| //===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements a simple code linearizer for DAGs. This is not a very good |
| // way to emit code, but gets working code quickly. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "sched" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Support/CommandLine.h" |
| using namespace llvm; |
| |
| #ifndef _NDEBUG |
| static cl::opt<bool> |
| ViewDAGs("view-sched-dags", cl::Hidden, |
| cl::desc("Pop up a window to show sched dags as they are processed")); |
| #else |
| static const bool ViewDAGS = 0; |
| #endif |
| |
| namespace { |
| class SimpleSched { |
| SelectionDAG &DAG; |
| MachineBasicBlock *BB; |
| const TargetMachine &TM; |
| const TargetInstrInfo &TII; |
| const MRegisterInfo &MRI; |
| SSARegMap *RegMap; |
| MachineConstantPool *ConstPool; |
| |
| std::map<SDNode *, unsigned> EmittedOps; |
| public: |
| SimpleSched(SelectionDAG &D, MachineBasicBlock *bb) |
| : DAG(D), BB(bb), TM(D.getTarget()), TII(*TM.getInstrInfo()), |
| MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()), |
| ConstPool(BB->getParent()->getConstantPool()) { |
| assert(&TII && "Target doesn't provide instr info?"); |
| assert(&MRI && "Target doesn't provide register info?"); |
| } |
| |
| MachineBasicBlock *Run() { |
| Emit(DAG.getRoot()); |
| return BB; |
| } |
| |
| private: |
| unsigned Emit(SDOperand Op); |
| }; |
| } |
| |
| unsigned SimpleSched::Emit(SDOperand Op) { |
| // Check to see if we have already emitted this. If so, return the value |
| // already emitted. Note that if a node has a single use it cannot be |
| // revisited, so don't bother putting it in the map. |
| unsigned *OpSlot; |
| if (Op.Val->hasOneUse()) { |
| OpSlot = 0; // No reuse possible. |
| } else { |
| std::map<SDNode *, unsigned>::iterator OpI = EmittedOps.lower_bound(Op.Val); |
| if (OpI != EmittedOps.end() && OpI->first == Op.Val) |
| return OpI->second + Op.ResNo; |
| OpSlot = &EmittedOps.insert(OpI, std::make_pair(Op.Val, 0))->second; |
| } |
| |
| unsigned ResultReg = 0; |
| if (Op.isTargetOpcode()) { |
| unsigned Opc = Op.getTargetOpcode(); |
| const TargetInstrDescriptor &II = TII.get(Opc); |
| |
| // The results of target nodes have register or immediate operands first, |
| // then an optional chain, and optional flag operands (which do not go into |
| // the machine instrs). |
| unsigned NumResults = Op.Val->getNumValues(); |
| while (NumResults && Op.Val->getValueType(NumResults-1) == MVT::Flag) |
| --NumResults; |
| if (NumResults && Op.Val->getValueType(NumResults-1) == MVT::Other) |
| --NumResults; // Skip over chain result. |
| |
| // The inputs to target nodes have any actual inputs first, followed by an |
| // optional chain operand, then flag operands. Compute the number of actual |
| // operands that will go into the machine instr. |
| unsigned NodeOperands = Op.getNumOperands(); |
| while (NodeOperands && |
| Op.getOperand(NodeOperands-1).getValueType() == MVT::Flag) |
| --NodeOperands; |
| |
| if (NodeOperands && // Ignore chain if it exists. |
| Op.getOperand(NodeOperands-1).getValueType() == MVT::Other) |
| --NodeOperands; |
| |
| unsigned NumMIOperands = NodeOperands+NumResults; |
| #ifndef _NDEBUG |
| assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&& |
| "#operands for dag node doesn't match .td file!"); |
| #endif |
| |
| // Create the new machine instruction. |
| MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true); |
| |
| // Add result register values for things that are defined by this |
| // instruction. |
| if (NumResults) { |
| // Create the result registers for this node and add the result regs to |
| // the machine instruction. |
| const TargetOperandInfo *OpInfo = II.OpInfo; |
| ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass); |
| MI->addRegOperand(ResultReg, MachineOperand::Def); |
| for (unsigned i = 1; i != NumResults; ++i) { |
| assert(OpInfo[i].RegClass && "Isn't a register operand!"); |
| MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[0].RegClass), |
| MachineOperand::Def); |
| } |
| } |
| |
| // If there is a token chain operand, emit it first, as a hack to get avoid |
| // really bad cases. |
| if (Op.getNumOperands() > NodeOperands && |
| Op.getOperand(NodeOperands).getValueType() == MVT::Other) |
| Emit(Op.getOperand(NodeOperands)); |
| |
| // Emit all of the actual operands of this instruction, adding them to the |
| // instruction as appropriate. |
| for (unsigned i = 0; i != NodeOperands; ++i) { |
| if (Op.getOperand(i).isTargetOpcode()) { |
| // Note that this case is redundant with the final else block, but we |
| // include it because it is the most common and it makes the logic |
| // simpler here. |
| assert(Op.getOperand(i).getValueType() != MVT::Other && |
| Op.getOperand(i).getValueType() != MVT::Flag && |
| "Chain and flag operands should occur at end of operand list!"); |
| |
| MI->addRegOperand(Emit(Op.getOperand(i)), MachineOperand::Use); |
| } else if (ConstantSDNode *C = |
| dyn_cast<ConstantSDNode>(Op.getOperand(i))) { |
| MI->addZeroExtImm64Operand(C->getValue()); |
| } else if (RegisterSDNode*R =dyn_cast<RegisterSDNode>(Op.getOperand(i))) { |
| MI->addRegOperand(R->getReg(), MachineOperand::Use); |
| } else if (GlobalAddressSDNode *TGA = |
| dyn_cast<GlobalAddressSDNode>(Op.getOperand(i))) { |
| MI->addGlobalAddressOperand(TGA->getGlobal(), false, 0); |
| } else if (BasicBlockSDNode *BB = |
| dyn_cast<BasicBlockSDNode>(Op.getOperand(i))) { |
| MI->addMachineBasicBlockOperand(BB->getBasicBlock()); |
| } else if (FrameIndexSDNode *FI = |
| dyn_cast<FrameIndexSDNode>(Op.getOperand(i))) { |
| MI->addFrameIndexOperand(FI->getIndex()); |
| } else if (ConstantPoolSDNode *CP = |
| dyn_cast<ConstantPoolSDNode>(Op.getOperand(i))) { |
| unsigned Idx = ConstPool->getConstantPoolIndex(CP->get()); |
| MI->addConstantPoolIndexOperand(Idx); |
| } else if (ExternalSymbolSDNode *ES = |
| dyn_cast<ExternalSymbolSDNode>(Op.getOperand(i))) { |
| MI->addExternalSymbolOperand(ES->getSymbol(), false); |
| } else { |
| assert(Op.getOperand(i).getValueType() != MVT::Other && |
| Op.getOperand(i).getValueType() != MVT::Flag && |
| "Chain and flag operands should occur at end of operand list!"); |
| MI->addRegOperand(Emit(Op.getOperand(i)), MachineOperand::Use); |
| } |
| } |
| |
| // Finally, if this node has any flag operands, we *must* emit them last, to |
| // avoid emitting operations that might clobber the flags. |
| if (Op.getNumOperands() > NodeOperands) { |
| unsigned i = NodeOperands; |
| if (Op.getOperand(i).getValueType() == MVT::Other) |
| ++i; // the chain is already selected. |
| for (; i != Op.getNumOperands(); ++i) { |
| assert(Op.getOperand(i).getValueType() == MVT::Flag && |
| "Must be flag operands!"); |
| Emit(Op.getOperand(i)); |
| } |
| } |
| |
| // Now that we have emitted all operands, emit this instruction itself. |
| if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) { |
| BB->insert(BB->end(), MI); |
| } else { |
| // Insert this instruction into the end of the basic block, potentially |
| // taking some custom action. |
| BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB); |
| } |
| } else { |
| switch (Op.getOpcode()) { |
| default: |
| Op.Val->dump(); |
| assert(0 && "This target-independent node should have been selected!"); |
| case ISD::EntryToken: break; |
| case ISD::TokenFactor: |
| for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i) |
| Emit(Op.getOperand(i)); |
| break; |
| case ISD::CopyToReg: { |
| SDOperand FlagOp; |
| if (Op.getNumOperands() == 4) |
| FlagOp = Op.getOperand(3); |
| if (Op.getOperand(0).Val != FlagOp.Val) |
| Emit(Op.getOperand(0)); // Emit the chain. |
| unsigned Val = Emit(Op.getOperand(2)); |
| if (FlagOp.Val) Emit(FlagOp); |
| MRI.copyRegToReg(*BB, BB->end(), |
| cast<RegisterSDNode>(Op.getOperand(1))->getReg(), Val, |
| RegMap->getRegClass(Val)); |
| break; |
| } |
| case ISD::CopyFromReg: { |
| Emit(Op.getOperand(0)); // Emit the chain. |
| unsigned SrcReg = cast<RegisterSDNode>(Op.getOperand(1))->getReg(); |
| |
| // Figure out the register class to create for the destreg. |
| const TargetRegisterClass *TRC = 0; |
| if (MRegisterInfo::isVirtualRegister(SrcReg)) { |
| TRC = RegMap->getRegClass(SrcReg); |
| } else { |
| // FIXME: we don't know what register class to generate this for. Do |
| // a brute force search and pick the first match. :( |
| for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(), |
| E = MRI.regclass_end(); I != E; ++I) |
| if ((*I)->contains(SrcReg)) { |
| TRC = *I; |
| break; |
| } |
| assert(TRC && "Couldn't find register class for reg copy!"); |
| } |
| |
| // Create the reg, emit the copy. |
| ResultReg = RegMap->createVirtualRegister(TRC); |
| MRI.copyRegToReg(*BB, BB->end(), ResultReg, SrcReg, TRC); |
| break; |
| } |
| } |
| } |
| |
| if (OpSlot) *OpSlot = ResultReg; |
| return ResultReg+Op.ResNo; |
| } |
| |
| |
| /// Pick a safe ordering and emit instructions for each target node in the |
| /// graph. |
| void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) { |
| if (ViewDAGs) SD.viewGraph(); |
| BB = SimpleSched(SD, BB).Run(); |
| } |