| //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based |
| // register allocator for LLVM. This allocator works by constructing a PBQP |
| // problem representing the register allocation problem under consideration, |
| // solving this using a PBQP solver, and mapping the solution back to a |
| // register assignment. If any variables are selected for spilling then spill |
| // code is inserted and the process repeated. |
| // |
| // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned |
| // for register allocation. For more information on PBQP for register |
| // allocation see the following papers: |
| // |
| // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with |
| // PBQP. In Proceedings of the 7th Joint Modular Languages Conference |
| // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. |
| // |
| // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular |
| // architectures. In Proceedings of the Joint Conference on Languages, |
| // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, |
| // NY, USA, 139-148. |
| // |
| // Author: Lang Hames |
| // Email: lhames@gmail.com |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // TODO: |
| // |
| // * Use of std::set in constructPBQPProblem destroys allocation order preference. |
| // Switch to an order preserving container. |
| // |
| // * Coalescing support. |
| |
| #define DEBUG_TYPE "regalloc" |
| |
| #include "PBQP.h" |
| #include "VirtRegMap.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include <memory> |
| #include <map> |
| #include <set> |
| #include <vector> |
| #include <limits> |
| |
| using namespace llvm; |
| |
| static RegisterRegAlloc |
| registerPBQPRepAlloc("pbqp", " PBQP register allocator", |
| createPBQPRegisterAllocator); |
| |
| |
| namespace { |
| |
| //! |
| //! PBQP based allocators solve the register allocation problem by mapping |
| //! register allocation problems to Partitioned Boolean Quadratic |
| //! Programming problems. |
| class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass { |
| public: |
| |
| static char ID; |
| |
| //! Construct a PBQP register allocator. |
| PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {} |
| |
| //! Return the pass name. |
| virtual const char* getPassName() const throw() { |
| return "PBQP Register Allocator"; |
| } |
| |
| //! PBQP analysis usage. |
| virtual void getAnalysisUsage(AnalysisUsage &au) const { |
| au.addRequired<LiveIntervals>(); |
| au.addRequired<MachineLoopInfo>(); |
| MachineFunctionPass::getAnalysisUsage(au); |
| } |
| |
| //! Perform register allocation |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| private: |
| typedef std::map<const LiveInterval*, unsigned> LI2NodeMap; |
| typedef std::vector<const LiveInterval*> Node2LIMap; |
| typedef std::vector<unsigned> AllowedSet; |
| typedef std::vector<AllowedSet> AllowedSetMap; |
| typedef std::set<unsigned> IgnoreSet; |
| |
| MachineFunction *mf; |
| const TargetMachine *tm; |
| const TargetRegisterInfo *tri; |
| const TargetInstrInfo *tii; |
| const MachineLoopInfo *loopInfo; |
| MachineRegisterInfo *mri; |
| |
| LiveIntervals *li; |
| VirtRegMap *vrm; |
| |
| LI2NodeMap li2Node; |
| Node2LIMap node2LI; |
| AllowedSetMap allowedSets; |
| IgnoreSet ignoreSet; |
| |
| //! Builds a PBQP cost vector. |
| template <typename Container> |
| PBQPVector* buildCostVector(const Container &allowed, |
| PBQPNum spillCost) const; |
| |
| //! \brief Builds a PBQP interfernce matrix. |
| //! |
| //! @return Either a pointer to a non-zero PBQP matrix representing the |
| //! allocation option costs, or a null pointer for a zero matrix. |
| //! |
| //! Expects allowed sets for two interfering LiveIntervals. These allowed |
| //! sets should contain only allocable registers from the LiveInterval's |
| //! register class, with any interfering pre-colored registers removed. |
| template <typename Container> |
| PBQPMatrix* buildInterferenceMatrix(const Container &allowed1, |
| const Container &allowed2) const; |
| |
| //! |
| //! Expects allowed sets for two potentially coalescable LiveIntervals, |
| //! and an estimated benefit due to coalescing. The allowed sets should |
| //! contain only allocable registers from the LiveInterval's register |
| //! classes, with any interfering pre-colored registers removed. |
| template <typename Container> |
| PBQPMatrix* buildCoalescingMatrix(const Container &allowed1, |
| const Container &allowed2, |
| PBQPNum cBenefit) const; |
| |
| //! \brief Helper functior for constructInitialPBQPProblem(). |
| //! |
| //! This function iterates over the Function we are about to allocate for |
| //! and computes spill costs. |
| void calcSpillCosts(); |
| |
| //! \brief Scans the MachineFunction being allocated to find coalescing |
| // opportunities. |
| void findCoalescingOpportunities(); |
| |
| //! \brief Constructs a PBQP problem representation of the register |
| //! allocation problem for this function. |
| //! |
| //! @return a PBQP solver object for the register allocation problem. |
| pbqp* constructPBQPProblem(); |
| |
| //! \brief Given a solved PBQP problem maps this solution back to a register |
| //! assignment. |
| bool mapPBQPToRegAlloc(pbqp *problem); |
| |
| }; |
| |
| char PBQPRegAlloc::ID = 0; |
| } |
| |
| |
| template <typename Container> |
| PBQPVector* PBQPRegAlloc::buildCostVector(const Container &allowed, |
| PBQPNum spillCost) const { |
| |
| // Allocate vector. Additional element (0th) used for spill option |
| PBQPVector *v = new PBQPVector(allowed.size() + 1); |
| |
| (*v)[0] = spillCost; |
| |
| return v; |
| } |
| |
| template <typename Container> |
| PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix( |
| const Container &allowed1, const Container &allowed2) const { |
| |
| typedef typename Container::const_iterator ContainerIterator; |
| |
| // Construct a PBQP matrix representing the cost of allocation options. The |
| // rows and columns correspond to the allocation options for the two live |
| // intervals. Elements will be infinite where corresponding registers alias, |
| // since we cannot allocate aliasing registers to interfering live intervals. |
| // All other elements (non-aliasing combinations) will have zero cost. Note |
| // that the spill option (element 0,0) has zero cost, since we can allocate |
| // both intervals to memory safely (the cost for each individual allocation |
| // to memory is accounted for by the cost vectors for each live interval). |
| PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1); |
| |
| // Assume this is a zero matrix until proven otherwise. Zero matrices occur |
| // between interfering live ranges with non-overlapping register sets (e.g. |
| // non-overlapping reg classes, or disjoint sets of allowed regs within the |
| // same class). The term "overlapping" is used advisedly: sets which do not |
| // intersect, but contain registers which alias, will have non-zero matrices. |
| // We optimize zero matrices away to improve solver speed. |
| bool isZeroMatrix = true; |
| |
| |
| // Row index. Starts at 1, since the 0th row is for the spill option, which |
| // is always zero. |
| unsigned ri = 1; |
| |
| // Iterate over allowed sets, insert infinities where required. |
| for (ContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end(); |
| a1Itr != a1End; ++a1Itr) { |
| |
| // Column index, starts at 1 as for row index. |
| unsigned ci = 1; |
| unsigned reg1 = *a1Itr; |
| |
| for (ContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end(); |
| a2Itr != a2End; ++a2Itr) { |
| |
| unsigned reg2 = *a2Itr; |
| |
| // If the row/column regs are identical or alias insert an infinity. |
| if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) { |
| (*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity(); |
| isZeroMatrix = false; |
| } |
| |
| ++ci; |
| } |
| |
| ++ri; |
| } |
| |
| // If this turns out to be a zero matrix... |
| if (isZeroMatrix) { |
| // free it and return null. |
| delete m; |
| return 0; |
| } |
| |
| // ...otherwise return the cost matrix. |
| return m; |
| } |
| |
| void PBQPRegAlloc::calcSpillCosts() { |
| |
| // Calculate the spill cost for each live interval by iterating over the |
| // function counting loads and stores, with loop depth taken into account. |
| for (MachineFunction::const_iterator bbItr = mf->begin(), bbEnd = mf->end(); |
| bbItr != bbEnd; ++bbItr) { |
| |
| const MachineBasicBlock *mbb = &*bbItr; |
| float loopDepth = loopInfo->getLoopDepth(mbb); |
| |
| for (MachineBasicBlock::const_iterator |
| iItr = mbb->begin(), iEnd = mbb->end(); iItr != iEnd; ++iItr) { |
| |
| const MachineInstr *instr = &*iItr; |
| |
| for (unsigned opNo = 0; opNo < instr->getNumOperands(); ++opNo) { |
| |
| const MachineOperand &mo = instr->getOperand(opNo); |
| |
| // We're not interested in non-registers... |
| if (!mo.isReg()) |
| continue; |
| |
| unsigned moReg = mo.getReg(); |
| |
| // ...Or invalid registers... |
| if (moReg == 0) |
| continue; |
| |
| // ...Or physical registers... |
| if (TargetRegisterInfo::isPhysicalRegister(moReg)) |
| continue; |
| |
| assert ((mo.isUse() || mo.isDef()) && |
| "Not a use, not a def, what is it?"); |
| |
| //... Just the virtual registers. We treat loads and stores as equal. |
| li->getInterval(moReg).weight += powf(10.0f, loopDepth); |
| } |
| |
| } |
| |
| } |
| |
| } |
| |
| pbqp* PBQPRegAlloc::constructPBQPProblem() { |
| |
| typedef std::vector<const LiveInterval*> LIVector; |
| typedef std::set<unsigned> RegSet; |
| |
| // These will store the physical & virtual intervals, respectively. |
| LIVector physIntervals, virtIntervals; |
| |
| // Start by clearing the old node <-> live interval mappings & allowed sets |
| li2Node.clear(); |
| node2LI.clear(); |
| allowedSets.clear(); |
| |
| // Iterate over intervals classifying them as physical or virtual, and |
| // constructing live interval <-> node number mappings. |
| for (LiveIntervals::iterator itr = li->begin(), end = li->end(); |
| itr != end; ++itr) { |
| |
| if (itr->second->getNumValNums() != 0) { |
| DOUT << "Live range has " << itr->second->getNumValNums() << ": " << itr->second << "\n"; |
| } |
| |
| if (TargetRegisterInfo::isPhysicalRegister(itr->first)) { |
| physIntervals.push_back(itr->second); |
| mri->setPhysRegUsed(itr->second->reg); |
| } |
| else { |
| |
| // If we've allocated this virtual register interval a stack slot on a |
| // previous round then it's not an allocation candidate |
| if (ignoreSet.find(itr->first) != ignoreSet.end()) |
| continue; |
| |
| li2Node[itr->second] = node2LI.size(); |
| node2LI.push_back(itr->second); |
| virtIntervals.push_back(itr->second); |
| } |
| } |
| |
| // Early out if there's no regs to allocate for. |
| if (virtIntervals.empty()) |
| return 0; |
| |
| // Construct a PBQP solver for this problem |
| pbqp *solver = alloc_pbqp(virtIntervals.size()); |
| |
| // Resize allowedSets container appropriately. |
| allowedSets.resize(virtIntervals.size()); |
| |
| // Iterate over virtual register intervals to compute allowed sets... |
| for (unsigned node = 0; node < node2LI.size(); ++node) { |
| |
| // Grab pointers to the interval and its register class. |
| const LiveInterval *li = node2LI[node]; |
| const TargetRegisterClass *liRC = mri->getRegClass(li->reg); |
| |
| // Start by assuming all allocable registers in the class are allowed... |
| RegSet liAllowed(liRC->allocation_order_begin(*mf), |
| liRC->allocation_order_end(*mf)); |
| |
| // If this range is non-empty then eliminate the physical registers which |
| // overlap with this range, along with all their aliases. |
| if (!li->empty()) { |
| for (LIVector::iterator pItr = physIntervals.begin(), |
| pEnd = physIntervals.end(); pItr != pEnd; ++pItr) { |
| |
| if (li->overlaps(**pItr)) { |
| |
| unsigned pReg = (*pItr)->reg; |
| |
| // Remove the overlapping reg... |
| liAllowed.erase(pReg); |
| |
| const unsigned *aliasItr = tri->getAliasSet(pReg); |
| |
| if (aliasItr != 0) { |
| // ...and its aliases. |
| for (; *aliasItr != 0; ++aliasItr) { |
| liAllowed.erase(*aliasItr); |
| } |
| |
| } |
| |
| } |
| |
| } |
| |
| } |
| |
| // Copy the allowed set into a member vector for use when constructing cost |
| // vectors & matrices, and mapping PBQP solutions back to assignments. |
| allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end()); |
| |
| // Set the spill cost to the interval weight, or epsilon if the |
| // interval weight is zero |
| PBQPNum spillCost = (li->weight != 0.0) ? |
| li->weight : std::numeric_limits<PBQPNum>::min(); |
| |
| // Build a cost vector for this interval. |
| add_pbqp_nodecosts(solver, node, |
| buildCostVector(allowedSets[node], spillCost)); |
| |
| } |
| |
| // Now add the cost matrices... |
| for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) { |
| |
| const LiveInterval *li = node2LI[node1]; |
| |
| if (li->empty()) |
| continue; |
| |
| // Test for live range overlaps and insert interference matrices. |
| for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) { |
| const LiveInterval *li2 = node2LI[node2]; |
| |
| if (li2->empty()) |
| continue; |
| |
| if (li->overlaps(*li2)) { |
| PBQPMatrix *m = |
| buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]); |
| |
| if (m != 0) { |
| add_pbqp_edgecosts(solver, node1, node2, m); |
| delete m; |
| } |
| } |
| } |
| } |
| |
| // We're done, PBQP problem constructed - return it. |
| return solver; |
| } |
| |
| bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) { |
| |
| // Set to true if we have any spills |
| bool anotherRoundNeeded = false; |
| |
| // Clear the existing allocation. |
| vrm->clearAllVirt(); |
| |
| // Iterate over the nodes mapping the PBQP solution to a register assignment. |
| for (unsigned node = 0; node < node2LI.size(); ++node) { |
| unsigned symReg = node2LI[node]->reg, |
| allocSelection = get_pbqp_solution(problem, node); |
| |
| // If the PBQP solution is non-zero it's a physical register... |
| if (allocSelection != 0) { |
| // Get the physical reg, subtracting 1 to account for the spill option. |
| unsigned physReg = allowedSets[node][allocSelection - 1]; |
| |
| // Add to the virt reg map and update the used phys regs. |
| vrm->assignVirt2Phys(symReg, physReg); |
| mri->setPhysRegUsed(physReg); |
| } |
| // ...Otherwise it's a spill. |
| else { |
| |
| // Make sure we ignore this virtual reg on the next round |
| // of allocation |
| ignoreSet.insert(node2LI[node]->reg); |
| |
| float SSWeight; |
| |
| // Insert spill ranges for this live range |
| SmallVector<LiveInterval*, 8> spillIs; |
| std::vector<LiveInterval*> newSpills = |
| li->addIntervalsForSpills(*node2LI[node], spillIs, loopInfo, *vrm, |
| SSWeight); |
| |
| // We need another round if spill intervals were added. |
| anotherRoundNeeded |= !newSpills.empty(); |
| } |
| } |
| |
| return !anotherRoundNeeded; |
| } |
| |
| bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) { |
| |
| mf = &MF; |
| tm = &mf->getTarget(); |
| tri = tm->getRegisterInfo(); |
| mri = &mf->getRegInfo(); |
| |
| li = &getAnalysis<LiveIntervals>(); |
| loopInfo = &getAnalysis<MachineLoopInfo>(); |
| |
| std::auto_ptr<VirtRegMap> vrmAutoPtr(new VirtRegMap(*mf)); |
| vrm = vrmAutoPtr.get(); |
| |
| // Allocator main loop: |
| // |
| // * Map current regalloc problem to a PBQP problem |
| // * Solve the PBQP problem |
| // * Map the solution back to a register allocation |
| // * Spill if necessary |
| // |
| // This process is continued till no more spills are generated. |
| |
| bool regallocComplete = false; |
| |
| // Calculate spill costs for intervals |
| calcSpillCosts(); |
| |
| while (!regallocComplete) { |
| pbqp *problem = constructPBQPProblem(); |
| |
| // Fast out if there's no problem to solve. |
| if (problem == 0) |
| return true; |
| |
| solve_pbqp(problem); |
| |
| regallocComplete = mapPBQPToRegAlloc(problem); |
| |
| free_pbqp(problem); |
| } |
| |
| ignoreSet.clear(); |
| |
| std::auto_ptr<Spiller> spiller(createSpiller()); |
| |
| spiller->runOnMachineFunction(*mf, *vrm); |
| |
| return true; |
| } |
| |
| FunctionPass* llvm::createPBQPRegisterAllocator() { |
| return new PBQPRegAlloc(); |
| } |
| |
| |
| #undef DEBUG_TYPE |