| //===-- TargetData.cpp - Data size & alignment routines --------------------==// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines target properties related to datatype size/offset/alignment | 
 | // information. | 
 | // | 
 | // This structure should be created once, filled in if the defaults are not | 
 | // correct and then passed around by const&.  None of the members functions | 
 | // require modification to the object. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/ManagedStatic.h" | 
 | #include "llvm/ADT/DenseMap.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include <algorithm> | 
 | #include <cstdlib> | 
 | using namespace llvm; | 
 |  | 
 | // Handle the Pass registration stuff necessary to use TargetData's. | 
 |  | 
 | // Register the default SparcV9 implementation... | 
 | static RegisterPass<TargetData> X("targetdata", "Target Data Layout", false,  | 
 |                                   true); | 
 | char TargetData::ID = 0; | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Support for StructLayout | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | StructLayout::StructLayout(const StructType *ST, const TargetData &TD) { | 
 |   StructAlignment = 0; | 
 |   StructSize = 0; | 
 |   NumElements = ST->getNumElements(); | 
 |  | 
 |   // Loop over each of the elements, placing them in memory. | 
 |   for (unsigned i = 0, e = NumElements; i != e; ++i) { | 
 |     const Type *Ty = ST->getElementType(i); | 
 |     unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty); | 
 |  | 
 |     // Add padding if necessary to align the data element properly. | 
 |     if ((StructSize & (TyAlign-1)) != 0) | 
 |       StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign); | 
 |  | 
 |     // Keep track of maximum alignment constraint. | 
 |     StructAlignment = std::max(TyAlign, StructAlignment); | 
 |  | 
 |     MemberOffsets[i] = StructSize; | 
 |     StructSize += TD.getTypePaddedSize(Ty); // Consume space for this data item | 
 |   } | 
 |  | 
 |   // Empty structures have alignment of 1 byte. | 
 |   if (StructAlignment == 0) StructAlignment = 1; | 
 |  | 
 |   // Add padding to the end of the struct so that it could be put in an array | 
 |   // and all array elements would be aligned correctly. | 
 |   if ((StructSize & (StructAlignment-1)) != 0) | 
 |     StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment); | 
 | } | 
 |  | 
 |  | 
 | /// getElementContainingOffset - Given a valid offset into the structure, | 
 | /// return the structure index that contains it. | 
 | unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const { | 
 |   const uint64_t *SI = | 
 |     std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset); | 
 |   assert(SI != &MemberOffsets[0] && "Offset not in structure type!"); | 
 |   --SI; | 
 |   assert(*SI <= Offset && "upper_bound didn't work"); | 
 |   assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) && | 
 |          (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) && | 
 |          "Upper bound didn't work!"); | 
 |    | 
 |   // Multiple fields can have the same offset if any of them are zero sized. | 
 |   // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop | 
 |   // at the i32 element, because it is the last element at that offset.  This is | 
 |   // the right one to return, because anything after it will have a higher | 
 |   // offset, implying that this element is non-empty. | 
 |   return SI-&MemberOffsets[0]; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // TargetAlignElem, TargetAlign support | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | TargetAlignElem | 
 | TargetAlignElem::get(AlignTypeEnum align_type, unsigned char abi_align, | 
 |                      unsigned char pref_align, uint32_t bit_width) { | 
 |   assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); | 
 |   TargetAlignElem retval; | 
 |   retval.AlignType = align_type; | 
 |   retval.ABIAlign = abi_align; | 
 |   retval.PrefAlign = pref_align; | 
 |   retval.TypeBitWidth = bit_width; | 
 |   return retval; | 
 | } | 
 |  | 
 | bool | 
 | TargetAlignElem::operator==(const TargetAlignElem &rhs) const { | 
 |   return (AlignType == rhs.AlignType | 
 |           && ABIAlign == rhs.ABIAlign | 
 |           && PrefAlign == rhs.PrefAlign | 
 |           && TypeBitWidth == rhs.TypeBitWidth); | 
 | } | 
 |  | 
 | std::ostream & | 
 | TargetAlignElem::dump(std::ostream &os) const { | 
 |   return os << AlignType | 
 |             << TypeBitWidth | 
 |             << ":" << (int) (ABIAlign * 8) | 
 |             << ":" << (int) (PrefAlign * 8); | 
 | } | 
 |  | 
 | const TargetAlignElem TargetData::InvalidAlignmentElem = | 
 |                 TargetAlignElem::get((AlignTypeEnum) -1, 0, 0, 0); | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                       TargetData Class Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /*! | 
 |  A TargetDescription string consists of a sequence of hyphen-delimited | 
 |  specifiers for target endianness, pointer size and alignments, and various | 
 |  primitive type sizes and alignments. A typical string looks something like: | 
 |  <br><br> | 
 |  "E-p:32:32:32-i1:8:8-i8:8:8-i32:32:32-i64:32:64-f32:32:32-f64:32:64" | 
 |  <br><br> | 
 |  (note: this string is not fully specified and is only an example.) | 
 |  \p | 
 |  Alignments come in two flavors: ABI and preferred. ABI alignment (abi_align, | 
 |  below) dictates how a type will be aligned within an aggregate and when used | 
 |  as an argument.  Preferred alignment (pref_align, below) determines a type's | 
 |  alignment when emitted as a global. | 
 |  \p | 
 |  Specifier string details: | 
 |  <br><br> | 
 |  <i>[E|e]</i>: Endianness. "E" specifies a big-endian target data model, "e" | 
 |  specifies a little-endian target data model. | 
 |  <br><br> | 
 |  <i>p:@verbatim<size>:<abi_align>:<pref_align>@endverbatim</i>: Pointer size,  | 
 |  ABI and preferred alignment. | 
 |  <br><br> | 
 |  <i>@verbatim<type><size>:<abi_align>:<pref_align>@endverbatim</i>: Numeric type | 
 |  alignment. Type is | 
 |  one of <i>i|f|v|a</i>, corresponding to integer, floating point, vector (aka | 
 |  packed) or aggregate.  Size indicates the size, e.g., 32 or 64 bits. | 
 |  \p | 
 |  The default string, fully specified is: | 
 |  <br><br> | 
 |  "E-p:64:64:64-a0:0:0-f32:32:32-f64:0:64" | 
 |  "-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:0:64" | 
 |  "-v64:64:64-v128:128:128" | 
 |  <br><br> | 
 |  Note that in the case of aggregates, 0 is the default ABI and preferred | 
 |  alignment. This is a special case, where the aggregate's computed worst-case | 
 |  alignment will be used. | 
 |  */  | 
 | void TargetData::init(const std::string &TargetDescription) { | 
 |   std::string temp = TargetDescription; | 
 |    | 
 |   LittleEndian = false; | 
 |   PointerMemSize = 8; | 
 |   PointerABIAlign   = 8; | 
 |   PointerPrefAlign = PointerABIAlign; | 
 |  | 
 |   // Default alignments | 
 |   setAlignment(INTEGER_ALIGN,   1,  1, 1);   // Bool | 
 |   setAlignment(INTEGER_ALIGN,   1,  1, 8);   // Byte | 
 |   setAlignment(INTEGER_ALIGN,   2,  2, 16);  // short | 
 |   setAlignment(INTEGER_ALIGN,   4,  4, 32);  // int | 
 |   setAlignment(INTEGER_ALIGN,   4,  8, 64);  // long | 
 |   setAlignment(FLOAT_ALIGN,     4,  4, 32);  // float | 
 |   setAlignment(FLOAT_ALIGN,     8,  8, 64);  // double | 
 |   setAlignment(VECTOR_ALIGN,    8,  8, 64);  // v2i32 | 
 |   setAlignment(VECTOR_ALIGN,   16, 16, 128); // v16i8, v8i16, v4i32, ... | 
 |   setAlignment(AGGREGATE_ALIGN, 0,  8,  0);  // struct, union, class, ... | 
 |  | 
 |   while (!temp.empty()) { | 
 |     std::string token = getToken(temp, "-"); | 
 |     std::string arg0 = getToken(token, ":"); | 
 |     const char *p = arg0.c_str(); | 
 |     switch(*p) { | 
 |     case 'E': | 
 |       LittleEndian = false; | 
 |       break; | 
 |     case 'e': | 
 |       LittleEndian = true; | 
 |       break; | 
 |     case 'p': | 
 |       PointerMemSize = atoi(getToken(token,":").c_str()) / 8; | 
 |       PointerABIAlign = atoi(getToken(token,":").c_str()) / 8; | 
 |       PointerPrefAlign = atoi(getToken(token,":").c_str()) / 8; | 
 |       if (PointerPrefAlign == 0) | 
 |         PointerPrefAlign = PointerABIAlign; | 
 |       break; | 
 |     case 'i': | 
 |     case 'v': | 
 |     case 'f': | 
 |     case 'a': | 
 |     case 's': { | 
 |       AlignTypeEnum align_type = STACK_ALIGN; // Dummy init, silence warning | 
 |       switch(*p) { | 
 |         case 'i': align_type = INTEGER_ALIGN; break; | 
 |         case 'v': align_type = VECTOR_ALIGN; break; | 
 |         case 'f': align_type = FLOAT_ALIGN; break; | 
 |         case 'a': align_type = AGGREGATE_ALIGN; break; | 
 |         case 's': align_type = STACK_ALIGN; break; | 
 |       } | 
 |       uint32_t size = (uint32_t) atoi(++p); | 
 |       unsigned char abi_align = atoi(getToken(token, ":").c_str()) / 8; | 
 |       unsigned char pref_align = atoi(getToken(token, ":").c_str()) / 8; | 
 |       if (pref_align == 0) | 
 |         pref_align = abi_align; | 
 |       setAlignment(align_type, abi_align, pref_align, size); | 
 |       break; | 
 |     } | 
 |     default: | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TargetData::TargetData(const Module *M)  | 
 |   : ImmutablePass(&ID) { | 
 |   init(M->getDataLayout()); | 
 | } | 
 |  | 
 | void | 
 | TargetData::setAlignment(AlignTypeEnum align_type, unsigned char abi_align, | 
 |                          unsigned char pref_align, uint32_t bit_width) { | 
 |   assert(abi_align <= pref_align && "Preferred alignment worse than ABI!"); | 
 |   for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { | 
 |     if (Alignments[i].AlignType == align_type && | 
 |         Alignments[i].TypeBitWidth == bit_width) { | 
 |       // Update the abi, preferred alignments. | 
 |       Alignments[i].ABIAlign = abi_align; | 
 |       Alignments[i].PrefAlign = pref_align; | 
 |       return; | 
 |     } | 
 |   } | 
 |    | 
 |   Alignments.push_back(TargetAlignElem::get(align_type, abi_align, | 
 |                                             pref_align, bit_width)); | 
 | } | 
 |  | 
 | /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or  | 
 | /// preferred if ABIInfo = false) the target wants for the specified datatype. | 
 | unsigned TargetData::getAlignmentInfo(AlignTypeEnum AlignType,  | 
 |                                       uint32_t BitWidth, bool ABIInfo, | 
 |                                       const Type *Ty) const { | 
 |   // Check to see if we have an exact match and remember the best match we see. | 
 |   int BestMatchIdx = -1; | 
 |   int LargestInt = -1; | 
 |   for (unsigned i = 0, e = Alignments.size(); i != e; ++i) { | 
 |     if (Alignments[i].AlignType == AlignType && | 
 |         Alignments[i].TypeBitWidth == BitWidth) | 
 |       return ABIInfo ? Alignments[i].ABIAlign : Alignments[i].PrefAlign; | 
 |      | 
 |     // The best match so far depends on what we're looking for. | 
 |     if (AlignType == VECTOR_ALIGN && Alignments[i].AlignType == VECTOR_ALIGN) { | 
 |       // If this is a specification for a smaller vector type, we will fall back | 
 |       // to it.  This happens because <128 x double> can be implemented in terms | 
 |       // of 64 <2 x double>. | 
 |       if (Alignments[i].TypeBitWidth < BitWidth) { | 
 |         // Verify that we pick the biggest of the fallbacks. | 
 |         if (BestMatchIdx == -1 || | 
 |             Alignments[BestMatchIdx].TypeBitWidth < Alignments[i].TypeBitWidth) | 
 |           BestMatchIdx = i; | 
 |       } | 
 |     } else if (AlignType == INTEGER_ALIGN &&  | 
 |                Alignments[i].AlignType == INTEGER_ALIGN) { | 
 |       // The "best match" for integers is the smallest size that is larger than | 
 |       // the BitWidth requested. | 
 |       if (Alignments[i].TypeBitWidth > BitWidth && (BestMatchIdx == -1 ||  | 
 |            Alignments[i].TypeBitWidth < Alignments[BestMatchIdx].TypeBitWidth)) | 
 |         BestMatchIdx = i; | 
 |       // However, if there isn't one that's larger, then we must use the | 
 |       // largest one we have (see below) | 
 |       if (LargestInt == -1 ||  | 
 |           Alignments[i].TypeBitWidth > Alignments[LargestInt].TypeBitWidth) | 
 |         LargestInt = i; | 
 |     } | 
 |   } | 
 |  | 
 |   // Okay, we didn't find an exact solution.  Fall back here depending on what | 
 |   // is being looked for. | 
 |   if (BestMatchIdx == -1) { | 
 |     // If we didn't find an integer alignment, fall back on most conservative. | 
 |     if (AlignType == INTEGER_ALIGN) { | 
 |       BestMatchIdx = LargestInt; | 
 |     } else { | 
 |       assert(AlignType == VECTOR_ALIGN && "Unknown alignment type!"); | 
 |        | 
 |       // If we didn't find a vector size that is smaller or equal to this type, | 
 |       // then we will end up scalarizing this to its element type.  Just return | 
 |       // the alignment of the element. | 
 |       return getAlignment(cast<VectorType>(Ty)->getElementType(), ABIInfo); | 
 |     }     | 
 |   } | 
 |      | 
 |   // Since we got a "best match" index, just return it. | 
 |   return ABIInfo ? Alignments[BestMatchIdx].ABIAlign | 
 |                  : Alignments[BestMatchIdx].PrefAlign; | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | /// LayoutInfo - The lazy cache of structure layout information maintained by | 
 | /// TargetData.  Note that the struct types must have been free'd before | 
 | /// llvm_shutdown is called (and thus this is deallocated) because all the | 
 | /// targets with cached elements should have been destroyed. | 
 | /// | 
 | typedef std::pair<const TargetData*,const StructType*> LayoutKey; | 
 |  | 
 | struct DenseMapLayoutKeyInfo { | 
 |   static inline LayoutKey getEmptyKey() { return LayoutKey(0, 0); } | 
 |   static inline LayoutKey getTombstoneKey() { | 
 |     return LayoutKey((TargetData*)(intptr_t)-1, 0); | 
 |   } | 
 |   static unsigned getHashValue(const LayoutKey &Val) { | 
 |     return DenseMapInfo<void*>::getHashValue(Val.first) ^ | 
 |            DenseMapInfo<void*>::getHashValue(Val.second); | 
 |   } | 
 |   static bool isEqual(const LayoutKey &LHS, const LayoutKey &RHS) { | 
 |     return LHS == RHS; | 
 |   } | 
 |  | 
 |   static bool isPod() { return true; } | 
 | }; | 
 |  | 
 | typedef DenseMap<LayoutKey, StructLayout*, DenseMapLayoutKeyInfo> LayoutInfoTy; | 
 |  | 
 | } | 
 |  | 
 | static ManagedStatic<LayoutInfoTy> LayoutInfo; | 
 |  | 
 | TargetData::~TargetData() { | 
 |   if (!LayoutInfo.isConstructed()) | 
 |     return; | 
 |    | 
 |   // Remove any layouts for this TD. | 
 |   LayoutInfoTy &TheMap = *LayoutInfo; | 
 |   for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); I != E; ) { | 
 |     if (I->first.first == this) { | 
 |       I->second->~StructLayout(); | 
 |       free(I->second); | 
 |       TheMap.erase(I++); | 
 |     } else { | 
 |       ++I; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | const StructLayout *TargetData::getStructLayout(const StructType *Ty) const { | 
 |   LayoutInfoTy &TheMap = *LayoutInfo; | 
 |    | 
 |   StructLayout *&SL = TheMap[LayoutKey(this, Ty)]; | 
 |   if (SL) return SL; | 
 |  | 
 |   // Otherwise, create the struct layout.  Because it is variable length, we  | 
 |   // malloc it, then use placement new. | 
 |   int NumElts = Ty->getNumElements(); | 
 |   StructLayout *L = | 
 |     (StructLayout *)malloc(sizeof(StructLayout)+(NumElts-1)*sizeof(uint64_t)); | 
 |    | 
 |   // Set SL before calling StructLayout's ctor.  The ctor could cause other | 
 |   // entries to be added to TheMap, invalidating our reference. | 
 |   SL = L; | 
 |    | 
 |   new (L) StructLayout(Ty, *this); | 
 |   return L; | 
 | } | 
 |  | 
 | /// InvalidateStructLayoutInfo - TargetData speculatively caches StructLayout | 
 | /// objects.  If a TargetData object is alive when types are being refined and | 
 | /// removed, this method must be called whenever a StructType is removed to | 
 | /// avoid a dangling pointer in this cache. | 
 | void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const { | 
 |   if (!LayoutInfo.isConstructed()) return;  // No cache. | 
 |    | 
 |   LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty)); | 
 |   if (I == LayoutInfo->end()) return; | 
 |    | 
 |   I->second->~StructLayout(); | 
 |   free(I->second); | 
 |   LayoutInfo->erase(I); | 
 | } | 
 |  | 
 |  | 
 | std::string TargetData::getStringRepresentation() const { | 
 |   std::string repr; | 
 |   repr.append(LittleEndian ? "e" : "E"); | 
 |   repr.append("-p:").append(itostr((int64_t) (PointerMemSize * 8))). | 
 |       append(":").append(itostr((int64_t) (PointerABIAlign * 8))). | 
 |       append(":").append(itostr((int64_t) (PointerPrefAlign * 8))); | 
 |   for (align_const_iterator I = Alignments.begin(); | 
 |        I != Alignments.end(); | 
 |        ++I) { | 
 |     repr.append("-").append(1, (char) I->AlignType). | 
 |       append(utostr((int64_t) I->TypeBitWidth)). | 
 |       append(":").append(utostr((uint64_t) (I->ABIAlign * 8))). | 
 |       append(":").append(utostr((uint64_t) (I->PrefAlign * 8))); | 
 |   } | 
 |   return repr; | 
 | } | 
 |  | 
 |  | 
 | uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const { | 
 |   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); | 
 |   switch (Ty->getTypeID()) { | 
 |   case Type::LabelTyID: | 
 |   case Type::PointerTyID: | 
 |     return getPointerSizeInBits(); | 
 |   case Type::ArrayTyID: { | 
 |     const ArrayType *ATy = cast<ArrayType>(Ty); | 
 |     return getTypePaddedSizeInBits(ATy->getElementType())*ATy->getNumElements(); | 
 |   } | 
 |   case Type::StructTyID: | 
 |     // Get the layout annotation... which is lazily created on demand. | 
 |     return getStructLayout(cast<StructType>(Ty))->getSizeInBits(); | 
 |   case Type::IntegerTyID: | 
 |     return cast<IntegerType>(Ty)->getBitWidth(); | 
 |   case Type::VoidTyID: | 
 |     return 8; | 
 |   case Type::FloatTyID: | 
 |     return 32; | 
 |   case Type::DoubleTyID: | 
 |     return 64; | 
 |   case Type::PPC_FP128TyID: | 
 |   case Type::FP128TyID: | 
 |     return 128; | 
 |   // In memory objects this is always aligned to a higher boundary, but | 
 |   // only 80 bits contain information. | 
 |   case Type::X86_FP80TyID: | 
 |     return 80; | 
 |   case Type::VectorTyID: | 
 |     return cast<VectorType>(Ty)->getBitWidth(); | 
 |   default: | 
 |     assert(0 && "TargetData::getTypeSizeInBits(): Unsupported type"); | 
 |     break; | 
 |   } | 
 |   return 0; | 
 | } | 
 |  | 
 | /*! | 
 |   \param abi_or_pref Flag that determines which alignment is returned. true | 
 |   returns the ABI alignment, false returns the preferred alignment. | 
 |   \param Ty The underlying type for which alignment is determined. | 
 |  | 
 |   Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref | 
 |   == false) for the requested type \a Ty. | 
 |  */ | 
 | unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const { | 
 |   int AlignType = -1; | 
 |  | 
 |   assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!"); | 
 |   switch (Ty->getTypeID()) { | 
 |   // Early escape for the non-numeric types. | 
 |   case Type::LabelTyID: | 
 |   case Type::PointerTyID: | 
 |     return (abi_or_pref | 
 |             ? getPointerABIAlignment() | 
 |             : getPointerPrefAlignment()); | 
 |   case Type::ArrayTyID: | 
 |     return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref); | 
 |      | 
 |   case Type::StructTyID: { | 
 |     // Packed structure types always have an ABI alignment of one. | 
 |     if (cast<StructType>(Ty)->isPacked() && abi_or_pref) | 
 |       return 1; | 
 |      | 
 |     // Get the layout annotation... which is lazily created on demand. | 
 |     const StructLayout *Layout = getStructLayout(cast<StructType>(Ty)); | 
 |     unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty); | 
 |     return std::max(Align, (unsigned)Layout->getAlignment()); | 
 |   } | 
 |   case Type::IntegerTyID: | 
 |   case Type::VoidTyID: | 
 |     AlignType = INTEGER_ALIGN; | 
 |     break; | 
 |   case Type::FloatTyID: | 
 |   case Type::DoubleTyID: | 
 |   // PPC_FP128TyID and FP128TyID have different data contents, but the | 
 |   // same size and alignment, so they look the same here. | 
 |   case Type::PPC_FP128TyID: | 
 |   case Type::FP128TyID: | 
 |   case Type::X86_FP80TyID: | 
 |     AlignType = FLOAT_ALIGN; | 
 |     break; | 
 |   case Type::VectorTyID: | 
 |     AlignType = VECTOR_ALIGN; | 
 |     break; | 
 |   default: | 
 |     assert(0 && "Bad type for getAlignment!!!"); | 
 |     break; | 
 |   } | 
 |  | 
 |   return getAlignmentInfo((AlignTypeEnum)AlignType, getTypeSizeInBits(Ty), | 
 |                           abi_or_pref, Ty); | 
 | } | 
 |  | 
 | unsigned char TargetData::getABITypeAlignment(const Type *Ty) const { | 
 |   return getAlignment(Ty, true); | 
 | } | 
 |  | 
 | unsigned char TargetData::getCallFrameTypeAlignment(const Type *Ty) const { | 
 |   for (unsigned i = 0, e = Alignments.size(); i != e; ++i) | 
 |     if (Alignments[i].AlignType == STACK_ALIGN) | 
 |       return Alignments[i].ABIAlign; | 
 |  | 
 |   return getABITypeAlignment(Ty); | 
 | } | 
 |  | 
 | unsigned char TargetData::getPrefTypeAlignment(const Type *Ty) const { | 
 |   return getAlignment(Ty, false); | 
 | } | 
 |  | 
 | unsigned char TargetData::getPreferredTypeAlignmentShift(const Type *Ty) const { | 
 |   unsigned Align = (unsigned) getPrefTypeAlignment(Ty); | 
 |   assert(!(Align & (Align-1)) && "Alignment is not a power of two!"); | 
 |   return Log2_32(Align); | 
 | } | 
 |  | 
 | /// getIntPtrType - Return an unsigned integer type that is the same size or | 
 | /// greater to the host pointer size. | 
 | const Type *TargetData::getIntPtrType() const { | 
 |   return IntegerType::get(getPointerSizeInBits()); | 
 | } | 
 |  | 
 |  | 
 | uint64_t TargetData::getIndexedOffset(const Type *ptrTy, Value* const* Indices, | 
 |                                       unsigned NumIndices) const { | 
 |   const Type *Ty = ptrTy; | 
 |   assert(isa<PointerType>(Ty) && "Illegal argument for getIndexedOffset()"); | 
 |   uint64_t Result = 0; | 
 |  | 
 |   generic_gep_type_iterator<Value* const*> | 
 |     TI = gep_type_begin(ptrTy, Indices, Indices+NumIndices); | 
 |   for (unsigned CurIDX = 0; CurIDX != NumIndices; ++CurIDX, ++TI) { | 
 |     if (const StructType *STy = dyn_cast<StructType>(*TI)) { | 
 |       assert(Indices[CurIDX]->getType() == Type::Int32Ty && | 
 |              "Illegal struct idx"); | 
 |       unsigned FieldNo = cast<ConstantInt>(Indices[CurIDX])->getZExtValue(); | 
 |  | 
 |       // Get structure layout information... | 
 |       const StructLayout *Layout = getStructLayout(STy); | 
 |  | 
 |       // Add in the offset, as calculated by the structure layout info... | 
 |       Result += Layout->getElementOffset(FieldNo); | 
 |  | 
 |       // Update Ty to refer to current element | 
 |       Ty = STy->getElementType(FieldNo); | 
 |     } else { | 
 |       // Update Ty to refer to current element | 
 |       Ty = cast<SequentialType>(Ty)->getElementType(); | 
 |  | 
 |       // Get the array index and the size of each array element. | 
 |       int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue(); | 
 |       Result += arrayIdx * (int64_t)getTypePaddedSize(Ty); | 
 |     } | 
 |   } | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | /// getPreferredAlignment - Return the preferred alignment of the specified | 
 | /// global.  This includes an explicitly requested alignment (if the global | 
 | /// has one). | 
 | unsigned TargetData::getPreferredAlignment(const GlobalVariable *GV) const { | 
 |   const Type *ElemType = GV->getType()->getElementType(); | 
 |   unsigned Alignment = getPrefTypeAlignment(ElemType); | 
 |   if (GV->getAlignment() > Alignment) | 
 |     Alignment = GV->getAlignment(); | 
 |  | 
 |   if (GV->hasInitializer()) { | 
 |     if (Alignment < 16) { | 
 |       // If the global is not external, see if it is large.  If so, give it a | 
 |       // larger alignment. | 
 |       if (getTypeSizeInBits(ElemType) > 128) | 
 |         Alignment = 16;    // 16-byte alignment. | 
 |     } | 
 |   } | 
 |   return Alignment; | 
 | } | 
 |  | 
 | /// getPreferredAlignmentLog - Return the preferred alignment of the | 
 | /// specified global, returned in log form.  This includes an explicitly | 
 | /// requested alignment (if the global has one). | 
 | unsigned TargetData::getPreferredAlignmentLog(const GlobalVariable *GV) const { | 
 |   return Log2_32(getPreferredAlignment(GV)); | 
 | } |