| //===-- ConstantRange.cpp - ConstantRange implementation ------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by the LLVM research group and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // Represent a range of possible values that may occur when the program is run | 
 | // for an integral value.  This keeps track of a lower and upper bound for the | 
 | // constant, which MAY wrap around the end of the numeric range.  To do this, it | 
 | // keeps track of a [lower, upper) bound, which specifies an interval just like | 
 | // STL iterators.  When used with boolean values, the following are important | 
 | // ranges (other integral ranges use min/max values for special range values): | 
 | // | 
 | //  [F, F) = {}     = Empty set | 
 | //  [T, F) = {T} | 
 | //  [F, T) = {F} | 
 | //  [T, T) = {F, T} = Full set | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Support/ConstantRange.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Instruction.h" | 
 | #include "llvm/Type.h" | 
 | #include <iostream> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | static ConstantIntegral *Next(ConstantIntegral *CI) { | 
 |   if (ConstantBool *CB = dyn_cast<ConstantBool>(CI)) | 
 |     return ConstantBool::get(!CB->getValue()); | 
 |  | 
 |   Constant *Result = ConstantExpr::getAdd(CI, | 
 |                                           ConstantInt::get(CI->getType(), 1)); | 
 |   return cast<ConstantIntegral>(Result); | 
 | } | 
 |  | 
 | static bool LT(ConstantIntegral *A, ConstantIntegral *B) { | 
 |   Constant *C = ConstantExpr::getSetLT(A, B); | 
 |   assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??"); | 
 |   return cast<ConstantBool>(C)->getValue(); | 
 | } | 
 |  | 
 | static bool LTE(ConstantIntegral *A, ConstantIntegral *B) { | 
 |   Constant *C = ConstantExpr::getSetLE(A, B); | 
 |   assert(isa<ConstantBool>(C) && "Constant folding of integrals not impl??"); | 
 |   return cast<ConstantBool>(C)->getValue(); | 
 | } | 
 |  | 
 | static bool GT(ConstantIntegral *A, ConstantIntegral *B) { return LT(B, A); } | 
 |  | 
 | static ConstantIntegral *Min(ConstantIntegral *A, ConstantIntegral *B) { | 
 |   return LT(A, B) ? A : B; | 
 | } | 
 | static ConstantIntegral *Max(ConstantIntegral *A, ConstantIntegral *B) { | 
 |   return GT(A, B) ? A : B; | 
 | } | 
 |  | 
 | /// Initialize a full (the default) or empty set for the specified type. | 
 | /// | 
 | ConstantRange::ConstantRange(const Type *Ty, bool Full) { | 
 |   assert(Ty->isIntegral() && | 
 |          "Cannot make constant range of non-integral type!"); | 
 |   if (Full) | 
 |     Lower = Upper = ConstantIntegral::getMaxValue(Ty); | 
 |   else | 
 |     Lower = Upper = ConstantIntegral::getMinValue(Ty); | 
 | } | 
 |  | 
 | /// Initialize a range to hold the single specified value. | 
 | /// | 
 | ConstantRange::ConstantRange(Constant *V) | 
 |   : Lower(cast<ConstantIntegral>(V)), Upper(Next(cast<ConstantIntegral>(V))) { | 
 | } | 
 |  | 
 | /// Initialize a range of values explicitly... this will assert out if | 
 | /// Lower==Upper and Lower != Min or Max for its type (or if the two constants | 
 | /// have different types) | 
 | /// | 
 | ConstantRange::ConstantRange(Constant *L, Constant *U) | 
 |   : Lower(cast<ConstantIntegral>(L)), Upper(cast<ConstantIntegral>(U)) { | 
 |   assert(Lower->getType() == Upper->getType() && | 
 |          "Incompatible types for ConstantRange!"); | 
 |  | 
 |   // Make sure that if L & U are equal that they are either Min or Max... | 
 |   assert((L != U || (L == ConstantIntegral::getMaxValue(L->getType()) || | 
 |                      L == ConstantIntegral::getMinValue(L->getType()))) && | 
 |          "Lower == Upper, but they aren't min or max for type!"); | 
 | } | 
 |  | 
 | /// Initialize a set of values that all satisfy the condition with C. | 
 | /// | 
 | ConstantRange::ConstantRange(unsigned SetCCOpcode, ConstantIntegral *C) { | 
 |   switch (SetCCOpcode) { | 
 |   default: assert(0 && "Invalid SetCC opcode to ConstantRange ctor!"); | 
 |   case Instruction::SetEQ: Lower = C; Upper = Next(C); return; | 
 |   case Instruction::SetNE: Upper = C; Lower = Next(C); return; | 
 |   case Instruction::SetLT: | 
 |     Lower = ConstantIntegral::getMinValue(C->getType()); | 
 |     Upper = C; | 
 |     return; | 
 |   case Instruction::SetGT: | 
 |     Lower = Next(C); | 
 |     Upper = ConstantIntegral::getMinValue(C->getType());  // Min = Next(Max) | 
 |     return; | 
 |   case Instruction::SetLE: | 
 |     Lower = ConstantIntegral::getMinValue(C->getType()); | 
 |     Upper = Next(C); | 
 |     return; | 
 |   case Instruction::SetGE: | 
 |     Lower = C; | 
 |     Upper = ConstantIntegral::getMinValue(C->getType());  // Min = Next(Max) | 
 |     return; | 
 |   } | 
 | } | 
 |  | 
 | /// getType - Return the LLVM data type of this range. | 
 | /// | 
 | const Type *ConstantRange::getType() const { return Lower->getType(); } | 
 |  | 
 | /// isFullSet - Return true if this set contains all of the elements possible | 
 | /// for this data-type | 
 | bool ConstantRange::isFullSet() const { | 
 |   return Lower == Upper && Lower == ConstantIntegral::getMaxValue(getType()); | 
 | } | 
 |  | 
 | /// isEmptySet - Return true if this set contains no members. | 
 | /// | 
 | bool ConstantRange::isEmptySet() const { | 
 |   return Lower == Upper && Lower == ConstantIntegral::getMinValue(getType()); | 
 | } | 
 |  | 
 | /// isWrappedSet - Return true if this set wraps around the top of the range, | 
 | /// for example: [100, 8) | 
 | /// | 
 | bool ConstantRange::isWrappedSet() const { | 
 |   return GT(Lower, Upper); | 
 | } | 
 |  | 
 |  | 
 | /// getSingleElement - If this set contains a single element, return it, | 
 | /// otherwise return null. | 
 | ConstantIntegral *ConstantRange::getSingleElement() const { | 
 |   if (Upper == Next(Lower))  // Is it a single element range? | 
 |     return Lower; | 
 |   return 0; | 
 | } | 
 |  | 
 | /// getSetSize - Return the number of elements in this set. | 
 | /// | 
 | uint64_t ConstantRange::getSetSize() const { | 
 |   if (isEmptySet()) return 0; | 
 |   if (getType() == Type::BoolTy) { | 
 |     if (Lower != Upper)  // One of T or F in the set... | 
 |       return 1; | 
 |     return 2;            // Must be full set... | 
 |   } | 
 |  | 
 |   // Simply subtract the bounds... | 
 |   Constant *Result = ConstantExpr::getSub(Upper, Lower); | 
 |   return cast<ConstantInt>(Result)->getRawValue(); | 
 | } | 
 |  | 
 | /// contains - Return true if the specified value is in the set. | 
 | /// | 
 | bool ConstantRange::contains(ConstantInt *Val) const { | 
 |   if (Lower == Upper) { | 
 |     if (isFullSet()) return true; | 
 |     return false; | 
 |   } | 
 |  | 
 |   if (!isWrappedSet()) | 
 |     return LTE(Lower, Val) && LT(Val, Upper); | 
 |   return LTE(Lower, Val) || LT(Val, Upper); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /// subtract - Subtract the specified constant from the endpoints of this | 
 | /// constant range. | 
 | ConstantRange ConstantRange::subtract(ConstantInt *CI) const { | 
 |   assert(CI->getType() == getType() && getType()->isInteger() && | 
 |          "Cannot subtract from different type range or non-integer!"); | 
 |   // If the set is empty or full, don't modify the endpoints. | 
 |   if (Lower == Upper) return *this; | 
 |   return ConstantRange(ConstantExpr::getSub(Lower, CI), | 
 |                        ConstantExpr::getSub(Upper, CI)); | 
 | } | 
 |  | 
 |  | 
 | // intersect1Wrapped - This helper function is used to intersect two ranges when | 
 | // it is known that LHS is wrapped and RHS isn't. | 
 | // | 
 | static ConstantRange intersect1Wrapped(const ConstantRange &LHS, | 
 |                                        const ConstantRange &RHS) { | 
 |   assert(LHS.isWrappedSet() && !RHS.isWrappedSet()); | 
 |  | 
 |   // Check to see if we overlap on the Left side of RHS... | 
 |   // | 
 |   if (LT(RHS.getLower(), LHS.getUpper())) { | 
 |     // We do overlap on the left side of RHS, see if we overlap on the right of | 
 |     // RHS... | 
 |     if (GT(RHS.getUpper(), LHS.getLower())) { | 
 |       // Ok, the result overlaps on both the left and right sides.  See if the | 
 |       // resultant interval will be smaller if we wrap or not... | 
 |       // | 
 |       if (LHS.getSetSize() < RHS.getSetSize()) | 
 |         return LHS; | 
 |       else | 
 |         return RHS; | 
 |  | 
 |     } else { | 
 |       // No overlap on the right, just on the left. | 
 |       return ConstantRange(RHS.getLower(), LHS.getUpper()); | 
 |     } | 
 |  | 
 |   } else { | 
 |     // We don't overlap on the left side of RHS, see if we overlap on the right | 
 |     // of RHS... | 
 |     if (GT(RHS.getUpper(), LHS.getLower())) { | 
 |       // Simple overlap... | 
 |       return ConstantRange(LHS.getLower(), RHS.getUpper()); | 
 |     } else { | 
 |       // No overlap... | 
 |       return ConstantRange(LHS.getType(), false); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// intersect - Return the range that results from the intersection of this | 
 | /// range with another range. | 
 | /// | 
 | ConstantRange ConstantRange::intersectWith(const ConstantRange &CR) const { | 
 |   assert(getType() == CR.getType() && "ConstantRange types don't agree!"); | 
 |   // Handle common special cases | 
 |   if (isEmptySet() || CR.isFullSet())  return *this; | 
 |   if (isFullSet()  || CR.isEmptySet()) return CR; | 
 |  | 
 |   if (!isWrappedSet()) { | 
 |     if (!CR.isWrappedSet()) { | 
 |       ConstantIntegral *L = Max(Lower, CR.Lower); | 
 |       ConstantIntegral *U = Min(Upper, CR.Upper); | 
 |  | 
 |       if (LT(L, U))  // If range isn't empty... | 
 |         return ConstantRange(L, U); | 
 |       else | 
 |         return ConstantRange(getType(), false);  // Otherwise, return empty set | 
 |     } else | 
 |       return intersect1Wrapped(CR, *this); | 
 |   } else {   // We know "this" is wrapped... | 
 |     if (!CR.isWrappedSet()) | 
 |       return intersect1Wrapped(*this, CR); | 
 |     else { | 
 |       // Both ranges are wrapped... | 
 |       ConstantIntegral *L = Max(Lower, CR.Lower); | 
 |       ConstantIntegral *U = Min(Upper, CR.Upper); | 
 |       return ConstantRange(L, U); | 
 |     } | 
 |   } | 
 |   return *this; | 
 | } | 
 |  | 
 | /// union - Return the range that results from the union of this range with | 
 | /// another range.  The resultant range is guaranteed to include the elements of | 
 | /// both sets, but may contain more.  For example, [3, 9) union [12,15) is [3, | 
 | /// 15), which includes 9, 10, and 11, which were not included in either set | 
 | /// before. | 
 | /// | 
 | ConstantRange ConstantRange::unionWith(const ConstantRange &CR) const { | 
 |   assert(getType() == CR.getType() && "ConstantRange types don't agree!"); | 
 |  | 
 |   assert(0 && "Range union not implemented yet!"); | 
 |  | 
 |   return *this; | 
 | } | 
 |  | 
 | /// zeroExtend - Return a new range in the specified integer type, which must | 
 | /// be strictly larger than the current type.  The returned range will | 
 | /// correspond to the possible range of values if the source range had been | 
 | /// zero extended. | 
 | ConstantRange ConstantRange::zeroExtend(const Type *Ty) const { | 
 |   assert(getLower()->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() && | 
 |          "Not a value extension"); | 
 |   if (isFullSet()) { | 
 |     // Change a source full set into [0, 1 << 8*numbytes) | 
 |     unsigned SrcTySize = getLower()->getType()->getPrimitiveSize(); | 
 |     return ConstantRange(Constant::getNullValue(Ty), | 
 |                          ConstantUInt::get(Ty, 1ULL << SrcTySize*8)); | 
 |   } | 
 |  | 
 |   Constant *Lower = getLower(); | 
 |   Constant *Upper = getUpper(); | 
 |   if (Lower->getType()->isInteger() && !Lower->getType()->isUnsigned()) { | 
 |     // Ensure we are doing a ZERO extension even if the input range is signed. | 
 |     Lower = ConstantExpr::getCast(Lower, Ty->getUnsignedVersion()); | 
 |     Upper = ConstantExpr::getCast(Upper, Ty->getUnsignedVersion()); | 
 |   } | 
 |  | 
 |   return ConstantRange(ConstantExpr::getCast(Lower, Ty), | 
 |                        ConstantExpr::getCast(Upper, Ty)); | 
 | } | 
 |  | 
 | /// truncate - Return a new range in the specified integer type, which must be | 
 | /// strictly smaller than the current type.  The returned range will | 
 | /// correspond to the possible range of values if the source range had been | 
 | /// truncated to the specified type. | 
 | ConstantRange ConstantRange::truncate(const Type *Ty) const { | 
 |   assert(getLower()->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() && | 
 |          "Not a value truncation"); | 
 |   uint64_t Size = 1ULL << Ty->getPrimitiveSize()*8; | 
 |   if (isFullSet() || getSetSize() >= Size) | 
 |     return ConstantRange(getType()); | 
 |  | 
 |   return ConstantRange(ConstantExpr::getCast(getLower(), Ty), | 
 |                        ConstantExpr::getCast(getUpper(), Ty)); | 
 | } | 
 |  | 
 |  | 
 | /// print - Print out the bounds to a stream... | 
 | /// | 
 | void ConstantRange::print(std::ostream &OS) const { | 
 |   OS << "[" << *Lower << "," << *Upper << " )"; | 
 | } | 
 |  | 
 | /// dump - Allow printing from a debugger easily... | 
 | /// | 
 | void ConstantRange::dump() const { | 
 |   print(std::cerr); | 
 | } |