &State) { |
| static const unsigned HiRegList[] = { ARM::R0, ARM::R2 }; |
| static const unsigned LoRegList[] = { ARM::R1, ARM::R3 }; |
| |
| unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2); |
| if (Reg == 0) |
| return false; // we didn't handle it |
| |
| unsigned i; |
| for (i = 0; i < 2; ++i) |
| if (HiRegList[i] == Reg) |
| break; |
| |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], |
| LocVT, LocInfo)); |
| return true; |
| } |
| |
| static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State) { |
| if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) |
| return false; |
| if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) |
| return false; |
| return true; // we handled it |
| } |
| |
| static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, |
| CCValAssign::LocInfo &LocInfo, |
| ISD::ArgFlagsTy &ArgFlags, |
| CCState &State) { |
| return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, |
| State); |
| } |
| |
| /// CCAssignFnForNode - Selects the correct CCAssignFn for a the |
| /// given CallingConvention value. |
| CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC, |
| bool Return, |
| bool isVarArg) const { |
| switch (CC) { |
| default: |
| llvm_unreachable("Unsupported calling convention"); |
| case CallingConv::C: |
| case CallingConv::Fast: |
| // Use target triple & subtarget features to do actual dispatch. |
| if (Subtarget->isAAPCS_ABI()) { |
| if (Subtarget->hasVFP2() && |
| FloatABIType == FloatABI::Hard && !isVarArg) |
| return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); |
| else |
| return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); |
| } else |
| return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); |
| case CallingConv::ARM_AAPCS_VFP: |
| return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); |
| case CallingConv::ARM_AAPCS: |
| return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); |
| case CallingConv::ARM_APCS: |
| return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); |
| } |
| } |
| |
| /// LowerCallResult - Lower the result values of a call into the |
| /// appropriate copies out of appropriate physical registers. |
| SDValue |
| ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| CCState CCInfo(CallConv, isVarArg, getTargetMachine(), |
| RVLocs, *DAG.getContext()); |
| CCInfo.AnalyzeCallResult(Ins, |
| CCAssignFnForNode(CallConv, /* Return*/ true, |
| isVarArg)); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign VA = RVLocs[i]; |
| |
| SDValue Val; |
| if (VA.needsCustom()) { |
| // Handle f64 or half of a v2f64. |
| SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, |
| InFlag); |
| Chain = Lo.getValue(1); |
| InFlag = Lo.getValue(2); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, |
| InFlag); |
| Chain = Hi.getValue(1); |
| InFlag = Hi.getValue(2); |
| Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); |
| |
| if (VA.getLocVT() == MVT::v2f64) { |
| SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); |
| Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, |
| DAG.getConstant(0, MVT::i32)); |
| |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); |
| Chain = Lo.getValue(1); |
| InFlag = Lo.getValue(2); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); |
| Chain = Hi.getValue(1); |
| InFlag = Hi.getValue(2); |
| Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); |
| Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, |
| DAG.getConstant(1, MVT::i32)); |
| } |
| } else { |
| Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), |
| InFlag); |
| Chain = Val.getValue(1); |
| InFlag = Val.getValue(2); |
| } |
| |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val); |
| break; |
| } |
| |
| InVals.push_back(Val); |
| } |
| |
| return Chain; |
| } |
| |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified |
| /// by "Src" to address "Dst" of size "Size". Alignment information is |
| /// specified by the specific parameter attribute. The copy will be passed as |
| /// a byval function parameter. |
| /// Sometimes what we are copying is the end of a larger object, the part that |
| /// does not fit in registers. |
| static SDValue |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, |
| ISD::ArgFlagsTy Flags, SelectionDAG &DAG, |
| DebugLoc dl) { |
| SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); |
| return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), |
| /*isVolatile=*/false, /*AlwaysInline=*/false, |
| NULL, 0, NULL, 0); |
| } |
| |
| /// LowerMemOpCallTo - Store the argument to the stack. |
| SDValue |
| ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, |
| SDValue StackPtr, SDValue Arg, |
| DebugLoc dl, SelectionDAG &DAG, |
| const CCValAssign &VA, |
| ISD::ArgFlagsTy Flags) const { |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); |
| PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); |
| if (Flags.isByVal()) { |
| return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); |
| } |
| return DAG.getStore(Chain, dl, Arg, PtrOff, |
| PseudoSourceValue::getStack(), LocMemOffset, |
| false, false, 0); |
| } |
| |
| void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG, |
| SDValue Chain, SDValue &Arg, |
| RegsToPassVector &RegsToPass, |
| CCValAssign &VA, CCValAssign &NextVA, |
| SDValue &StackPtr, |
| SmallVector<SDValue, 8> &MemOpChains, |
| ISD::ArgFlagsTy Flags) const { |
| |
| SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), Arg); |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd)); |
| |
| if (NextVA.isRegLoc()) |
| RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1))); |
| else { |
| assert(NextVA.isMemLoc()); |
| if (StackPtr.getNode() == 0) |
| StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); |
| |
| MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1), |
| dl, DAG, NextVA, |
| Flags)); |
| } |
| } |
| |
| /// LowerCall - Lowering a call into a callseq_start <- |
| /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter |
| /// nodes. |
| SDValue |
| ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee, |
| CallingConv::ID CallConv, bool isVarArg, |
| bool &isTailCall, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); |
| bool IsSibCall = false; |
| // Temporarily disable tail calls so things don't break. |
| if (!EnableARMTailCalls) |
| isTailCall = false; |
| if (isTailCall) { |
| // Check if it's really possible to do a tail call. |
| isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, |
| isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), |
| Outs, Ins, DAG); |
| // We don't support GuaranteedTailCallOpt for ARM, only automatically |
| // detected sibcalls. |
| if (isTailCall) { |
| ++NumTailCalls; |
| IsSibCall = true; |
| } |
| } |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeCallOperands(Outs, |
| CCAssignFnForNode(CallConv, /* Return*/ false, |
| isVarArg)); |
| |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| |
| // For tail calls, memory operands are available in our caller's stack. |
| if (IsSibCall) |
| NumBytes = 0; |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| if (!IsSibCall) |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); |
| |
| SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); |
| |
| RegsToPassVector RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| // Walk the register/memloc assignments, inserting copies/loads. In the case |
| // of tail call optimization, arguments are handled later. |
| for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); |
| i != e; |
| ++i, ++realArgIdx) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = Outs[realArgIdx].Val; |
| ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| // f64 and v2f64 might be passed in i32 pairs and must be split into pieces |
| if (VA.needsCustom()) { |
| if (VA.getLocVT() == MVT::v2f64) { |
| SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, |
| DAG.getConstant(0, MVT::i32)); |
| SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, |
| DAG.getConstant(1, MVT::i32)); |
| |
| PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, |
| VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); |
| |
| VA = ArgLocs[++i]; // skip ahead to next loc |
| if (VA.isRegLoc()) { |
| PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, |
| VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); |
| } else { |
| assert(VA.isMemLoc()); |
| |
| MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1, |
| dl, DAG, VA, Flags)); |
| } |
| } else { |
| PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], |
| StackPtr, MemOpChains, Flags); |
| } |
| } else if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } else { |
| assert(VA.isMemLoc()); |
| |
| MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, |
| dl, DAG, VA, Flags)); |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDValue InFlag; |
| // Tail call byval lowering might overwrite argument registers so in case of |
| // tail call optimization the copies to registers are lowered later. |
| if (!isTailCall) |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // For tail calls lower the arguments to the 'real' stack slot. |
| if (isTailCall) { |
| // Force all the incoming stack arguments to be loaded from the stack |
| // before any new outgoing arguments are stored to the stack, because the |
| // outgoing stack slots may alias the incoming argument stack slots, and |
| // the alias isn't otherwise explicit. This is slightly more conservative |
| // than necessary, because it means that each store effectively depends |
| // on every argument instead of just those arguments it would clobber. |
| |
| // Do not flag preceeding copytoreg stuff together with the following stuff. |
| InFlag = SDValue(); |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| InFlag =SDValue(); |
| } |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| bool isDirect = false; |
| bool isARMFunc = false; |
| bool isLocalARMFunc = false; |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| if (EnableARMLongCalls) { |
| assert (getTargetMachine().getRelocationModel() == Reloc::Static |
| && "long-calls with non-static relocation model!"); |
| // Handle a global address or an external symbol. If it's not one of |
| // those, the target's already in a register, so we don't need to do |
| // anything extra. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = G->getGlobal(); |
| // Create a constant pool entry for the callee address |
| unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, |
| ARMPCLabelIndex, |
| ARMCP::CPValue, 0); |
| // Get the address of the callee into a register |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad(getPointerTy(), dl, |
| DAG.getEntryNode(), CPAddr, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| const char *Sym = S->getSymbol(); |
| |
| // Create a constant pool entry for the callee address |
| unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(), |
| Sym, ARMPCLabelIndex, 0); |
| // Get the address of the callee into a register |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad(getPointerTy(), dl, |
| DAG.getEntryNode(), CPAddr, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| } |
| } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| const GlobalValue *GV = G->getGlobal(); |
| isDirect = true; |
| bool isExt = GV->isDeclaration() || GV->isWeakForLinker(); |
| bool isStub = (isExt && Subtarget->isTargetDarwin()) && |
| getTargetMachine().getRelocationModel() != Reloc::Static; |
| isARMFunc = !Subtarget->isThumb() || isStub; |
| // ARM call to a local ARM function is predicable. |
| isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking); |
| // tBX takes a register source operand. |
| if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { |
| unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, |
| ARMPCLabelIndex, |
| ARMCP::CPValue, 4); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad(getPointerTy(), dl, |
| DAG.getEntryNode(), CPAddr, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| Callee = DAG.getNode(ARMISD::PIC_ADD, dl, |
| getPointerTy(), Callee, PICLabel); |
| } else |
| Callee = DAG.getTargetGlobalAddress(GV, getPointerTy()); |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| isDirect = true; |
| bool isStub = Subtarget->isTargetDarwin() && |
| getTargetMachine().getRelocationModel() != Reloc::Static; |
| isARMFunc = !Subtarget->isThumb() || isStub; |
| // tBX takes a register source operand. |
| const char *Sym = S->getSymbol(); |
| if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { |
| unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(), |
| Sym, ARMPCLabelIndex, 4); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| Callee = DAG.getLoad(getPointerTy(), dl, |
| DAG.getEntryNode(), CPAddr, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| Callee = DAG.getNode(ARMISD::PIC_ADD, dl, |
| getPointerTy(), Callee, PICLabel); |
| } else |
| Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy()); |
| } |
| |
| // FIXME: handle tail calls differently. |
| unsigned CallOpc; |
| if (Subtarget->isThumb()) { |
| if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) |
| CallOpc = ARMISD::CALL_NOLINK; |
| else |
| CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; |
| } else { |
| CallOpc = (isDirect || Subtarget->hasV5TOps()) |
| ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL) |
| : ARMISD::CALL_NOLINK; |
| } |
| if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) { |
| // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK |
| Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| std::vector<SDValue> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| if (InFlag.getNode()) |
| Ops.push_back(InFlag); |
| |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); |
| if (isTailCall) |
| return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); |
| |
| // Returns a chain and a flag for retval copy to use. |
| Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(0, true), InFlag); |
| if (!Ins.empty()) |
| InFlag = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, |
| dl, DAG, InVals); |
| } |
| |
| /// MatchingStackOffset - Return true if the given stack call argument is |
| /// already available in the same position (relatively) of the caller's |
| /// incoming argument stack. |
| static |
| bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, |
| MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, |
| const ARMInstrInfo *TII) { |
| unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; |
| int FI = INT_MAX; |
| if (Arg.getOpcode() == ISD::CopyFromReg) { |
| unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); |
| if (!VR || TargetRegisterInfo::isPhysicalRegister(VR)) |
| return false; |
| MachineInstr *Def = MRI->getVRegDef(VR); |
| if (!Def) |
| return false; |
| if (!Flags.isByVal()) { |
| if (!TII->isLoadFromStackSlot(Def, FI)) |
| return false; |
| } else { |
| // unsigned Opcode = Def->getOpcode(); |
| // if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) && |
| // Def->getOperand(1).isFI()) { |
| // FI = Def->getOperand(1).getIndex(); |
| // Bytes = Flags.getByValSize(); |
| // } else |
| return false; |
| } |
| } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { |
| if (Flags.isByVal()) |
| // ByVal argument is passed in as a pointer but it's now being |
| // dereferenced. e.g. |
| // define @foo(%struct.X* %A) { |
| // tail call @bar(%struct.X* byval %A) |
| // } |
| return false; |
| SDValue Ptr = Ld->getBasePtr(); |
| FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); |
| if (!FINode) |
| return false; |
| FI = FINode->getIndex(); |
| } else |
| return false; |
| |
| assert(FI != INT_MAX); |
| if (!MFI->isFixedObjectIndex(FI)) |
| return false; |
| return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); |
| } |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. Targets which want to do tail call |
| /// optimization should implement this function. |
| bool |
| ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool isVarArg, |
| bool isCalleeStructRet, |
| bool isCallerStructRet, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const { |
| |
| const Function *CallerF = DAG.getMachineFunction().getFunction(); |
| CallingConv::ID CallerCC = CallerF->getCallingConv(); |
| bool CCMatch = CallerCC == CalleeCC; |
| |
| // Look for obvious safe cases to perform tail call optimization that do not |
| // require ABI changes. This is what gcc calls sibcall. |
| |
| // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to |
| // emit a special epilogue. |
| // Not sure yet if this is true on ARM. |
| //?? if (RegInfo->needsStackRealignment(MF)) |
| //?? return false; |
| |
| // Do not sibcall optimize vararg calls unless the call site is not passing any |
| // arguments. |
| if (isVarArg && !Outs.empty()) |
| return false; |
| |
| // Also avoid sibcall optimization if either caller or callee uses struct |
| // return semantics. |
| if (isCalleeStructRet || isCallerStructRet) |
| return false; |
| |
| // If the calling conventions do not match, then we'd better make sure the |
| // results are returned in the same way as what the caller expects. |
| if (!CCMatch) { |
| SmallVector<CCValAssign, 16> RVLocs1; |
| CCState CCInfo1(CalleeCC, false, getTargetMachine(), |
| RVLocs1, *DAG.getContext()); |
| CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg)); |
| |
| SmallVector<CCValAssign, 16> RVLocs2; |
| CCState CCInfo2(CallerCC, false, getTargetMachine(), |
| RVLocs2, *DAG.getContext()); |
| CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg)); |
| |
| if (RVLocs1.size() != RVLocs2.size()) |
| return false; |
| for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { |
| if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) |
| return false; |
| if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) |
| return false; |
| if (RVLocs1[i].isRegLoc()) { |
| if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) |
| return false; |
| } else { |
| if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) |
| return false; |
| } |
| } |
| } |
| |
| // If the callee takes no arguments then go on to check the results of the |
| // call. |
| if (!Outs.empty()) { |
| // Check if stack adjustment is needed. For now, do not do this if any |
| // argument is passed on the stack. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(), |
| ArgLocs, *DAG.getContext()); |
| CCInfo.AnalyzeCallOperands(Outs, |
| CCAssignFnForNode(CalleeCC, false, isVarArg)); |
| if (CCInfo.getNextStackOffset()) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| |
| // Check if the arguments are already laid out in the right way as |
| // the caller's fixed stack objects. |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| const MachineRegisterInfo *MRI = &MF.getRegInfo(); |
| const ARMInstrInfo *TII = |
| ((ARMTargetMachine&)getTargetMachine()).getInstrInfo(); |
| for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); |
| i != e; |
| ++i, ++realArgIdx) { |
| CCValAssign &VA = ArgLocs[i]; |
| EVT RegVT = VA.getLocVT(); |
| SDValue Arg = Outs[realArgIdx].Val; |
| ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; |
| if (VA.getLocInfo() == CCValAssign::Indirect) |
| return false; |
| if (VA.needsCustom()) { |
| // f64 and vector types are split into multiple registers or |
| // register/stack-slot combinations. The types will not match |
| // the registers; give up on memory f64 refs until we figure |
| // out what to do about this. |
| if (!VA.isRegLoc()) |
| return false; |
| if (!ArgLocs[++i].isRegLoc()) |
| return false; |
| if (RegVT == MVT::v2f64) { |
| if (!ArgLocs[++i].isRegLoc()) |
| return false; |
| if (!ArgLocs[++i].isRegLoc()) |
| return false; |
| } |
| } else if (!VA.isRegLoc()) { |
| if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, |
| MFI, MRI, TII)) |
| return false; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerReturn(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| DebugLoc dl, SelectionDAG &DAG) const { |
| |
| // CCValAssign - represent the assignment of the return value to a location. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // CCState - Info about the registers and stack slots. |
| CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, |
| *DAG.getContext()); |
| |
| // Analyze outgoing return values. |
| CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true, |
| isVarArg)); |
| |
| // If this is the first return lowered for this function, add |
| // the regs to the liveout set for the function. |
| if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { |
| for (unsigned i = 0; i != RVLocs.size(); ++i) |
| if (RVLocs[i].isRegLoc()) |
| DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); |
| } |
| |
| SDValue Flag; |
| |
| // Copy the result values into the output registers. |
| for (unsigned i = 0, realRVLocIdx = 0; |
| i != RVLocs.size(); |
| ++i, ++realRVLocIdx) { |
| CCValAssign &VA = RVLocs[i]; |
| assert(VA.isRegLoc() && "Can only return in registers!"); |
| |
| SDValue Arg = Outs[realRVLocIdx].Val; |
| |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| if (VA.needsCustom()) { |
| if (VA.getLocVT() == MVT::v2f64) { |
| // Extract the first half and return it in two registers. |
| SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, |
| DAG.getConstant(0, MVT::i32)); |
| SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), Half); |
| |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag); |
| Flag = Chain.getValue(1); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), |
| HalfGPRs.getValue(1), Flag); |
| Flag = Chain.getValue(1); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| |
| // Extract the 2nd half and fall through to handle it as an f64 value. |
| Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, |
| DAG.getConstant(1, MVT::i32)); |
| } |
| // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is |
| // available. |
| SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1); |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag); |
| Flag = Chain.getValue(1); |
| VA = RVLocs[++i]; // skip ahead to next loc |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1), |
| Flag); |
| } else |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); |
| |
| // Guarantee that all emitted copies are |
| // stuck together, avoiding something bad. |
| Flag = Chain.getValue(1); |
| } |
| |
| SDValue result; |
| if (Flag.getNode()) |
| result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag); |
| else // Return Void |
| result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain); |
| |
| return result; |
| } |
| |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as |
| // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is |
| // one of the above mentioned nodes. It has to be wrapped because otherwise |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only |
| // be used to form addressing mode. These wrapped nodes will be selected |
| // into MOVi. |
| static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) { |
| EVT PtrVT = Op.getValueType(); |
| // FIXME there is no actual debug info here |
| DebugLoc dl = Op.getDebugLoc(); |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| SDValue Res; |
| if (CP->isMachineConstantPoolEntry()) |
| Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, |
| CP->getAlignment()); |
| else |
| Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, |
| CP->getAlignment()); |
| return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); |
| } |
| |
| SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = 0; |
| DebugLoc DL = Op.getDebugLoc(); |
| EVT PtrVT = getPointerTy(); |
| const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| SDValue CPAddr; |
| if (RelocM == Reloc::Static) { |
| CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4); |
| } else { |
| unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMPCLabelIndex = AFI->createConstPoolEntryUId(); |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex, |
| ARMCP::CPBlockAddress, |
| PCAdj); |
| CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| } |
| CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr); |
| SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| if (RelocM == Reloc::Static) |
| return Result; |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model |
| SDValue |
| ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG) const { |
| DebugLoc dl = GA->getDebugLoc(); |
| EVT PtrVT = getPointerTy(); |
| unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, |
| ARMCP::CPValue, PCAdj, "tlsgd", true); |
| SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); |
| Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| SDValue Chain = Argument.getValue(1); |
| |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); |
| |
| // call __tls_get_addr. |
| ArgListTy Args; |
| ArgListEntry Entry; |
| Entry.Node = Argument; |
| Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext()); |
| Args.push_back(Entry); |
| // FIXME: is there useful debug info available here? |
| std::pair<SDValue, SDValue> CallResult = |
| LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()), |
| false, false, false, false, |
| 0, CallingConv::C, false, /*isReturnValueUsed=*/true, |
| DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl); |
| return CallResult.first; |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "initial exec" or |
| // "local exec" model. |
| SDValue |
| ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG) const { |
| const GlobalValue *GV = GA->getGlobal(); |
| DebugLoc dl = GA->getDebugLoc(); |
| SDValue Offset; |
| SDValue Chain = DAG.getEntryNode(); |
| EVT PtrVT = getPointerTy(); |
| // Get the Thread Pointer |
| SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); |
| |
| if (GV->isDeclaration()) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); |
| // Initial exec model. |
| unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, |
| ARMCP::CPValue, PCAdj, "gottpoff", true); |
| Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); |
| Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| Chain = Offset.getValue(1); |
| |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); |
| |
| Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| } else { |
| // local exec model |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff"); |
| Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); |
| Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| } |
| |
| // The address of the thread local variable is the add of the thread |
| // pointer with the offset of the variable. |
| return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { |
| // TODO: implement the "local dynamic" model |
| assert(Subtarget->isTargetELF() && |
| "TLS not implemented for non-ELF targets"); |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| // If the relocation model is PIC, use the "General Dynamic" TLS Model, |
| // otherwise use the "Local Exec" TLS Model |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_) |
| return LowerToTLSGeneralDynamicModel(GA, DAG); |
| else |
| return LowerToTLSExecModels(GA, DAG); |
| } |
| |
| SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT PtrVT = getPointerTy(); |
| DebugLoc dl = Op.getDebugLoc(); |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| if (RelocM == Reloc::PIC_) { |
| bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT"); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), |
| CPAddr, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| SDValue Chain = Result.getValue(1); |
| SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); |
| Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT); |
| if (!UseGOTOFF) |
| Result = DAG.getLoad(PtrVT, dl, Chain, Result, |
| PseudoSourceValue::getGOT(), 0, |
| false, false, 0); |
| return Result; |
| } else { |
| // If we have T2 ops, we can materialize the address directly via movt/movw |
| // pair. This is always cheaper. |
| if (Subtarget->useMovt()) { |
| return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, |
| DAG.getTargetGlobalAddress(GV, PtrVT)); |
| } else { |
| SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| } |
| } |
| } |
| |
| SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, |
| SelectionDAG &DAG) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = 0; |
| EVT PtrVT = getPointerTy(); |
| DebugLoc dl = Op.getDebugLoc(); |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| SDValue CPAddr; |
| if (RelocM == Reloc::Static) |
| CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); |
| else { |
| ARMPCLabelIndex = AFI->createConstPoolEntryUId(); |
| unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8); |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj); |
| CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| } |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| |
| SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| SDValue Chain = Result.getValue(1); |
| |
| if (RelocM == Reloc::PIC_) { |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); |
| } |
| |
| if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) |
| Result = DAG.getLoad(PtrVT, dl, Chain, Result, |
| PseudoSourceValue::getGOT(), 0, |
| false, false, 0); |
| |
| return Result; |
| } |
| |
| SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Subtarget->isTargetELF() && |
| "GLOBAL OFFSET TABLE not implemented for non-ELF targets"); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); |
| EVT PtrVT = getPointerTy(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(), |
| "_GLOBAL_OFFSET_TABLE_", |
| ARMPCLabelIndex, PCAdj); |
| SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue Val = DAG.getConstant(0, MVT::i32); |
| return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(0), |
| Op.getOperand(1), Val); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0), |
| Op.getOperand(1), DAG.getConstant(0, MVT::i32)); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) |
| const { |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| DebugLoc dl = Op.getDebugLoc(); |
| switch (IntNo) { |
| default: return SDValue(); // Don't custom lower most intrinsics. |
| case Intrinsic::arm_thread_pointer: { |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); |
| } |
| case Intrinsic::eh_sjlj_lsda: { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); |
| EVT PtrVT = getPointerTy(); |
| DebugLoc dl = Op.getDebugLoc(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| SDValue CPAddr; |
| unsigned PCAdj = (RelocM != Reloc::PIC_) |
| ? 0 : (Subtarget->isThumb() ? 4 : 8); |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex, |
| ARMCP::CPLSDA, PCAdj); |
| CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); |
| SDValue Result = |
| DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, |
| PseudoSourceValue::getConstantPool(), 0, |
| false, false, 0); |
| SDValue Chain = Result.getValue(1); |
| |
| if (RelocM == Reloc::PIC_) { |
| SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); |
| Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); |
| } |
| return Result; |
| } |
| } |
| } |
| |
| static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG, |
| const ARMSubtarget *Subtarget) { |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue Op5 = Op.getOperand(5); |
| SDValue Res; |
| unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue(); |
| if (isDeviceBarrier) { |
| if (Subtarget->hasV7Ops()) |
| Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0)); |
| else |
| Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(0, MVT::i32)); |
| } else { |
| if (Subtarget->hasV7Ops()) |
| Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); |
| else |
| Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(0, MVT::i32)); |
| } |
| return Res; |
| } |
| |
| static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>(); |
| |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0, |
| false, false, 0); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDNode *Node = Op.getNode(); |
| DebugLoc dl = Node->getDebugLoc(); |
| EVT VT = Node->getValueType(0); |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| SDValue Align = Op.getOperand(2); |
| |
| // Chain the dynamic stack allocation so that it doesn't modify the stack |
| // pointer when other instructions are using the stack. |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); |
| |
| unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue(); |
| unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment(); |
| if (AlignVal > StackAlign) |
| // Do this now since selection pass cannot introduce new target |
| // independent node. |
| Align = DAG.getConstant(-(uint64_t)AlignVal, VT); |
| |
| // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up |
| // using a "add r, sp, r" instead. Negate the size now so we don't have to |
| // do even more horrible hack later. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| if (AFI->isThumb1OnlyFunction()) { |
| bool Negate = true; |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size); |
| if (C) { |
| uint32_t Val = C->getZExtValue(); |
| if (Val <= 508 && ((Val & 3) == 0)) |
| Negate = false; |
| } |
| if (Negate) |
| Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size); |
| } |
| |
| SDVTList VTList = DAG.getVTList(VT, MVT::Other); |
| SDValue Ops1[] = { Chain, Size, Align }; |
| SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3); |
| Chain = Res.getValue(1); |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), |
| DAG.getIntPtrConstant(0, true), SDValue()); |
| SDValue Ops2[] = { Res, Chain }; |
| return DAG.getMergeValues(Ops2, 2, dl); |
| } |
| |
| SDValue |
| ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, |
| SDValue &Root, SelectionDAG &DAG, |
| DebugLoc dl) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| TargetRegisterClass *RC; |
| if (AFI->isThumb1OnlyFunction()) |
| RC = ARM::tGPRRegisterClass; |
| else |
| RC = ARM::GPRRegisterClass; |
| |
| // Transform the arguments stored in physical registers into virtual ones. |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); |
| |
| SDValue ArgValue2; |
| if (NextVA.isMemLoc()) { |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true, false); |
| |
| // Create load node to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, |
| PseudoSourceValue::getFixedStack(FI), 0, |
| false, false, 0); |
| } else { |
| Reg = MF.addLiveIn(NextVA.getLocReg(), RC); |
| ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); |
| } |
| |
| return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2); |
| } |
| |
| SDValue |
| ARMTargetLowering::LowerFormalArguments(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::InputArg> |
| &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) |
| const { |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, |
| *DAG.getContext()); |
| CCInfo.AnalyzeFormalArguments(Ins, |
| CCAssignFnForNode(CallConv, /* Return*/ false, |
| isVarArg)); |
| |
| SmallVector<SDValue, 16> ArgValues; |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| |
| // Arguments stored in registers. |
| if (VA.isRegLoc()) { |
| EVT RegVT = VA.getLocVT(); |
| |
| SDValue ArgValue; |
| if (VA.needsCustom()) { |
| // f64 and vector types are split up into multiple registers or |
| // combinations of registers and stack slots. |
| if (VA.getLocVT() == MVT::v2f64) { |
| SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i], |
| Chain, DAG, dl); |
| VA = ArgLocs[++i]; // skip ahead to next loc |
| SDValue ArgValue2; |
| if (VA.isMemLoc()) { |
| int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), |
| true, false); |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN, |
| PseudoSourceValue::getFixedStack(FI), 0, |
| false, false, 0); |
| } else { |
| ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], |
| Chain, DAG, dl); |
| } |
| ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); |
| ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, |
| ArgValue, ArgValue1, DAG.getIntPtrConstant(0)); |
| ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, |
| ArgValue, ArgValue2, DAG.getIntPtrConstant(1)); |
| } else |
| ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); |
| |
| } else { |
| TargetRegisterClass *RC; |
| |
| if (RegVT == MVT::f32) |
| RC = ARM::SPRRegisterClass; |
| else if (RegVT == MVT::f64) |
| RC = ARM::DPRRegisterClass; |
| else if (RegVT == MVT::v2f64) |
| RC = ARM::QPRRegisterClass; |
| else if (RegVT == MVT::i32) |
| RC = (AFI->isThumb1OnlyFunction() ? |
| ARM::tGPRRegisterClass : ARM::GPRRegisterClass); |
| else |
| llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); |
| |
| // Transform the arguments in physical registers into virtual ones. |
| unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); |
| ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); |
| } |
| |
| // If this is an 8 or 16-bit value, it is really passed promoted |
| // to 32 bits. Insert an assert[sz]ext to capture this, then |
| // truncate to the right size. |
| switch (VA.getLocInfo()) { |
| default: llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: break; |
| case CCValAssign::BCvt: |
| ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::SExt: |
| ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| break; |
| case CCValAssign::ZExt: |
| ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, |
| DAG.getValueType(VA.getValVT())); |
| ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); |
| break; |
| } |
| |
| InVals.push_back(ArgValue); |
| |
| } else { // VA.isRegLoc() |
| |
| // sanity check |
| assert(VA.isMemLoc()); |
| assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); |
| |
| unsigned ArgSize = VA.getLocVT().getSizeInBits()/8; |
| int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), |
| true, false); |
| |
| // Create load nodes to retrieve arguments from the stack. |
| SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, |
| PseudoSourceValue::getFixedStack(FI), 0, |
| false, false, 0)); |
| } |
| } |
| |
| // varargs |
| if (isVarArg) { |
| static const unsigned GPRArgRegs[] = { |
| ARM::R0, ARM::R1, ARM::R2, ARM::R3 |
| }; |
| |
| unsigned NumGPRs = CCInfo.getFirstUnallocated |
| (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0])); |
| |
| unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); |
| unsigned VARegSize = (4 - NumGPRs) * 4; |
| unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1); |
| unsigned ArgOffset = CCInfo.getNextStackOffset(); |
| if (VARegSaveSize) { |
| // If this function is vararg, store any remaining integer argument regs |
| // to their spots on the stack so that they may be loaded by deferencing |
| // the result of va_next. |
| AFI->setVarArgsRegSaveSize(VARegSaveSize); |
| AFI->setVarArgsFrameIndex( |
| MFI->CreateFixedObject(VARegSaveSize, |
| ArgOffset + VARegSaveSize - VARegSize, |
| true, false)); |
| SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), |
| getPointerTy()); |
| |
| SmallVector<SDValue, 4> MemOps; |
| for (; NumGPRs < 4; ++NumGPRs) { |
| TargetRegisterClass *RC; |
| if (AFI->isThumb1OnlyFunction()) |
| RC = ARM::tGPRRegisterClass; |
| else |
| RC = ARM::GPRRegisterClass; |
| |
| unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC); |
| SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); |
| SDValue Store = |
| DAG.getStore(Val.getValue(1), dl, Val, FIN, |
| PseudoSourceValue::getFixedStack(AFI->getVarArgsFrameIndex()), |
| 0, false, false, 0); |
| MemOps.push_back(Store); |
| FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, |
| DAG.getConstant(4, getPointerTy())); |
| } |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, |
| &MemOps[0], MemOps.size()); |
| } else |
| // This will point to the next argument passed via stack. |
| AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, |
| true, false)); |
| } |
| |
| return Chain; |
| } |
| |
| /// isFloatingPointZero - Return true if this is +0.0. |
| static bool isFloatingPointZero(SDValue Op) { |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) |
| return CFP->getValueAPF().isPosZero(); |
| else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { |
| // Maybe this has already been legalized into the constant pool? |
| if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { |
| SDValue WrapperOp = Op.getOperand(1).getOperand(0); |
| if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp)) |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) |
| return CFP->getValueAPF().isPosZero(); |
| } |
| } |
| return false; |
| } |
| |
| /// Returns appropriate ARM CMP (cmp) and corresponding condition code for |
| /// the given operands. |
| SDValue |
| ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, |
| SDValue &ARMCC, SelectionDAG &DAG, |
| DebugLoc dl) const { |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { |
| unsigned C = RHSC->getZExtValue(); |
| if (!isLegalICmpImmediate(C)) { |
| // Constant does not fit, try adjusting it by one? |
| switch (CC) { |
| default: break; |
| case ISD::SETLT: |
| case ISD::SETGE: |
| if (isLegalICmpImmediate(C-1)) { |
| CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; |
| RHS = DAG.getConstant(C-1, MVT::i32); |
| } |
| break; |
| case ISD::SETULT: |
| case ISD::SETUGE: |
| if (C > 0 && isLegalICmpImmediate(C-1)) { |
| CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; |
| RHS = DAG.getConstant(C-1, MVT::i32); |
| } |
| break; |
| case ISD::SETLE: |
| case ISD::SETGT: |
| if (isLegalICmpImmediate(C+1)) { |
| CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; |
| RHS = DAG.getConstant(C+1, MVT::i32); |
| } |
| break; |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| if (C < 0xffffffff && isLegalICmpImmediate(C+1)) { |
| CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
| RHS = DAG.getConstant(C+1, MVT::i32); |
| } |
| break; |
| } |
| } |
| } |
| |
| ARMCC::CondCodes CondCode = IntCCToARMCC(CC); |
| ARMISD::NodeType CompareType; |
| switch (CondCode) { |
| default: |
| CompareType = ARMISD::CMP; |
| break; |
| case ARMCC::EQ: |
| case ARMCC::NE: |
| // Uses only Z Flag |
| CompareType = ARMISD::CMPZ; |
| break; |
| } |
| ARMCC = DAG.getConstant(CondCode, MVT::i32); |
| return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS); |
| } |
| |
| /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. |
| static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, |
| DebugLoc dl) { |
| SDValue Cmp; |
| if (!isFloatingPointZero(RHS)) |
| Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS); |
| else |
| Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS); |
| return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp); |
| } |
| |
| SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| SDValue TrueVal = Op.getOperand(2); |
| SDValue FalseVal = Op.getOperand(3); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (LHS.getValueType() == MVT::i32) { |
| SDValue ARMCC; |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl); |
| return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp); |
| } |
| |
| ARMCC::CondCodes CondCode, CondCode2; |
| FPCCToARMCC(CC, CondCode, CondCode2); |
| |
| SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); |
| SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, |
| ARMCC, CCR, Cmp); |
| if (CondCode2 != ARMCC::AL) { |
| SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32); |
| // FIXME: Needs another CMP because flag can have but one use. |
| SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); |
| Result = DAG.getNode(ARMISD::CMOV, dl, VT, |
| Result, TrueVal, ARMCC2, CCR, Cmp2); |
| } |
| return Result; |
| } |
| |
| SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDValue LHS = Op.getOperand(2); |
| SDValue RHS = Op.getOperand(3); |
| SDValue Dest = Op.getOperand(4); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (LHS.getValueType() == MVT::i32) { |
| SDValue ARMCC; |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl); |
| return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, |
| Chain, Dest, ARMCC, CCR,Cmp); |
| } |
| |
| assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); |
| ARMCC::CondCodes CondCode, CondCode2; |
| FPCCToARMCC(CC, CondCode, CondCode2); |
| |
| SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); |
| SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp }; |
| SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); |
| if (CondCode2 != ARMCC::AL) { |
| ARMCC = DAG.getConstant(CondCode2, MVT::i32); |
| SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) }; |
| Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); |
| } |
| return Res; |
| } |
| |
| SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Table = Op.getOperand(1); |
| SDValue Index = Op.getOperand(2); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| EVT PTy = getPointerTy(); |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); |
| ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>(); |
| SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy); |
| SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); |
| Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId); |
| Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy)); |
| SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); |
| if (Subtarget->isThumb2()) { |
| // Thumb2 uses a two-level jump. That is, it jumps into the jump table |
| // which does another jump to the destination. This also makes it easier |
| // to translate it to TBB / TBH later. |
| // FIXME: This might not work if the function is extremely large. |
| return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, |
| Addr, Op.getOperand(2), JTI, UId); |
| } |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { |
| Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, |
| PseudoSourceValue::getJumpTable(), 0, |
| false, false, 0); |
| Chain = Addr.getValue(1); |
| Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table); |
| return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); |
| } else { |
| Addr = DAG.getLoad(PTy, dl, Chain, Addr, |
| PseudoSourceValue::getJumpTable(), 0, false, false, 0); |
| Chain = Addr.getValue(1); |
| return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); |
| } |
| } |
| |
| static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) { |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Opc; |
| |
| switch (Op.getOpcode()) { |
| default: |
| assert(0 && "Invalid opcode!"); |
| case ISD::FP_TO_SINT: |
| Opc = ARMISD::FTOSI; |
| break; |
| case ISD::FP_TO_UINT: |
| Opc = ARMISD::FTOUI; |
| break; |
| } |
| Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0)); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); |
| } |
| |
| static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Opc; |
| |
| switch (Op.getOpcode()) { |
| default: |
| assert(0 && "Invalid opcode!"); |
| case ISD::SINT_TO_FP: |
| Opc = ARMISD::SITOF; |
| break; |
| case ISD::UINT_TO_FP: |
| Opc = ARMISD::UITOF; |
| break; |
| } |
| |
| Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0)); |
| return DAG.getNode(Opc, dl, VT, Op); |
| } |
| |
| static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { |
| // Implement fcopysign with a fabs and a conditional fneg. |
| SDValue Tmp0 = Op.getOperand(0); |
| SDValue Tmp1 = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT VT = Op.getValueType(); |
| EVT SrcVT = Tmp1.getValueType(); |
| SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0); |
| SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl); |
| SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp); |
| } |
| |
| SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MFI->setReturnAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| if (Depth) { |
| SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); |
| SDValue Offset = DAG.getConstant(4, MVT::i32); |
| return DAG.getLoad(VT, dl, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), |
| NULL, 0, false, false, 0); |
| } |
| |
| // Return LR, which contains the return address. Mark it an implicit live-in. |
| unsigned Reg = MF.addLiveIn(ARM::LR, ARM::GPRRegisterClass); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); |
| } |
| |
| SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI->setFrameAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin()) |
| ? ARM::R7 : ARM::R11; |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); |
| while (Depth--) |
| FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0, |
| false, false, 0); |
| return FrameAddr; |
| } |
| |
| /// ExpandBIT_CONVERT - If the target supports VFP, this function is called to |
| /// expand a bit convert where either the source or destination type is i64 to |
| /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64 |
| /// operand type is illegal (e.g., v2f32 for a target that doesn't support |
| /// vectors), since the legalizer won't know what to do with that. |
| static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) { |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| DebugLoc dl = N->getDebugLoc(); |
| SDValue Op = N->getOperand(0); |
| |
| // This function is only supposed to be called for i64 types, either as the |
| // source or destination of the bit convert. |
| EVT SrcVT = Op.getValueType(); |
| EVT DstVT = N->getValueType(0); |
| assert((SrcVT == MVT::i64 || DstVT == MVT::i64) && |
| "ExpandBIT_CONVERT called for non-i64 type"); |
| |
| // Turn i64->f64 into VMOVDRR. |
| if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) { |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, |
| DAG.getConstant(0, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, |
| DAG.getConstant(1, MVT::i32)); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, DstVT, |
| DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi)); |
| } |
| |
| // Turn f64->i64 into VMOVRRD. |
| if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) { |
| SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, |
| DAG.getVTList(MVT::i32, MVT::i32), &Op, 1); |
| // Merge the pieces into a single i64 value. |
| return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// getZeroVector - Returns a vector of specified type with all zero elements. |
| /// |
| static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) { |
| assert(VT.isVector() && "Expected a vector type"); |
| |
| // Zero vectors are used to represent vector negation and in those cases |
| // will be implemented with the NEON VNEG instruction. However, VNEG does |
| // not support i64 elements, so sometimes the zero vectors will need to be |
| // explicitly constructed. For those cases, and potentially other uses in |
| // the future, always build zero vectors as <16 x i8> or <8 x i8> bitcasted |
| // to their dest type. This ensures they get CSE'd. |
| SDValue Vec; |
| SDValue Cst = DAG.getTargetConstant(0, MVT::i8); |
| SmallVector<SDValue, 8> Ops; |
| MVT TVT; |
| |
| if (VT.getSizeInBits() == 64) { |
| Ops.assign(8, Cst); TVT = MVT::v8i8; |
| } else { |
| Ops.assign(16, Cst); TVT = MVT::v16i8; |
| } |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size()); |
| |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); |
| } |
| |
| /// getOnesVector - Returns a vector of specified type with all bits set. |
| /// |
| static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) { |
| assert(VT.isVector() && "Expected a vector type"); |
| |
| // Always build ones vectors as <16 x i8> or <8 x i8> bitcasted to their |
| // dest type. This ensures they get CSE'd. |
| SDValue Vec; |
| SDValue Cst = DAG.getTargetConstant(0xFF, MVT::i8); |
| SmallVector<SDValue, 8> Ops; |
| MVT TVT; |
| |
| if (VT.getSizeInBits() == 64) { |
| Ops.assign(8, Cst); TVT = MVT::v8i8; |
| } else { |
| Ops.assign(16, Cst); TVT = MVT::v16i8; |
| } |
| Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size()); |
| |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); |
| } |
| |
| /// LowerShiftRightParts - Lower SRA_PARTS, which returns two |
| /// i32 values and take a 2 x i32 value to shift plus a shift amount. |
| SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| SDValue ARMCC; |
| unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; |
| |
| assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); |
| |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, MVT::i32), ShAmt); |
| SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, MVT::i32)); |
| SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); |
| SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); |
| |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, |
| ARMCC, DAG, dl); |
| SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); |
| SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, |
| CCR, Cmp); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } |
| |
| /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two |
| /// i32 values and take a 2 x i32 value to shift plus a shift amount. |
| SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getNumOperands() == 3 && "Not a double-shift!"); |
| EVT VT = Op.getValueType(); |
| unsigned VTBits = VT.getSizeInBits(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue ShOpLo = Op.getOperand(0); |
| SDValue ShOpHi = Op.getOperand(1); |
| SDValue ShAmt = Op.getOperand(2); |
| SDValue ARMCC; |
| |
| assert(Op.getOpcode() == ISD::SHL_PARTS); |
| SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, |
| DAG.getConstant(VTBits, MVT::i32), ShAmt); |
| SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); |
| SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, |
| DAG.getConstant(VTBits, MVT::i32)); |
| SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); |
| SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); |
| |
| SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); |
| SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, |
| ARMCC, DAG, dl); |
| SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); |
| SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMCC, |
| CCR, Cmp); |
| |
| SDValue Ops[2] = { Lo, Hi }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } |
| |
| static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| EVT VT = N->getValueType(0); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| if (!ST->hasV6T2Ops()) |
| return SDValue(); |
| |
| SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0)); |
| return DAG.getNode(ISD::CTLZ, dl, VT, rbit); |
| } |
| |
| static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| EVT VT = N->getValueType(0); |
| DebugLoc dl = N->getDebugLoc(); |
| |
| // Lower vector shifts on NEON to use VSHL. |
| if (VT.isVector()) { |
| assert(ST->hasNEON() && "unexpected vector shift"); |
| |
| // Left shifts translate directly to the vshiftu intrinsic. |
| if (N->getOpcode() == ISD::SHL) |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32), |
| N->getOperand(0), N->getOperand(1)); |
| |
| assert((N->getOpcode() == ISD::SRA || |
| N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode"); |
| |
| // NEON uses the same intrinsics for both left and right shifts. For |
| // right shifts, the shift amounts are negative, so negate the vector of |
| // shift amounts. |
| EVT ShiftVT = N->getOperand(1).getValueType(); |
| SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT, |
| getZeroVector(ShiftVT, DAG, dl), |
| N->getOperand(1)); |
| Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ? |
| Intrinsic::arm_neon_vshifts : |
| Intrinsic::arm_neon_vshiftu); |
| return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, |
| DAG.getConstant(vshiftInt, MVT::i32), |
| N->getOperand(0), NegatedCount); |
| } |
| |
| // We can get here for a node like i32 = ISD::SHL i32, i64 |
| if (VT != MVT::i64) |
| return SDValue(); |
| |
| assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && |
| "Unknown shift to lower!"); |
| |
| // We only lower SRA, SRL of 1 here, all others use generic lowering. |
| if (!isa<ConstantSDNode>(N->getOperand(1)) || |
| cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1) |
| return SDValue(); |
| |
| // If we are in thumb mode, we don't have RRX. |
| if (ST->isThumb1Only()) return SDValue(); |
| |
| // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), |
| DAG.getConstant(0, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), |
| DAG.getConstant(1, MVT::i32)); |
| |
| // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and |
| // captures the result into a carry flag. |
| unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; |
| Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1); |
| |
| // The low part is an ARMISD::RRX operand, which shifts the carry in. |
| Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); |
| |
| // Merge the pieces into a single i64 value. |
| return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); |
| } |
| |
| static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) { |
| SDValue TmpOp0, TmpOp1; |
| bool Invert = false; |
| bool Swap = false; |
| unsigned Opc = 0; |
| |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| SDValue CC = Op.getOperand(2); |
| EVT VT = Op.getValueType(); |
| ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| if (Op.getOperand(1).getValueType().isFloatingPoint()) { |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Illegal FP comparison"); break; |
| case ISD::SETUNE: |
| case ISD::SETNE: Invert = true; // Fallthrough |
| case ISD::SETOEQ: |
| case ISD::SETEQ: Opc = ARMISD::VCEQ; break; |
| case ISD::SETOLT: |
| case ISD::SETLT: Swap = true; // Fallthrough |
| case ISD::SETOGT: |
| case ISD::SETGT: Opc = ARMISD::VCGT; break; |
| case ISD::SETOLE: |
| case ISD::SETLE: Swap = true; // Fallthrough |
| case ISD::SETOGE: |
| case ISD::SETGE: Opc = ARMISD::VCGE; break; |
| case ISD::SETUGE: Swap = true; // Fallthrough |
| case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break; |
| case ISD::SETUGT: Swap = true; // Fallthrough |
| case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break; |
| case ISD::SETUEQ: Invert = true; // Fallthrough |
| case ISD::SETONE: |
| // Expand this to (OLT | OGT). |
| TmpOp0 = Op0; |
| TmpOp1 = Op1; |
| Opc = ISD::OR; |
| Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); |
| Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1); |
| break; |
| case ISD::SETUO: Invert = true; // Fallthrough |
| case ISD::SETO: |
| // Expand this to (OLT | OGE). |
| TmpOp0 = Op0; |
| TmpOp1 = Op1; |
| Opc = ISD::OR; |
| Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); |
| Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1); |
| break; |
| } |
| } else { |
| // Integer comparisons. |
| switch (SetCCOpcode) { |
| default: llvm_unreachable("Illegal integer comparison"); break; |
| case ISD::SETNE: Invert = true; |
| case ISD::SETEQ: Opc = ARMISD::VCEQ; break; |
| case ISD::SETLT: Swap = true; |
| case ISD::SETGT: Opc = ARMISD::VCGT; break; |
| case ISD::SETLE: Swap = true; |
| case ISD::SETGE: Opc = ARMISD::VCGE; break; |
| case ISD::SETULT: Swap = true; |
| case ISD::SETUGT: Opc = ARMISD::VCGTU; break; |
| case ISD::SETULE: Swap = true; |
| case ISD::SETUGE: Opc = ARMISD::VCGEU; break; |
| } |
| |
| // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). |
| if (Opc == ARMISD::VCEQ) { |
| |
| SDValue AndOp; |
| if (ISD::isBuildVectorAllZeros(Op1.getNode())) |
| AndOp = Op0; |
| else if (ISD::isBuildVectorAllZeros(Op0.getNode())) |
| AndOp = Op1; |
| |
| // Ignore bitconvert. |
| if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT) |
| AndOp = AndOp.getOperand(0); |
| |
| if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { |
| Opc = ARMISD::VTST; |
| Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0)); |
| Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1)); |
| Invert = !Invert; |
| } |
| } |
| } |
| |
| if (Swap) |
| std::swap(Op0, Op1); |
| |
| SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); |
| |
| if (Invert) |
| Result = DAG.getNOT(dl, Result, VT); |
| |
| return Result; |
| } |
| |
| /// isNEONModifiedImm - Check if the specified splat value corresponds to a |
| /// valid vector constant for a NEON instruction with a "modified immediate" |
| /// operand (e.g., VMOV). If so, return either the constant being |
| /// splatted or the encoded value, depending on the DoEncode parameter. The |
| /// format of the encoded value is: bit12=Op, bits11-8=Cmode, |
| /// bits7-0=Immediate. |
| static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, |
| unsigned SplatBitSize, SelectionDAG &DAG, |
| bool isVMOV, bool DoEncode) { |
| unsigned Op, Cmode, Imm; |
| EVT VT; |
| |
| // SplatBitSize is set to the smallest size that splats the vector, so a |
| // zero vector will always have SplatBitSize == 8. However, NEON modified |
| // immediate instructions others than VMOV do not support the 8-bit encoding |
| // of a zero vector, and the default encoding of zero is supposed to be the |
| // 32-bit version. |
| if (SplatBits == 0) |
| SplatBitSize = 32; |
| |
| Op = 0; |
| switch (SplatBitSize) { |
| case 8: |
| // Any 1-byte value is OK. Op=0, Cmode=1110. |
| assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); |
| Cmode = 0xe; |
| Imm = SplatBits; |
| VT = MVT::i8; |
| break; |
| |
| case 16: |
| // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. |
| VT = MVT::i16; |
| if ((SplatBits & ~0xff) == 0) { |
| // Value = 0x00nn: Op=x, Cmode=100x. |
| Cmode = 0x8; |
| Imm = SplatBits; |
| break; |
| } |
| if ((SplatBits & ~0xff00) == 0) { |
| // Value = 0xnn00: Op=x, Cmode=101x. |
| Cmode = 0xa; |
| Imm = SplatBits >> 8; |
| break; |
| } |
| return SDValue(); |
| |
| case 32: |
| // NEON's 32-bit VMOV supports splat values where: |
| // * only one byte is nonzero, or |
| // * the least significant byte is 0xff and the second byte is nonzero, or |
| // * the least significant 2 bytes are 0xff and the third is nonzero. |
| VT = MVT::i32; |
| if ((SplatBits & ~0xff) == 0) { |
| // Value = 0x000000nn: Op=x, Cmode=000x. |
| Cmode = 0; |
| Imm = SplatBits; |
| break; |
| } |
| if ((SplatBits & ~0xff00) == 0) { |
| // Value = 0x0000nn00: Op=x, Cmode=001x. |
| Cmode = 0x2; |
| Imm = SplatBits >> 8; |
| break; |
| } |
| if ((SplatBits & ~0xff0000) == 0) { |
| // Value = 0x00nn0000: Op=x, Cmode=010x. |
| Cmode = 0x4; |
| Imm = SplatBits >> 16; |
| break; |
| } |
| if ((SplatBits & ~0xff000000) == 0) { |
| // Value = 0xnn000000: Op=x, Cmode=011x. |
| Cmode = 0x6; |
| Imm = SplatBits >> 24; |
| break; |
| } |
| |
| if ((SplatBits & ~0xffff) == 0 && |
| ((SplatBits | SplatUndef) & 0xff) == 0xff) { |
| // Value = 0x0000nnff: Op=x, Cmode=1100. |
| Cmode = 0xc; |
| Imm = SplatBits >> 8; |
| SplatBits |= 0xff; |
| break; |
| } |
| |
| if ((SplatBits & ~0xffffff) == 0 && |
| ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { |
| // Value = 0x00nnffff: Op=x, Cmode=1101. |
| Cmode = 0xd; |
| Imm = SplatBits >> 16; |
| SplatBits |= 0xffff; |
| break; |
| } |
| |
| // Note: there are a few 32-bit splat values (specifically: 00ffff00, |
| // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not |
| // VMOV.I32. A (very) minor optimization would be to replicate the value |
| // and fall through here to test for a valid 64-bit splat. But, then the |
| // caller would also need to check and handle the change in size. |
| return SDValue(); |
| |
| case 64: { |
| // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. |
| if (!isVMOV) |
| return SDValue(); |
| uint64_t BitMask = 0xff; |
| uint64_t Val = 0; |
| unsigned ImmMask = 1; |
| Imm = 0; |
| for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { |
| if (((SplatBits | SplatUndef) & BitMask) == BitMask) { |
| Val |= BitMask; |
| Imm |= ImmMask; |
| } else if ((SplatBits & BitMask) != 0) { |
| return SDValue(); |
| } |
| BitMask <<= 8; |
| ImmMask <<= 1; |
| } |
| // Op=1, Cmode=1110. |
| Op = 1; |
| Cmode = 0xe; |
| SplatBits = Val; |
| VT = MVT::i64; |
| break; |
| } |
| |
| default: |
| llvm_unreachable("unexpected size for EncodeNEONModImm"); |
| return SDValue(); |
| } |
| |
| if (DoEncode) |
| return DAG.getTargetConstant((Op << 12) | (Cmode << 8) | Imm, MVT::i32); |
| return DAG.getTargetConstant(SplatBits, VT); |
| } |
| |
| |
| /// getNEONModImm - If this is a valid vector constant for a NEON instruction |
| /// with a "modified immediate" operand (e.g., VMOV) of the specified element |
| /// size, return the encoded value for that immediate. The ByteSize field |
| /// indicates the number of bytes of each element [1248]. |
| SDValue ARM::getNEONModImm(SDNode *N, unsigned ByteSize, bool isVMOV, |
| SelectionDAG &DAG) { |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N); |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, |
| HasAnyUndefs, ByteSize * 8)) |
| return SDValue(); |
| |
| if (SplatBitSize > ByteSize * 8) |
| return SDValue(); |
| |
| return isNEONModifiedImm(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), |
| SplatBitSize, DAG, isVMOV, true); |
| } |
| |
| static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT, |
| bool &ReverseVEXT, unsigned &Imm) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| ReverseVEXT = false; |
| Imm = M[0]; |
| |
| // If this is a VEXT shuffle, the immediate value is the index of the first |
| // element. The other shuffle indices must be the successive elements after |
| // the first one. |
| unsigned ExpectedElt = Imm; |
| for (unsigned i = 1; i < NumElts; ++i) { |
| // Increment the expected index. If it wraps around, it may still be |
| // a VEXT but the source vectors must be swapped. |
| ExpectedElt += 1; |
| if (ExpectedElt == NumElts * 2) { |
| ExpectedElt = 0; |
| ReverseVEXT = true; |
| } |
| |
| if (ExpectedElt != static_cast<unsigned>(M[i])) |
| return false; |
| } |
| |
| // Adjust the index value if the source operands will be swapped. |
| if (ReverseVEXT) |
| Imm -= NumElts; |
| |
| return true; |
| } |
| |
| /// isVREVMask - Check if a vector shuffle corresponds to a VREV |
| /// instruction with the specified blocksize. (The order of the elements |
| /// within each block of the vector is reversed.) |
| static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT, |
| unsigned BlockSize) { |
| assert((BlockSize==16 || BlockSize==32 || BlockSize==64) && |
| "Only possible block sizes for VREV are: 16, 32, 64"); |
| |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned BlockElts = M[0] + 1; |
| |
| if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) |
| return false; |
| |
| for (unsigned i = 0; i < NumElts; ++i) { |
| if ((unsigned) M[i] != |
| (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT, |
| unsigned &WhichResult) { |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| for (unsigned i = 0; i < NumElts; i += 2) { |
| if ((unsigned) M[i] != i + WhichResult || |
| (unsigned) M[i+1] != i + NumElts + WhichResult) |
| return false; |
| } |
| return true; |
| } |
| |
| /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. |
| static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT, |
| unsigned &WhichResult) { |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| for (unsigned i = 0; i < NumElts; i += 2) { |
| if ((unsigned) M[i] != i + WhichResult || |
| (unsigned) M[i+1] != i + WhichResult) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT, |
| unsigned &WhichResult) { |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| if ((unsigned) M[i] != 2 * i + WhichResult) |
| return false; |
| } |
| |
| // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. |
| if (VT.is64BitVector() && EltSz == 32) |
| return false; |
| |
| return true; |
| } |
| |
| /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, |
| static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT, |
| unsigned &WhichResult) { |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned Half = VT.getVectorNumElements() / 2; |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| for (unsigned j = 0; j != 2; ++j) { |
| unsigned Idx = WhichResult; |
| for (unsigned i = 0; i != Half; ++i) { |
| if ((unsigned) M[i + j * Half] != Idx) |
| return false; |
| Idx += 2; |
| } |
| } |
| |
| // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. |
| if (VT.is64BitVector() && EltSz == 32) |
| return false; |
| |
| return true; |
| } |
| |
| static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT, |
| unsigned &WhichResult) { |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| unsigned Idx = WhichResult * NumElts / 2; |
| for (unsigned i = 0; i != NumElts; i += 2) { |
| if ((unsigned) M[i] != Idx || |
| (unsigned) M[i+1] != Idx + NumElts) |
| return false; |
| Idx += 1; |
| } |
| |
| // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. |
| if (VT.is64BitVector() && EltSz == 32) |
| return false; |
| |
| return true; |
| } |
| |
| /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of |
| /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". |
| /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. |
| static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT, |
| unsigned &WhichResult) { |
| unsigned EltSz = VT.getVectorElementType().getSizeInBits(); |
| if (EltSz == 64) |
| return false; |
| |
| unsigned NumElts = VT.getVectorNumElements(); |
| WhichResult = (M[0] == 0 ? 0 : 1); |
| unsigned Idx = WhichResult * NumElts / 2; |
| for (unsigned i = 0; i != NumElts; i += 2) { |
| if ((unsigned) M[i] != Idx || |
| (unsigned) M[i+1] != Idx) |
| return false; |
| Idx += 1; |
| } |
| |
| // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. |
| if (VT.is64BitVector() && EltSz == 32) |
| return false; |
| |
| return true; |
| } |
| |
| |
| static SDValue BuildSplat(SDValue Val, EVT VT, SelectionDAG &DAG, DebugLoc dl) { |
| // Canonicalize all-zeros and all-ones vectors. |
| ConstantSDNode *ConstVal = cast<ConstantSDNode>(Val.getNode()); |
| if (ConstVal->isNullValue()) |
| return getZeroVector(VT, DAG, dl); |
| if (ConstVal->isAllOnesValue()) |
| return getOnesVector(VT, DAG, dl); |
| |
| EVT CanonicalVT; |
| if (VT.is64BitVector()) { |
| switch (Val.getValueType().getSizeInBits()) { |
| case 8: CanonicalVT = MVT::v8i8; break; |
| case 16: CanonicalVT = MVT::v4i16; break; |
| case 32: CanonicalVT = MVT::v2i32; break; |
| case 64: CanonicalVT = MVT::v1i64; break; |
| default: llvm_unreachable("unexpected splat element type"); break; |
| } |
| } else { |
| assert(VT.is128BitVector() && "unknown splat vector size"); |
| switch (Val.getValueType().getSizeInBits()) { |
| case 8: CanonicalVT = MVT::v16i8; break; |
| case 16: CanonicalVT = MVT::v8i16; break; |
| case 32: CanonicalVT = MVT::v4i32; break; |
| case 64: CanonicalVT = MVT::v2i64; break; |
| default: llvm_unreachable("unexpected splat element type"); break; |
| } |
| } |
| |
| // Build a canonical splat for this value. |
| SmallVector<SDValue, 8> Ops; |
| Ops.assign(CanonicalVT.getVectorNumElements(), Val); |
| SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0], |
| Ops.size()); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res); |
| } |
| |
| // If this is a case we can't handle, return null and let the default |
| // expansion code take care of it. |
| static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) { |
| BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT VT = Op.getValueType(); |
| |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { |
| if (SplatBitSize <= 64) { |
| // Check if an immediate VMOV works. |
| SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), |
| SplatUndef.getZExtValue(), |
| SplatBitSize, DAG, true, false); |
| if (Val.getNode()) |
| return BuildSplat(Val, VT, DAG, dl); |
| } |
| } |
| |
| // Scan through the operands to see if only one value is used. |
| unsigned NumElts = VT.getVectorNumElements(); |
| bool isOnlyLowElement = true; |
| bool usesOnlyOneValue = true; |
| bool isConstant = true; |
| SDValue Value; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| SDValue V = Op.getOperand(i); |
| if (V.getOpcode() == ISD::UNDEF) |
| continue; |
| if (i > 0) |
| isOnlyLowElement = false; |
| if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) |
| isConstant = false; |
| |
| if (!Value.getNode()) |
| Value = V; |
| else if (V != Value) |
| usesOnlyOneValue = false; |
| } |
| |
| if (!Value.getNode()) |
| return DAG.getUNDEF(VT); |
| |
| if (isOnlyLowElement) |
| return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); |
| |
| // If all elements are constants, fall back to the default expansion, which |
| // will generate a load from the constant pool. |
| if (isConstant) |
| return SDValue(); |
| |
| // Use VDUP for non-constant splats. |
| unsigned EltSize = VT.getVectorElementType().getSizeInBits(); |
| if (usesOnlyOneValue && EltSize <= 32) |
| return DAG.getNode(ARMISD::VDUP, dl, VT, Value); |
| |
| // Vectors with 32- or 64-bit elements can be built by directly assigning |
| // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands |
| // will be legalized. |
| if (EltSize >= 32) { |
| // Do the expansion with floating-point types, since that is what the VFP |
| // registers are defined to use, and since i64 is not legal. |
| EVT EltVT = EVT::getFloatingPointVT(EltSize); |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i < NumElts; ++i) |
| Ops.push_back(DAG.getNode(ISD::BIT_CONVERT, dl, EltVT, Op.getOperand(i))); |
| SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val); |
| } |
| |
| return SDValue(); |
| } |
| |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values |
| /// are assumed to be legal. |
| bool |
| ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, |
| EVT VT) const { |
| if (VT.getVectorNumElements() == 4 && |
| (VT.is128BitVector() || VT.is64BitVector())) { |
| unsigned PFIndexes[4]; |
| for (unsigned i = 0; i != 4; ++i) { |
| if (M[i] < 0) |
| PFIndexes[i] = 8; |
| else |
| PFIndexes[i] = M[i]; |
| } |
| |
| // Compute the index in the perfect shuffle table. |
| unsigned PFTableIndex = |
| PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; |
| unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| unsigned Cost = (PFEntry >> 30); |
| |
| if (Cost <= 4) |
| return true; |
| } |
| |
| bool ReverseVEXT; |
| unsigned Imm, WhichResult; |
| |
| unsigned EltSize = VT.getVectorElementType().getSizeInBits(); |
| return (EltSize >= 32 || |
| ShuffleVectorSDNode::isSplatMask(&M[0], VT) || |
| isVREVMask(M, VT, 64) || |
| isVREVMask(M, VT, 32) || |
| isVREVMask(M, VT, 16) || |
| isVEXTMask(M, VT, ReverseVEXT, Imm) || |
| isVTRNMask(M, VT, WhichResult) || |
| isVUZPMask(M, VT, WhichResult) || |
| isVZIPMask(M, VT, WhichResult) || |
| isVTRN_v_undef_Mask(M, VT, WhichResult) || |
| isVUZP_v_undef_Mask(M, VT, WhichResult) || |
| isVZIP_v_undef_Mask(M, VT, WhichResult)); |
| } |
| |
| /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit |
| /// the specified operations to build the shuffle. |
| static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, |
| SDValue RHS, SelectionDAG &DAG, |
| DebugLoc dl) { |
| unsigned OpNum = (PFEntry >> 26) & 0x0F; |
| unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); |
| unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); |
| |
| enum { |
| OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> |
| OP_VREV, |
| OP_VDUP0, |
| OP_VDUP1, |
| OP_VDUP2, |
| OP_VDUP3, |
| OP_VEXT1, |
| OP_VEXT2, |
| OP_VEXT3, |
| OP_VUZPL, // VUZP, left result |
| OP_VUZPR, // VUZP, right result |
| OP_VZIPL, // VZIP, left result |
| OP_VZIPR, // VZIP, right result |
| OP_VTRNL, // VTRN, left result |
| OP_VTRNR // VTRN, right result |
| }; |
| |
| if (OpNum == OP_COPY) { |
| if (LHSID == (1*9+2)*9+3) return LHS; |
| assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); |
| return RHS; |
| } |
| |
| SDValue OpLHS, OpRHS; |
| OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); |
| OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); |
| EVT VT = OpLHS.getValueType(); |
| |
| switch (OpNum) { |
| default: llvm_unreachable("Unknown shuffle opcode!"); |
| case OP_VREV: |
| return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS); |
| case OP_VDUP0: |
| case OP_VDUP1: |
| case OP_VDUP2: |
| case OP_VDUP3: |
| return DAG.getNode(ARMISD::VDUPLANE, dl, VT, |
| OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32)); |
| case OP_VEXT1: |
| case OP_VEXT2: |
| case OP_VEXT3: |
| return DAG.getNode(ARMISD::VEXT, dl, VT, |
| OpLHS, OpRHS, |
| DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32)); |
| case OP_VUZPL: |
| case OP_VUZPR: |
| return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), |
| OpLHS, OpRHS).getValue(OpNum-OP_VUZPL); |
| case OP_VZIPL: |
| case OP_VZIPR: |
| return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), |
| OpLHS, OpRHS).getValue(OpNum-OP_VZIPL); |
| case OP_VTRNL: |
| case OP_VTRNR: |
| return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), |
| OpLHS, OpRHS).getValue(OpNum-OP_VTRNL); |
| } |
| } |
| |
| static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { |
| SDValue V1 = Op.getOperand(0); |
| SDValue V2 = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| EVT VT = Op.getValueType(); |
| ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); |
| SmallVector<int, 8> ShuffleMask; |
| |
| // Convert shuffles that are directly supported on NEON to target-specific |
| // DAG nodes, instead of keeping them as shuffles and matching them again |
| // during code selection. This is more efficient and avoids the possibility |
| // of inconsistencies between legalization and selection. |
| // FIXME: floating-point vectors should be canonicalized to integer vectors |
| // of the same time so that they get CSEd properly. |
| SVN->getMask(ShuffleMask); |
| |
| unsigned EltSize = VT.getVectorElementType().getSizeInBits(); |
| if (EltSize <= 32) { |
| if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) { |
| int Lane = SVN->getSplatIndex(); |
| // If this is undef splat, generate it via "just" vdup, if possible. |
| if (Lane == -1) Lane = 0; |
| |
| if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); |
| } |
| return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1, |
| DAG.getConstant(Lane, MVT::i32)); |
| } |
| |
| bool ReverseVEXT; |
| unsigned Imm; |
| if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) { |
| if (ReverseVEXT) |
| std::swap(V1, V2); |
| return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2, |
| DAG.getConstant(Imm, MVT::i32)); |
| } |
| |
| if (isVREVMask(ShuffleMask, VT, 64)) |
| return DAG.getNode(ARMISD::VREV64, dl, VT, V1); |
| if (isVREVMask(ShuffleMask, VT, 32)) |
| return DAG.getNode(ARMISD::VREV32, dl, VT, V1); |
| if (isVREVMask(ShuffleMask, VT, 16)) |
| return DAG.getNode(ARMISD::VREV16, dl, VT, V1); |
| |
| // Check for Neon shuffles that modify both input vectors in place. |
| // If both results are used, i.e., if there are two shuffles with the same |
| // source operands and with masks corresponding to both results of one of |
| // these operations, DAG memoization will ensure that a single node is |
| // used for both shuffles. |
| unsigned WhichResult; |
| if (isVTRNMask(ShuffleMask, VT, WhichResult)) |
| return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), |
| V1, V2).getValue(WhichResult); |
| if (isVUZPMask(ShuffleMask, VT, WhichResult)) |
| return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), |
| V1, V2).getValue(WhichResult); |
| if (isVZIPMask(ShuffleMask, VT, WhichResult)) |
| return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), |
| V1, V2).getValue(WhichResult); |
| |
| if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) |
| return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), |
| V1, V1).getValue(WhichResult); |
| if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) |
| return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), |
| V1, V1).getValue(WhichResult); |
| if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) |
| return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), |
| V1, V1).getValue(WhichResult); |
| } |
| |
| // If the shuffle is not directly supported and it has 4 elements, use |
| // the PerfectShuffle-generated table to synthesize it from other shuffles. |
| unsigned NumElts = VT.getVectorNumElements(); |
| if (NumElts == 4) { |
| unsigned PFIndexes[4]; |
| for (unsigned i = 0; i != 4; ++i) { |
| if (ShuffleMask[i] < 0) |
| PFIndexes[i] = 8; |
| else |
| PFIndexes[i] = ShuffleMask[i]; |
| } |
| |
| // Compute the index in the perfect shuffle table. |
| unsigned PFTableIndex = |
| PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; |
| unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; |
| unsigned Cost = (PFEntry >> 30); |
| |
| if (Cost <= 4) |
| return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); |
| } |
| |
| // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs. |
| if (EltSize >= 32) { |
| // Do the expansion with floating-point types, since that is what the VFP |
| // registers are defined to use, and since i64 is not legal. |
| EVT EltVT = EVT::getFloatingPointVT(EltSize); |
| EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); |
| V1 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V1); |
| V2 = DAG.getNode(ISD::BIT_CONVERT, dl, VecVT, V2); |
| SmallVector<SDValue, 8> Ops; |
| for (unsigned i = 0; i < NumElts; ++i) { |
| if (ShuffleMask[i] < 0) |
| Ops.push_back(DAG.getUNDEF(EltVT)); |
| else |
| Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, |
| ShuffleMask[i] < (int)NumElts ? V1 : V2, |
| DAG.getConstant(ShuffleMask[i] & (NumElts-1), |
| MVT::i32))); |
| } |
| SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Val); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue Vec = Op.getOperand(0); |
| SDValue Lane = Op.getOperand(1); |
| assert(VT == MVT::i32 && |
| Vec.getValueType().getVectorElementType().getSizeInBits() < 32 && |
| "unexpected type for custom-lowering vector extract"); |
| return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); |
| } |
| |
| static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { |
| // The only time a CONCAT_VECTORS operation can have legal types is when |
| // two 64-bit vectors are concatenated to a 128-bit vector. |
| assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && |
| "unexpected CONCAT_VECTORS"); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDValue Val = DAG.getUNDEF(MVT::v2f64); |
| SDValue Op0 = Op.getOperand(0); |
| SDValue Op1 = Op.getOperand(1); |
| if (Op0.getOpcode() != ISD::UNDEF) |
| Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, |
| DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0), |
| DAG.getIntPtrConstant(0)); |
| if (Op1.getOpcode() != ISD::UNDEF) |
| Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, |
| DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1), |
| DAG.getIntPtrConstant(1)); |
| return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val); |
| } |
| |
| SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Don't know how to custom lower this!"); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); |
| case ISD::GlobalAddress: |
| return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) : |
| LowerGlobalAddressELF(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); |
| case ISD::BR_CC: return LowerBR_CC(Op, DAG); |
| case ISD::BR_JT: return LowerBR_JT(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG, Subtarget); |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); |
| case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); |
| case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG); |
| case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG, |
| Subtarget); |
| case ISD::BIT_CONVERT: return ExpandBIT_CONVERT(Op.getNode(), DAG); |
| case ISD::SHL: |
| case ISD::SRL: |
| case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget); |
| case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); |
| case ISD::SRL_PARTS: |
| case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); |
| case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget); |
| case ISD::VSETCC: return LowerVSETCC(Op, DAG); |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); |
| } |
| return SDValue(); |
| } |
| |
| /// ReplaceNodeResults - Replace the results of node with an illegal result |
| /// type with new values built out of custom code. |
| void ARMTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue>&Results, |
| SelectionDAG &DAG) const { |
| SDValue Res; |
| switch (N->getOpcode()) { |
| default: |
| llvm_unreachable("Don't know how to custom expand this!"); |
| break; |
| case ISD::BIT_CONVERT: |
| Res = ExpandBIT_CONVERT(N, DAG); |
| break; |
| case ISD::SRL: |
| case ISD::SRA: |
| Res = LowerShift(N, DAG, Subtarget); |
| break; |
| } |
| if (Res.getNode()) |
| Results.push_back(Res); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Scheduler Hooks |
| //===----------------------------------------------------------------------===// |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI, |
| MachineBasicBlock *BB, |
| unsigned Size) const { |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned ptr = MI->getOperand(1).getReg(); |
| unsigned oldval = MI->getOperand(2).getReg(); |
| unsigned newval = MI->getOperand(3).getReg(); |
| unsigned scratch = BB->getParent()->getRegInfo() |
| .createVirtualRegister(ARM::GPRRegisterClass); |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| bool isThumb2 = Subtarget->isThumb2(); |
| |
| unsigned ldrOpc, strOpc; |
| switch (Size) { |
| default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); |
| case 1: |
| ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; |
| strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB; |
| break; |
| case 2: |
| ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; |
| strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; |
| break; |
| case 4: |
| ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; |
| strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; |
| break; |
| } |
| |
| MachineFunction *MF = BB->getParent(); |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = BB; |
| ++It; // insert the new blocks after the current block |
| |
| MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MF->insert(It, loop1MBB); |
| MF->insert(It, loop2MBB); |
| MF->insert(It, exitMBB); |
| exitMBB->transferSuccessors(BB); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loop1MBB |
| BB->addSuccessor(loop1MBB); |
| |
| // loop1MBB: |
| // ldrex dest, [ptr] |
| // cmp dest, oldval |
| // bne exitMBB |
| BB = loop1MBB; |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr)); |
| AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) |
| .addReg(dest).addReg(oldval)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); |
| BB->addSuccessor(loop2MBB); |
| BB->addSuccessor(exitMBB); |
| |
| // loop2MBB: |
| // strex scratch, newval, [ptr] |
| // cmp scratch, #0 |
| // bne loop1MBB |
| BB = loop2MBB; |
| AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval) |
| .addReg(ptr)); |
| AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) |
| .addReg(scratch).addImm(0)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR); |
| BB->addSuccessor(loop1MBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| |
| MF->DeleteMachineInstr(MI); // The instruction is gone now. |
| |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, |
| unsigned Size, unsigned BinOpcode) const { |
| // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction *MF = BB->getParent(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| unsigned dest = MI->getOperand(0).getReg(); |
| unsigned ptr = MI->getOperand(1).getReg(); |
| unsigned incr = MI->getOperand(2).getReg(); |
| DebugLoc dl = MI->getDebugLoc(); |
| |
| bool isThumb2 = Subtarget->isThumb2(); |
| unsigned ldrOpc, strOpc; |
| switch (Size) { |
| default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); |
| case 1: |
| ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; |
| strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; |
| break; |
| case 2: |
| ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; |
| strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; |
| break; |
| case 4: |
| ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; |
| strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; |
| break; |
| } |
| |
| MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); |
| MF->insert(It, loopMBB); |
| MF->insert(It, exitMBB); |
| exitMBB->transferSuccessors(BB); |
| |
| MachineRegisterInfo &RegInfo = MF->getRegInfo(); |
| unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass); |
| unsigned scratch2 = (!BinOpcode) ? incr : |
| RegInfo.createVirtualRegister(ARM::GPRRegisterClass); |
| |
| // thisMBB: |
| // ... |
| // fallthrough --> loopMBB |
| BB->addSuccessor(loopMBB); |
| |
| // loopMBB: |
| // ldrex dest, ptr |
| // <binop> scratch2, dest, incr |
| // strex scratch, scratch2, ptr |
| // cmp scratch, #0 |
| // bne- loopMBB |
| // fallthrough --> exitMBB |
| BB = loopMBB; |
| AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr)); |
| if (BinOpcode) { |
| // operand order needs to go the other way for NAND |
| if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr) |
| AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2). |
| addReg(incr).addReg(dest)).addReg(0); |
| else |
| AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2). |
| addReg(dest).addReg(incr)).addReg(0); |
| } |
| |
| AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2) |
| .addReg(ptr)); |
| AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) |
| .addReg(scratch).addImm(0)); |
| BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) |
| .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); |
| |
| BB->addSuccessor(loopMBB); |
| BB->addSuccessor(exitMBB); |
| |
| // exitMBB: |
| // ... |
| BB = exitMBB; |
| |
| MF->DeleteMachineInstr(MI); // The instruction is gone now. |
| |
| return BB; |
| } |
| |
| MachineBasicBlock * |
| ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *BB) const { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| DebugLoc dl = MI->getDebugLoc(); |
| bool isThumb2 = Subtarget->isThumb2(); |
| switch (MI->getOpcode()) { |
| default: |
| MI->dump(); |
| llvm_unreachable("Unexpected instr type to insert"); |
| |
| case ARM::ATOMIC_LOAD_ADD_I8: |
| return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); |
| case ARM::ATOMIC_LOAD_ADD_I16: |
| return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); |
| case ARM::ATOMIC_LOAD_ADD_I32: |
| return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); |
| |
| case ARM::ATOMIC_LOAD_AND_I8: |
| return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); |
| case ARM::ATOMIC_LOAD_AND_I16: |
| return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); |
| case ARM::ATOMIC_LOAD_AND_I32: |
| return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); |
| |
| case ARM::ATOMIC_LOAD_OR_I8: |
| return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); |
| case ARM::ATOMIC_LOAD_OR_I16: |
| return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); |
| case ARM::ATOMIC_LOAD_OR_I32: |
| return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); |
| |
| case ARM::ATOMIC_LOAD_XOR_I8: |
| return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr); |
| case ARM::ATOMIC_LOAD_XOR_I16: |
| return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr); |
| case ARM::ATOMIC_LOAD_XOR_I32: |
| return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr); |
| |
| case ARM::ATOMIC_LOAD_NAND_I8: |
| return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr); |
| case ARM::ATOMIC_LOAD_NAND_I16: |
| return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr); |
| case ARM::ATOMIC_LOAD_NAND_I32: |
| return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr); |
| |
| case ARM::ATOMIC_LOAD_SUB_I8: |
| return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); |
| case ARM::ATOMIC_LOAD_SUB_I16: |
| return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); |
| case ARM::ATOMIC_LOAD_SUB_I32: |
| return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); |
| |
| case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0); |
| case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0); |
| case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0); |
| |
| case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1); |
| case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2); |
| case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4); |
| |
| case ARM::tMOVCCr_pseudo: { |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| MachineFunction::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineFunction *F = BB->getParent(); |
| MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); |
| BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB) |
| .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg()); |
| F->insert(It, copy0MBB); |
| F->insert(It, sinkMBB); |
| // Update machine-CFG edges by first adding all successors of the current |
| // block to the new block which will contain the Phi node for the select. |
| for (MachineBasicBlock::succ_iterator I = BB->succ_begin(), |
| E = BB->succ_end(); I != E; ++I) |
| sinkMBB->addSuccessor(*I); |
| // Next, remove all successors of the current block, and add the true |
| // and fallthrough blocks as its successors. |
| while (!BB->succ_empty()) |
| BB->removeSuccessor(BB->succ_begin()); |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| |
| F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| case ARM::tANDsp: |
| case ARM::tADDspr_: |
| case ARM::tSUBspi_: |
| case ARM::t2SUBrSPi_: |
| case ARM::t2SUBrSPi12_: |
| case ARM::t2SUBrSPs_: { |
| MachineFunction *MF = BB->getParent(); |
| unsigned DstReg = MI->getOperand(0).getReg(); |
| unsigned SrcReg = MI->getOperand(1).getReg(); |
| bool DstIsDead = MI->getOperand(0).isDead(); |
| bool SrcIsKill = MI->getOperand(1).isKill(); |
| |
| if (SrcReg != ARM::SP) { |
| // Copy the source to SP from virtual register. |
| const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg); |
| unsigned CopyOpc = (RC == ARM::tGPRRegisterClass) |
| ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr; |
| BuildMI(BB, dl, TII->get(CopyOpc), ARM::SP) |
| .addReg(SrcReg, getKillRegState(SrcIsKill)); |
| } |
| |
| unsigned OpOpc = 0; |
| bool NeedPred = false, NeedCC = false, NeedOp3 = false; |
| switch (MI->getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected pseudo instruction!"); |
| case ARM::tANDsp: |
| OpOpc = ARM::tAND; |
| NeedPred = true; |
| break; |
| case ARM::tADDspr_: |
| OpOpc = ARM::tADDspr; |
| break; |
| case ARM::tSUBspi_: |
| OpOpc = ARM::tSUBspi; |
| break; |
| case ARM::t2SUBrSPi_: |
| OpOpc = ARM::t2SUBrSPi; |
| NeedPred = true; NeedCC = true; |
| break; |
| case ARM::t2SUBrSPi12_: |
| OpOpc = ARM::t2SUBrSPi12; |
| NeedPred = true; |
| break; |
| case ARM::t2SUBrSPs_: |
| OpOpc = ARM::t2SUBrSPs; |
| NeedPred = true; NeedCC = true; NeedOp3 = true; |
| break; |
| } |
| MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(OpOpc), ARM::SP); |
| if (OpOpc == ARM::tAND) |
| AddDefaultT1CC(MIB); |
| MIB.addReg(ARM::SP); |
| MIB.addOperand(MI->getOperand(2)); |
| if (NeedOp3) |
| MIB.addOperand(MI->getOperand(3)); |
| if (NeedPred) |
| AddDefaultPred(MIB); |
| if (NeedCC) |
| AddDefaultCC(MIB); |
| |
| // Copy the result from SP to virtual register. |
| const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg); |
| unsigned CopyOpc = (RC == ARM::tGPRRegisterClass) |
| ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr; |
| BuildMI(BB, dl, TII->get(CopyOpc)) |
| .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead)) |
| .addReg(ARM::SP); |
| MF->DeleteMachineInstr(MI); // The pseudo instruction is gone now. |
| return BB; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| static |
| SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SelectionDAG &DAG = DCI.DAG; |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| EVT VT = N->getValueType(0); |
| unsigned Opc = N->getOpcode(); |
| bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC; |
| SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1); |
| SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2); |
| ISD::CondCode CC = ISD::SETCC_INVALID; |
| |
| if (isSlctCC) { |
| CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get(); |
| } else { |
| SDValue CCOp = Slct.getOperand(0); |
| if (CCOp.getOpcode() == ISD::SETCC) |
| CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get(); |
| } |
| |
| bool DoXform = false; |
| bool InvCC = false; |
| assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) && |
| "Bad input!"); |
| |
| if (LHS.getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(LHS)->isNullValue()) { |
| DoXform = true; |
| } else if (CC != ISD::SETCC_INVALID && |
| RHS.getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(RHS)->isNullValue()) { |
| std::swap(LHS, RHS); |
| SDValue Op0 = Slct.getOperand(0); |
| EVT OpVT = isSlctCC ? Op0.getValueType() : |
| Op0.getOperand(0).getValueType(); |
| bool isInt = OpVT.isInteger(); |
| CC = ISD::getSetCCInverse(CC, isInt); |
| |
| if (!TLI.isCondCodeLegal(CC, OpVT)) |
| return SDValue(); // Inverse operator isn't legal. |
| |
| DoXform = true; |
| InvCC = true; |
| } |
| |
| if (DoXform) { |
| SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS); |
| if (isSlctCC) |
| return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result, |
| Slct.getOperand(0), Slct.getOperand(1), CC); |
| SDValue CCOp = Slct.getOperand(0); |
| if (InvCC) |
| CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(), |
| CCOp.getOperand(0), CCOp.getOperand(1), CC); |
| return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT, |
| CCOp, OtherOp, Result); |
| } |
| return SDValue(); |
| } |
| |
| /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. |
| static SDValue PerformADDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // added by evan in r37685 with no testcase. |
| SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); |
| |
| // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) |
| if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) { |
| SDValue Result = combineSelectAndUse(N, N0, N1, DCI); |
| if (Result.getNode()) return Result; |
| } |
| if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) { |
| SDValue Result = combineSelectAndUse(N, N1, N0, DCI); |
| if (Result.getNode()) return Result; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. |
| static SDValue PerformSUBCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // added by evan in r37685 with no testcase. |
| SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); |
| |
| // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) |
| if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) { |
| SDValue Result = combineSelectAndUse(N, N1, N0, DCI); |
| if (Result.getNode()) return Result; |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue PerformMULCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI, |
| const ARMSubtarget *Subtarget) { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| if (Subtarget->isThumb1Only()) |
| return SDValue(); |
| |
| if (DAG.getMachineFunction(). |
| getFunction()->hasFnAttr(Attribute::OptimizeForSize)) |
| return SDValue(); |
| |
| if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| if (VT != MVT::i32) |
| return SDValue(); |
| |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!C) |
| return SDValue(); |
| |
| uint64_t MulAmt = C->getZExtValue(); |
| unsigned ShiftAmt = CountTrailingZeros_64(MulAmt); |
| ShiftAmt = ShiftAmt & (32 - 1); |
| SDValue V = N->getOperand(0); |
| DebugLoc DL = N->getDebugLoc(); |
| |
| SDValue Res; |
| MulAmt >>= ShiftAmt; |
| if (isPowerOf2_32(MulAmt - 1)) { |
| // (mul x, 2^N + 1) => (add (shl x, N), x) |
| Res = DAG.getNode(ISD::ADD, DL, VT, |
| V, DAG.getNode(ISD::SHL, DL, VT, |
| V, DAG.getConstant(Log2_32(MulAmt-1), |
| MVT::i32))); |
| } else if (isPowerOf2_32(MulAmt + 1)) { |
| // (mul x, 2^N - 1) => (sub (shl x, N), x) |
| Res = DAG.getNode(ISD::SUB, DL, VT, |
| DAG.getNode(ISD::SHL, DL, VT, |
| V, DAG.getConstant(Log2_32(MulAmt+1), |
| MVT::i32)), |
| V); |
| } else |
| return SDValue(); |
| |
| if (ShiftAmt != 0) |
| Res = DAG.getNode(ISD::SHL, DL, VT, Res, |
| DAG.getConstant(ShiftAmt, MVT::i32)); |
| |
| // Do not add new nodes to DAG combiner worklist. |
| DCI.CombineTo(N, Res, false); |
| return SDValue(); |
| } |
| |
| /// PerformVMOVRRDCombine - Target-specific dag combine xforms for |
| /// ARMISD::VMOVRRD. |
| static SDValue PerformVMOVRRDCombine(SDNode *N, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| // fmrrd(fmdrr x, y) -> x,y |
| SDValue InDouble = N->getOperand(0); |
| if (InDouble.getOpcode() == ARMISD::VMOVDRR) |
| return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); |
| return SDValue(); |
| } |
| |
| /// getVShiftImm - Check if this is a valid build_vector for the immediate |
| /// operand of a vector shift operation, where all the elements of the |
| /// build_vector must have the same constant integer value. |
| static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { |
| // Ignore bit_converts. |
| while (Op.getOpcode() == ISD::BIT_CONVERT) |
| Op = Op.getOperand(0); |
| BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); |
| APInt SplatBits, SplatUndef; |
| unsigned SplatBitSize; |
| bool HasAnyUndefs; |
| if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, |
| HasAnyUndefs, ElementBits) || |
| SplatBitSize > ElementBits) |
| return false; |
| Cnt = SplatBits.getSExtValue(); |
| return true; |
| } |
| |
| /// isVShiftLImm - Check if this is a valid build_vector for the immediate |
| /// operand of a vector shift left operation. That value must be in the range: |
| /// 0 <= Value < ElementBits for a left shift; or |
| /// 0 <= Value <= ElementBits for a long left shift. |
| static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { |
| assert(VT.isVector() && "vector shift count is not a vector type"); |
| unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); |
| if (! getVShiftImm(Op, ElementBits, Cnt)) |
| return false; |
| return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits); |
| } |
| |
| /// isVShiftRImm - Check if this is a valid build_vector for the immediate |
| /// operand of a vector shift right operation. For a shift opcode, the value |
| /// is positive, but for an intrinsic the value count must be negative. The |
| /// absolute value must be in the range: |
| /// 1 <= |Value| <= ElementBits for a right shift; or |
| /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. |
| static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, |
| int64_t &Cnt) { |
| assert(VT.isVector() && "vector shift count is not a vector type"); |
| unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); |
| if (! getVShiftImm(Op, ElementBits, Cnt)) |
| return false; |
| if (isIntrinsic) |
| Cnt = -Cnt; |
| return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits)); |
| } |
| |
| /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. |
| static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| switch (IntNo) { |
| default: |
| // Don't do anything for most intrinsics. |
| break; |
| |
| // Vector shifts: check for immediate versions and lower them. |
| // Note: This is done during DAG combining instead of DAG legalizing because |
| // the build_vectors for 64-bit vector element shift counts are generally |
| // not legal, and it is hard to see their values after they get legalized to |
| // loads from a constant pool. |
| case Intrinsic::arm_neon_vshifts: |
| case Intrinsic::arm_neon_vshiftu: |
| case Intrinsic::arm_neon_vshiftls: |
| case Intrinsic::arm_neon_vshiftlu: |
| case Intrinsic::arm_neon_vshiftn: |
| case Intrinsic::arm_neon_vrshifts: |
| case Intrinsic::arm_neon_vrshiftu: |
| case Intrinsic::arm_neon_vrshiftn: |
| case Intrinsic::arm_neon_vqshifts: |
| case Intrinsic::arm_neon_vqshiftu: |
| case Intrinsic::arm_neon_vqshiftsu: |
| case Intrinsic::arm_neon_vqshiftns: |
| case Intrinsic::arm_neon_vqshiftnu: |
| case Intrinsic::arm_neon_vqshiftnsu: |
| case Intrinsic::arm_neon_vqrshiftns: |
| case Intrinsic::arm_neon_vqrshiftnu: |
| case Intrinsic::arm_neon_vqrshiftnsu: { |
| EVT VT = N->getOperand(1).getValueType(); |
| int64_t Cnt; |
| unsigned VShiftOpc = 0; |
| |
| switch (IntNo) { |
| case Intrinsic::arm_neon_vshifts: |
| case Intrinsic::arm_neon_vshiftu: |
| if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { |
| VShiftOpc = ARMISD::VSHL; |
| break; |
| } |
| if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { |
| VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? |
| ARMISD::VSHRs : ARMISD::VSHRu); |
| break; |
| } |
| return SDValue(); |
| |
| case Intrinsic::arm_neon_vshiftls: |
| case Intrinsic::arm_neon_vshiftlu: |
| if (isVShiftLImm(N->getOperand(2), VT, true, Cnt)) |
| break; |
| llvm_unreachable("invalid shift count for vshll intrinsic"); |
| |
| case Intrinsic::arm_neon_vrshifts: |
| case Intrinsic::arm_neon_vrshiftu: |
| if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) |
| break; |
| return SDValue(); |
| |
| case Intrinsic::arm_neon_vqshifts: |
| case Intrinsic::arm_neon_vqshiftu: |
| if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) |
| break; |
| return SDValue(); |
| |
| case Intrinsic::arm_neon_vqshiftsu: |
| if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) |
| break; |
| llvm_unreachable("invalid shift count for vqshlu intrinsic"); |
| |
| case Intrinsic::arm_neon_vshiftn: |
| case Intrinsic::arm_neon_vrshiftn: |
| case Intrinsic::arm_neon_vqshiftns: |
| case Intrinsic::arm_neon_vqshiftnu: |
| case Intrinsic::arm_neon_vqshiftnsu: |
| case Intrinsic::arm_neon_vqrshiftns: |
| case Intrinsic::arm_neon_vqrshiftnu: |
| case Intrinsic::arm_neon_vqrshiftnsu: |
| // Narrowing shifts require an immediate right shift. |
| if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) |
| break; |
| llvm_unreachable("invalid shift count for narrowing vector shift " |
| "intrinsic"); |
| |
| default: |
| llvm_unreachable("unhandled vector shift"); |
| } |
| |
| switch (IntNo) { |
| case Intrinsic::arm_neon_vshifts: |
| case Intrinsic::arm_neon_vshiftu: |
| // Opcode already set above. |
| break; |
| case Intrinsic::arm_neon_vshiftls: |
| case Intrinsic::arm_neon_vshiftlu: |
| if (Cnt == VT.getVectorElementType().getSizeInBits()) |
| VShiftOpc = ARMISD::VSHLLi; |
| else |
| VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ? |
| ARMISD::VSHLLs : ARMISD::VSHLLu); |
| break; |
| case Intrinsic::arm_neon_vshiftn: |
| VShiftOpc = ARMISD::VSHRN; break; |
| case Intrinsic::arm_neon_vrshifts: |
| VShiftOpc = ARMISD::VRSHRs; break; |
| case Intrinsic::arm_neon_vrshiftu: |
| VShiftOpc = ARMISD::VRSHRu; break; |
| case Intrinsic::arm_neon_vrshiftn: |
| VShiftOpc = ARMISD::VRSHRN; break; |
| case Intrinsic::arm_neon_vqshifts: |
| VShiftOpc = ARMISD::VQSHLs; break; |
| case Intrinsic::arm_neon_vqshiftu: |
| VShiftOpc = ARMISD::VQSHLu; break; |
| case Intrinsic::arm_neon_vqshiftsu: |
| VShiftOpc = ARMISD::VQSHLsu; break; |
| case Intrinsic::arm_neon_vqshiftns: |
| VShiftOpc = ARMISD::VQSHRNs; break; |
| case Intrinsic::arm_neon_vqshiftnu: |
| VShiftOpc = ARMISD::VQSHRNu; break; |
| case Intrinsic::arm_neon_vqshiftnsu: |
| VShiftOpc = ARMISD::VQSHRNsu; break; |
| case Intrinsic::arm_neon_vqrshiftns: |
| VShiftOpc = ARMISD::VQRSHRNs; break; |
| case Intrinsic::arm_neon_vqrshiftnu: |
| VShiftOpc = ARMISD::VQRSHRNu; break; |
| case Intrinsic::arm_neon_vqrshiftnsu: |
| VShiftOpc = ARMISD::VQRSHRNsu; break; |
| } |
| |
| return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0), |
| N->getOperand(1), DAG.getConstant(Cnt, MVT::i32)); |
| } |
| |
| case Intrinsic::arm_neon_vshiftins: { |
| EVT VT = N->getOperand(1).getValueType(); |
| int64_t Cnt; |
| unsigned VShiftOpc = 0; |
| |
| if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) |
| VShiftOpc = ARMISD::VSLI; |
| else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) |
| VShiftOpc = ARMISD::VSRI; |
| else { |
| llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); |
| } |
| |
| return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0), |
| N->getOperand(1), N->getOperand(2), |
| DAG.getConstant(Cnt, MVT::i32)); |
| } |
| |
| case Intrinsic::arm_neon_vqrshifts: |
| case Intrinsic::arm_neon_vqrshiftu: |
| // No immediate versions of these to check for. |
| break; |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformShiftCombine - Checks for immediate versions of vector shifts and |
| /// lowers them. As with the vector shift intrinsics, this is done during DAG |
| /// combining instead of DAG legalizing because the build_vectors for 64-bit |
| /// vector element shift counts are generally not legal, and it is hard to see |
| /// their values after they get legalized to loads from a constant pool. |
| static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| EVT VT = N->getValueType(0); |
| |
| // Nothing to be done for scalar shifts. |
| if (! VT.isVector()) |
| return SDValue(); |
| |
| assert(ST->hasNEON() && "unexpected vector shift"); |
| int64_t Cnt; |
| |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("unexpected shift opcode"); |
| |
| case ISD::SHL: |
| if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) |
| return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0), |
| DAG.getConstant(Cnt, MVT::i32)); |
| break; |
| |
| case ISD::SRA: |
| case ISD::SRL: |
| if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { |
| unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? |
| ARMISD::VSHRs : ARMISD::VSHRu); |
| return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0), |
| DAG.getConstant(Cnt, MVT::i32)); |
| } |
| } |
| return SDValue(); |
| } |
| |
| /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, |
| /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. |
| static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| SDValue N0 = N->getOperand(0); |
| |
| // Check for sign- and zero-extensions of vector extract operations of 8- |
| // and 16-bit vector elements. NEON supports these directly. They are |
| // handled during DAG combining because type legalization will promote them |
| // to 32-bit types and it is messy to recognize the operations after that. |
| if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { |
| SDValue Vec = N0.getOperand(0); |
| SDValue Lane = N0.getOperand(1); |
| EVT VT = N->getValueType(0); |
| EVT EltVT = N0.getValueType(); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| |
| if (VT == MVT::i32 && |
| (EltVT == MVT::i8 || EltVT == MVT::i16) && |
| TLI.isTypeLegal(Vec.getValueType())) { |
| |
| unsigned Opc = 0; |
| switch (N->getOpcode()) { |
| default: llvm_unreachable("unexpected opcode"); |
| case ISD::SIGN_EXTEND: |
| Opc = ARMISD::VGETLANEs; |
| break; |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: |
| Opc = ARMISD::VGETLANEu; |
| break; |
| } |
| return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC |
| /// to match f32 max/min patterns to use NEON vmax/vmin instructions. |
| static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| // If the target supports NEON, try to use vmax/vmin instructions for f32 |
| // selects like "x < y ? x : y". Unless the FiniteOnlyFPMath option is set, |
| // be careful about NaNs: NEON's vmax/vmin return NaN if either operand is |
| // a NaN; only do the transformation when it matches that behavior. |
| |
| // For now only do this when using NEON for FP operations; if using VFP, it |
| // is not obvious that the benefit outweighs the cost of switching to the |
| // NEON pipeline. |
| if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() || |
| N->getValueType(0) != MVT::f32) |
| return SDValue(); |
| |
| SDValue CondLHS = N->getOperand(0); |
| SDValue CondRHS = N->getOperand(1); |
| SDValue LHS = N->getOperand(2); |
| SDValue RHS = N->getOperand(3); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); |
| |
| unsigned Opcode = 0; |
| bool IsReversed; |
| if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) { |
| IsReversed = false; // x CC y ? x : y |
| } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) { |
| IsReversed = true ; // x CC y ? y : x |
| } else { |
| return SDValue(); |
| } |
| |
| bool IsUnordered; |
| switch (CC) { |
| default: break; |
| case ISD::SETOLT: |
| case ISD::SETOLE: |
| case ISD::SETLT: |
| case ISD::SETLE: |
| case ISD::SETULT: |
| case ISD::SETULE: |
| // If LHS is NaN, an ordered comparison will be false and the result will |
| // be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS |
| // != NaN. Likewise, for unordered comparisons, check for RHS != NaN. |
| IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE); |
| if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) |
| break; |
| // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin |
| // will return -0, so vmin can only be used for unsafe math or if one of |
| // the operands is known to be nonzero. |
| if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) && |
| !UnsafeFPMath && |
| !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) |
| break; |
| Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN; |
| break; |
| |
| case ISD::SETOGT: |
| case ISD::SETOGE: |
| case ISD::SETGT: |
| case ISD::SETGE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| // If LHS is NaN, an ordered comparison will be false and the result will |
| // be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS |
| // != NaN. Likewise, for unordered comparisons, check for RHS != NaN. |
| IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE); |
| if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) |
| break; |
| // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax |
| // will return +0, so vmax can only be used for unsafe math or if one of |
| // the operands is known to be nonzero. |
| if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) && |
| !UnsafeFPMath && |
| !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) |
| break; |
| Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX; |
| break; |
| } |
| |
| if (!Opcode) |
| return SDValue(); |
| return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS); |
| } |
| |
| SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| switch (N->getOpcode()) { |
| default: break; |
| case ISD::ADD: return PerformADDCombine(N, DCI); |
| case ISD::SUB: return PerformSUBCombine(N, DCI); |
| case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget); |
| case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI); |
| case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG); |
| case ISD::SHL: |
| case ISD::SRA: |
| case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget); |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget); |
| case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget); |
| } |
| return SDValue(); |
| } |
| |
| bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const { |
| if (!Subtarget->hasV6Ops()) |
| // Pre-v6 does not support unaligned mem access. |
| return false; |
| else { |
| // v6+ may or may not support unaligned mem access depending on the system |
| // configuration. |
| // FIXME: This is pretty conservative. Should we provide cmdline option to |
| // control the behaviour? |
| if (!Subtarget->isTargetDarwin()) |
| return false; |
| } |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: |
| return false; |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| return true; |
| // FIXME: VLD1 etc with standard alignment is legal. |
| } |
| } |
| |
| static bool isLegalT1AddressImmediate(int64_t V, EVT VT) { |
| if (V < 0) |
| return false; |
| |
| unsigned Scale = 1; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| // Scale == 1; |
| break; |
| case MVT::i16: |
| // Scale == 2; |
| Scale = 2; |
| break; |
| case MVT::i32: |
| // Scale == 4; |
| Scale = 4; |
| break; |
| } |
| |
| if ((V & (Scale - 1)) != 0) |
| return false; |
| V /= Scale; |
| return V == (V & ((1LL << 5) - 1)); |
| } |
| |
| static bool isLegalT2AddressImmediate(int64_t V, EVT VT, |
| const ARMSubtarget *Subtarget) { |
| bool isNeg = false; |
| if (V < 0) { |
| isNeg = true; |
| V = - V; |
| } |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| // + imm12 or - imm8 |
| if (isNeg) |
| return V == (V & ((1LL << 8) - 1)); |
| return V == (V & ((1LL << 12) - 1)); |
| case MVT::f32: |
| case MVT::f64: |
| // Same as ARM mode. FIXME: NEON? |
| if (!Subtarget->hasVFP2()) |
| return false; |
| if ((V & 3) != 0) |
| return false; |
| V >>= 2; |
| return V == (V & ((1LL << 8) - 1)); |
| } |
| } |
| |
| /// isLegalAddressImmediate - Return true if the integer value can be used |
| /// as the offset of the target addressing mode for load / store of the |
| /// given type. |
| static bool isLegalAddressImmediate(int64_t V, EVT VT, |
| const ARMSubtarget *Subtarget) { |
| if (V == 0) |
| return true; |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| if (Subtarget->isThumb1Only()) |
| return isLegalT1AddressImmediate(V, VT); |
| else if (Subtarget->isThumb2()) |
| return isLegalT2AddressImmediate(V, VT, Subtarget); |
| |
| // ARM mode. |
| if (V < 0) |
| V = - V; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i32: |
| // +- imm12 |
| return V == (V & ((1LL << 12) - 1)); |
| case MVT::i16: |
| // +- imm8 |
| return V == (V & ((1LL << 8) - 1)); |
| case MVT::f32: |
| case MVT::f64: |
| if (!Subtarget->hasVFP2()) // FIXME: NEON? |
| return false; |
| if ((V & 3) != 0) |
| return false; |
| V >>= 2; |
| return V == (V & ((1LL << 8) - 1)); |
| } |
| } |
| |
| bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM, |
| EVT VT) const { |
| int Scale = AM.Scale; |
| if (Scale < 0) |
| return false; |
| |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| if (Scale == 1) |
| return true; |
| // r + r << imm |
| Scale = Scale & ~1; |
| return Scale == 2 || Scale == 4 || Scale == 8; |
| case MVT::i64: |
| // r + r |
| if (((unsigned)AM.HasBaseReg + Scale) <= 2) |
| return true; |
| return false; |
| case MVT::isVoid: |
| // Note, we allow "void" uses (basically, uses that aren't loads or |
| // stores), because arm allows folding a scale into many arithmetic |
| // operations. This should be made more precise and revisited later. |
| |
| // Allow r << imm, but the imm has to be a multiple of two. |
| if (Scale & 1) return false; |
| return isPowerOf2_32(Scale); |
| } |
| } |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM, |
| const Type *Ty) const { |
| EVT VT = getValueType(Ty, true); |
| if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) |
| return false; |
| |
| // Can never fold addr of global into load/store. |
| if (AM.BaseGV) |
| return false; |
| |
| switch (AM.Scale) { |
| case 0: // no scale reg, must be "r+i" or "r", or "i". |
| break; |
| case 1: |
| if (Subtarget->isThumb1Only()) |
| return false; |
| // FALL THROUGH. |
| default: |
| // ARM doesn't support any R+R*scale+imm addr modes. |
| if (AM.BaseOffs) |
| return false; |
| |
| if (!VT.isSimple()) |
| return false; |
| |
| if (Subtarget->isThumb2()) |
| return isLegalT2ScaledAddressingMode(AM, VT); |
| |
| int Scale = AM.Scale; |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i32: |
| if (Scale < 0) Scale = -Scale; |
| if (Scale == 1) |
| return true; |
| // r + r << imm |
| return isPowerOf2_32(Scale & ~1); |
| case MVT::i16: |
| case MVT::i64: |
| // r + r |
| if (((unsigned)AM.HasBaseReg + Scale) <= 2) |
| return true; |
| return false; |
| |
| case MVT::isVoid: |
| // Note, we allow "void" uses (basically, uses that aren't loads or |
| // stores), because arm allows folding a scale into many arithmetic |
| // operations. This should be made more precise and revisited later. |
| |
| // Allow r << imm, but the imm has to be a multiple of two. |
| if (Scale & 1) return false; |
| return isPowerOf2_32(Scale); |
| } |
| break; |
| } |
| return true; |
| } |
| |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal |
| /// icmp immediate, that is the target has icmp instructions which can compare |
| /// a register against the immediate without having to materialize the |
| /// immediate into a register. |
| bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| if (!Subtarget->isThumb()) |
| return ARM_AM::getSOImmVal(Imm) != -1; |
| if (Subtarget->isThumb2()) |
| return ARM_AM::getT2SOImmVal(Imm) != -1; |
| return Imm >= 0 && Imm <= 255; |
| } |
| |
| static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, |
| bool isSEXTLoad, SDValue &Base, |
| SDValue &Offset, bool &isInc, |
| SelectionDAG &DAG) { |
| if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) |
| return false; |
| |
| if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { |
| // AddressingMode 3 |
| Base = Ptr->getOperand(0); |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC < 0 && RHSC > -256) { |
| assert(Ptr->getOpcode() == ISD::ADD); |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); |
| return true; |
| } |
| } |
| isInc = (Ptr->getOpcode() == ISD::ADD); |
| Offset = Ptr->getOperand(1); |
| return true; |
| } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { |
| // AddressingMode 2 |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC < 0 && RHSC > -0x1000) { |
| assert(Ptr->getOpcode() == ISD::ADD); |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); |
| Base = Ptr->getOperand(0); |
| return true; |
| } |
| } |
| |
| if (Ptr->getOpcode() == ISD::ADD) { |
| isInc = true; |
| ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0)); |
| if (ShOpcVal != ARM_AM::no_shift) { |
| Base = Ptr->getOperand(1); |
| Offset = Ptr->getOperand(0); |
| } else { |
| Base = Ptr->getOperand(0); |
| Offset = Ptr->getOperand(1); |
| } |
| return true; |
| } |
| |
| isInc = (Ptr->getOpcode() == ISD::ADD); |
| Base = Ptr->getOperand(0); |
| Offset = Ptr->getOperand(1); |
| return true; |
| } |
| |
| // FIXME: Use VLDM / VSTM to emulate indexed FP load / store. |
| return false; |
| } |
| |
| static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, |
| bool isSEXTLoad, SDValue &Base, |
| SDValue &Offset, bool &isInc, |
| SelectionDAG &DAG) { |
| if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) |
| return false; |
| |
| Base = Ptr->getOperand(0); |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getZExtValue(); |
| if (RHSC < 0 && RHSC > -0x100) { // 8 bits. |
| assert(Ptr->getOpcode() == ISD::ADD); |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); |
| return true; |
| } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. |
| isInc = Ptr->getOpcode() == ISD::ADD; |
| Offset = DAG.getConstant(RHSC, RHS->getValueType(0)); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| bool |
| ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| if (Subtarget->isThumb1Only()) |
| return false; |
| |
| EVT VT; |
| SDValue Ptr; |
| bool isSEXTLoad = false; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| Ptr = LD->getBasePtr(); |
| VT = LD->getMemoryVT(); |
| isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| Ptr = ST->getBasePtr(); |
| VT = ST->getMemoryVT(); |
| } else |
| return false; |
| |
| bool isInc; |
| bool isLegal = false; |
| if (Subtarget->isThumb2()) |
| isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, |
| Offset, isInc, DAG); |
| else |
| isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, |
| Offset, isInc, DAG); |
| if (!isLegal) |
| return false; |
| |
| AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; |
| return true; |
| } |
| |
| /// getPostIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if this node can be |
| /// combined with a load / store to form a post-indexed load / store. |
| bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, |
| SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const { |
| if (Subtarget->isThumb1Only()) |
| return false; |
| |
| EVT VT; |
| SDValue Ptr; |
| bool isSEXTLoad = false; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| VT = LD->getMemoryVT(); |
| Ptr = LD->getBasePtr(); |
| isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| VT = ST->getMemoryVT(); |
| Ptr = ST->getBasePtr(); |
| } else |
| return false; |
| |
| bool isInc; |
| bool isLegal = false; |
| if (Subtarget->isThumb2()) |
| isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, |
| isInc, DAG); |
| else |
| isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, |
| isInc, DAG); |
| if (!isLegal) |
| return false; |
| |
| if (Ptr != Base) { |
| // Swap base ptr and offset to catch more post-index load / store when |
| // it's legal. In Thumb2 mode, offset must be an immediate. |
| if (Ptr == Offset && Op->getOpcode() == ISD::ADD && |
| !Subtarget->isThumb2()) |
| std::swap(Base, Offset); |
| |
| // Post-indexed load / store update the base pointer. |
| if (Ptr != Base) |
| return false; |
| } |
| |
| AM = isInc ? ISD::POST_INC : ISD::POST_DEC; |
| return true; |
| } |
| |
| void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, |
| const APInt &Mask, |
| APInt &KnownZero, |
| APInt &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); |
| switch (Op.getOpcode()) { |
| default: break; |
| case ARMISD::CMOV: { |
| // Bits are known zero/one if known on the LHS and RHS. |
| DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| if (KnownZero == 0 && KnownOne == 0) return; |
| |
| APInt KnownZeroRHS, KnownOneRHS; |
| DAG.ComputeMaskedBits(Op.getOperand(1), Mask, |
| KnownZeroRHS, KnownOneRHS, Depth+1); |
| KnownZero &= KnownZeroRHS; |
| KnownOne &= KnownOneRHS; |
| return; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| ARMTargetLowering::ConstraintType |
| ARMTargetLowering::getConstraintType(const std::string &Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 'l': return C_RegisterClass; |
| case 'w': return C_RegisterClass; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, |
| EVT VT) const { |
| if (Constraint.size() == 1) { |
| // GCC ARM Constraint Letters |
| switch (Constraint[0]) { |
| case 'l': |
| if (Subtarget->isThumb()) |
| return std::make_pair(0U, ARM::tGPRRegisterClass); |
| else |
| return std::make_pair(0U, ARM::GPRRegisterClass); |
| case 'r': |
| return std::make_pair(0U, ARM::GPRRegisterClass); |
| case 'w': |
| if (VT == MVT::f32) |
| return std::make_pair(0U, ARM::SPRRegisterClass); |
| if (VT.getSizeInBits() == 64) |
| return std::make_pair(0U, ARM::DPRRegisterClass); |
| if (VT.getSizeInBits() == 128) |
| return std::make_pair(0U, ARM::QPRRegisterClass); |
| break; |
| } |
| } |
| if (StringRef("{cc}").equals_lower(Constraint)) |
| return std::make_pair(0U, ARM::CCRRegisterClass); |
| |
| return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| } |
| |
| std::vector<unsigned> ARMTargetLowering:: |
| getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| EVT VT) const { |
| if (Constraint.size() != 1) |
| return std::vector<unsigned>(); |
| |
| switch (Constraint[0]) { // GCC ARM Constraint Letters |
| default: break; |
| case 'l': |
| return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3, |
| ARM::R4, ARM::R5, ARM::R6, ARM::R7, |
| 0); |
| case 'r': |
| return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3, |
| ARM::R4, ARM::R5, ARM::R6, ARM::R7, |
| ARM::R8, ARM::R9, ARM::R10, ARM::R11, |
| ARM::R12, ARM::LR, 0); |
| case 'w': |
| if (VT == MVT::f32) |
| return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3, |
| ARM::S4, ARM::S5, ARM::S6, ARM::S7, |
| ARM::S8, ARM::S9, ARM::S10, ARM::S11, |
| ARM::S12,ARM::S13,ARM::S14,ARM::S15, |
| ARM::S16,ARM::S17,ARM::S18,ARM::S19, |
| ARM::S20,ARM::S21,ARM::S22,ARM::S23, |
| ARM::S24,ARM::S25,ARM::S26,ARM::S27, |
| ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0); |
| if (VT.getSizeInBits() == 64) |
| return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3, |
| ARM::D4, ARM::D5, ARM::D6, ARM::D7, |
| ARM::D8, ARM::D9, ARM::D10,ARM::D11, |
| ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0); |
| if (VT.getSizeInBits() == 128) |
| return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3, |
| ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0); |
| break; |
| } |
| |
| return std::vector<unsigned>(); |
| } |
| |
| /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops |
| /// vector. If it is invalid, don't add anything to Ops. |
| void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, |
| char Constraint, |
| bool hasMemory, |
| std::vector<SDValue>&Ops, |
| SelectionDAG &DAG) const { |
| SDValue Result(0, 0); |
| |
| switch (Constraint) { |
| default: break; |
| case 'I': case 'J': case 'K': case 'L': |
| case 'M': case 'N': case 'O': |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); |
| if (!C) |
| return; |
| |
| int64_t CVal64 = C->getSExtValue(); |
| int CVal = (int) CVal64; |
| // None of these constraints allow values larger than 32 bits. Check |
| // that the value fits in an int. |
| if (CVal != CVal64) |
| return; |
| |
| switch (Constraint) { |
| case 'I': |
| if (Subtarget->isThumb1Only()) { |
| // This must be a constant between 0 and 255, for ADD |
| // immediates. |
| if (CVal >= 0 && CVal <= 255) |
| break; |
| } else if (Subtarget->isThumb2()) { |
| // A constant that can be used as an immediate value in a |
| // data-processing instruction. |
| if (ARM_AM::getT2SOImmVal(CVal) != -1) |
| break; |
| } else { |
| // A constant that can be used as an immediate value in a |
| // data-processing instruction. |
| if (ARM_AM::getSOImmVal(CVal) != -1) |
| break; |
| } |
| return; |
| |
| case 'J': |
| if (Subtarget->isThumb()) { // FIXME thumb2 |
| // This must be a constant between -255 and -1, for negated ADD |
| // immediates. This can be used in GCC with an "n" modifier that |
| // prints the negated value, for use with SUB instructions. It is |
| // not useful otherwise but is implemented for compatibility. |
| if (CVal >= -255 && CVal <= -1) |
| break; |
| } else { |
| // This must be a constant between -4095 and 4095. It is not clear |
| // what this constraint is intended for. Implemented for |
| // compatibility with GCC. |
| if (CVal >= -4095 && CVal <= 4095) |
| break; |
| } |
| return; |
| |
| case 'K': |
| if (Subtarget->isThumb1Only()) { |
| // A 32-bit value where only one byte has a nonzero value. Exclude |
| // zero to match GCC. This constraint is used by GCC internally for |
| // constants that can be loaded with a move/shift combination. |
| // It is not useful otherwise but is implemented for compatibility. |
| if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) |
| break; |
| } else if (Subtarget->isThumb2()) { |
| // A constant whose bitwise inverse can be used as an immediate |
| // value in a data-processing instruction. This can be used in GCC |
| // with a "B" modifier that prints the inverted value, for use with |
| // BIC and MVN instructions. It is not useful otherwise but is |
| // implemented for compatibility. |
| if (ARM_AM::getT2SOImmVal(~CVal) != -1) |
| break; |
| } else { |
| // A constant whose bitwise inverse can be used as an immediate |
| // value in a data-processing instruction. This can be used in GCC |
| // with a "B" modifier that prints the inverted value, for use with |
| // BIC and MVN instructions. It is not useful otherwise but is |
| // implemented for compatibility. |
| if (ARM_AM::getSOImmVal(~CVal) != -1) |
| break; |
| } |
| return; |
| |
| case 'L': |
| if (Subtarget->isThumb1Only()) { |
| // This must be a constant between -7 and 7, |
| // for 3-operand ADD/SUB immediate instructions. |
| if (CVal >= -7 && CVal < 7) |
| break; |
| } else if (Subtarget->isThumb2()) { |
| // A constant whose negation can be used as an immediate value in a |
| // data-processing instruction. This can be used in GCC with an "n" |
| // modifier that prints the negated value, for use with SUB |
| // instructions. It is not useful otherwise but is implemented for |
| // compatibility. |
| if (ARM_AM::getT2SOImmVal(-CVal) != -1) |
| break; |
| } else { |
| // A constant whose negation can be used as an immediate value in a |
| // data-processing instruction. This can be used in GCC with an "n" |
| // modifier that prints the negated value, for use with SUB |
| // instructions. It is not useful otherwise but is implemented for |
| // compatibility. |
| if (ARM_AM::getSOImmVal(-CVal) != -1) |
| break; |
| } |
| return; |
| |
| case 'M': |
| if (Subtarget->isThumb()) { // FIXME thumb2 |
| // This must be a multiple of 4 between 0 and 1020, for |
| // ADD sp + immediate. |
| if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) |
| break; |
| } else { |
| // A power of two or a constant between 0 and 32. This is used in |
| // GCC for the shift amount on shifted register operands, but it is |
| // useful in general for any shift amounts. |
| if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) |
| break; |
| } |
| return; |
| |
| case 'N': |
| if (Subtarget->isThumb()) { // FIXME thumb2 |
| // This must be a constant between 0 and 31, for shift amounts. |
| if (CVal >= 0 && CVal <= 31) |
| break; |
| } |
| return; |
| |
| case 'O': |
| if (Subtarget->isThumb()) { // FIXME thumb2 |
| // This must be a multiple of 4 between -508 and 508, for |
| // ADD/SUB sp = sp + immediate. |
| if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) |
| break; |
| } |
| return; |
| } |
| Result = DAG.getTargetConstant(CVal, Op.getValueType()); |
| break; |
| } |
| |
| if (Result.getNode()) { |
| Ops.push_back(Result); |
| return; |
| } |
| return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory, |
| Ops, DAG); |
| } |
| |
| bool |
| ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { |
| // The ARM target isn't yet aware of offsets. |
| return false; |
| } |
| |
| int ARM::getVFPf32Imm(const APFloat &FPImm) { |
| APInt Imm = FPImm.bitcastToAPInt(); |
| uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; |
| int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 |
| int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits |
| |
| // We can handle 4 bits of mantissa. |
| // mantissa = (16+UInt(e:f:g:h))/16. |
| if (Mantissa & 0x7ffff) |
| return -1; |
| Mantissa >>= 19; |
| if ((Mantissa & 0xf) != Mantissa) |
| return -1; |
| |
| // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
| if (Exp < -3 || Exp > 4) |
| return -1; |
| Exp = ((Exp+3) & 0x7) ^ 4; |
| |
| return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
| } |
| |
| int ARM::getVFPf64Imm(const APFloat &FPImm) { |
| APInt Imm = FPImm.bitcastToAPInt(); |
| uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; |
| int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 |
| uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL; |
| |
| // We can handle 4 bits of mantissa. |
| // mantissa = (16+UInt(e:f:g:h))/16. |
| if (Mantissa & 0xffffffffffffLL) |
| return -1; |
| Mantissa >>= 48; |
| if ((Mantissa & 0xf) != Mantissa) |
| return -1; |
| |
| // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 |
| if (Exp < -3 || Exp > 4) |
| return -1; |
| Exp = ((Exp+3) & 0x7) ^ 4; |
| |
| return ((int)Sign << 7) | (Exp << 4) | Mantissa; |
| } |
| |
| /// isFPImmLegal - Returns true if the target can instruction select the |
| /// specified FP immediate natively. If false, the legalizer will |
| /// materialize the FP immediate as a load from a constant pool. |
| bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { |
| if (!Subtarget->hasVFP3()) |
| return false; |
| if (VT == MVT::f32) |
| return ARM::getVFPf32Imm(Imm) != -1; |
| if (VT == MVT::f64) |
| return ARM::getVFPf64Imm(Imm) != -1; |
| return false; |
| } |