| //===- SchedGraph.cpp - Scheduling Graph Implementation -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Scheduling graph based on SSA graph plus extra dependence edges capturing |
| // dependences due to machine resources (machine registers, CC registers, and |
| // any others). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SchedGraph.h" |
| #include "llvm/Function.h" |
| #include "llvm/iOther.h" |
| #include "llvm/CodeGen/MachineCodeForInstruction.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetRegInfo.h" |
| #include "Support/STLExtras.h" |
| |
| namespace llvm { |
| |
| //*********************** Internal Data Structures *************************/ |
| |
| // The following two types need to be classes, not typedefs, so we can use |
| // opaque declarations in SchedGraph.h |
| // |
| struct RefVec: public std::vector<std::pair<SchedGraphNode*, int> > { |
| typedef std::vector<std::pair<SchedGraphNode*,int> >::iterator iterator; |
| typedef |
| std::vector<std::pair<SchedGraphNode*,int> >::const_iterator const_iterator; |
| }; |
| |
| struct RegToRefVecMap: public hash_map<int, RefVec> { |
| typedef hash_map<int, RefVec>:: iterator iterator; |
| typedef hash_map<int, RefVec>::const_iterator const_iterator; |
| }; |
| |
| struct ValueToDefVecMap: public hash_map<const Value*, RefVec> { |
| typedef hash_map<const Value*, RefVec>:: iterator iterator; |
| typedef hash_map<const Value*, RefVec>::const_iterator const_iterator; |
| }; |
| |
| |
| // |
| // class SchedGraphNode |
| // |
| |
| SchedGraphNode::SchedGraphNode(unsigned NID, MachineBasicBlock *mbb, |
| int indexInBB, const TargetMachine& Target) |
| : SchedGraphNodeCommon(NID,indexInBB), MBB(mbb), MI(mbb ? (*mbb)[indexInBB] : 0) { |
| if (MI) { |
| MachineOpCode mopCode = MI->getOpCode(); |
| latency = Target.getInstrInfo().hasResultInterlock(mopCode) |
| ? Target.getInstrInfo().minLatency(mopCode) |
| : Target.getInstrInfo().maxLatency(mopCode); |
| } |
| } |
| |
| // |
| // Method: SchedGraphNode Destructor |
| // |
| // Description: |
| // Free memory allocated by the SchedGraphNode object. |
| // |
| // Notes: |
| // Do not delete the edges here. The base class will take care of that. |
| // Only handle subclass specific stuff here (where currently there is |
| // none). |
| // |
| SchedGraphNode::~SchedGraphNode() { |
| } |
| |
| // |
| // class SchedGraph |
| // |
| SchedGraph::SchedGraph(MachineBasicBlock &mbb, const TargetMachine& target) |
| : MBB(mbb) { |
| buildGraph(target); |
| } |
| |
| // |
| // Method: SchedGraph Destructor |
| // |
| // Description: |
| // This method deletes memory allocated by the SchedGraph object. |
| // |
| // Notes: |
| // Do not delete the graphRoot or graphLeaf here. The base class handles |
| // that bit of work. |
| // |
| SchedGraph::~SchedGraph() { |
| for (const_iterator I = begin(); I != end(); ++I) |
| delete I->second; |
| } |
| |
| void SchedGraph::dump() const { |
| std::cerr << " Sched Graph for Basic Block: "; |
| std::cerr << MBB.getBasicBlock()->getName() |
| << " (" << MBB.getBasicBlock() << ")"; |
| |
| std::cerr << "\n\n Actual Root nodes : "; |
| for (unsigned i=0, N=graphRoot->outEdges.size(); i < N; i++) |
| std::cerr << graphRoot->outEdges[i]->getSink()->getNodeId() |
| << ((i == N-1)? "" : ", "); |
| |
| std::cerr << "\n Graph Nodes:\n"; |
| for (const_iterator I=begin(); I != end(); ++I) |
| std::cerr << "\n" << *I->second; |
| |
| std::cerr << "\n"; |
| } |
| |
| |
| |
| void SchedGraph::addDummyEdges() { |
| assert(graphRoot->outEdges.size() == 0); |
| |
| for (const_iterator I=begin(); I != end(); ++I) { |
| SchedGraphNode* node = (*I).second; |
| assert(node != graphRoot && node != graphLeaf); |
| if (node->beginInEdges() == node->endInEdges()) |
| (void) new SchedGraphEdge(graphRoot, node, SchedGraphEdge::CtrlDep, |
| SchedGraphEdge::NonDataDep, 0); |
| if (node->beginOutEdges() == node->endOutEdges()) |
| (void) new SchedGraphEdge(node, graphLeaf, SchedGraphEdge::CtrlDep, |
| SchedGraphEdge::NonDataDep, 0); |
| } |
| } |
| |
| |
| void SchedGraph::addCDEdges(const TerminatorInst* term, |
| const TargetMachine& target) { |
| const TargetInstrInfo& mii = target.getInstrInfo(); |
| MachineCodeForInstruction &termMvec = MachineCodeForInstruction::get(term); |
| |
| // Find the first branch instr in the sequence of machine instrs for term |
| // |
| unsigned first = 0; |
| while (! mii.isBranch(termMvec[first]->getOpCode()) && |
| ! mii.isReturn(termMvec[first]->getOpCode())) |
| ++first; |
| assert(first < termMvec.size() && |
| "No branch instructions for terminator? Ok, but weird!"); |
| if (first == termMvec.size()) |
| return; |
| |
| SchedGraphNode* firstBrNode = getGraphNodeForInstr(termMvec[first]); |
| |
| // Add CD edges from each instruction in the sequence to the |
| // *last preceding* branch instr. in the sequence |
| // Use a latency of 0 because we only need to prevent out-of-order issue. |
| // |
| for (unsigned i = termMvec.size(); i > first+1; --i) { |
| SchedGraphNode* toNode = getGraphNodeForInstr(termMvec[i-1]); |
| assert(toNode && "No node for instr generated for branch/ret?"); |
| |
| for (unsigned j = i-1; j != 0; --j) |
| if (mii.isBranch(termMvec[j-1]->getOpCode()) || |
| mii.isReturn(termMvec[j-1]->getOpCode())) { |
| SchedGraphNode* brNode = getGraphNodeForInstr(termMvec[j-1]); |
| assert(brNode && "No node for instr generated for branch/ret?"); |
| (void) new SchedGraphEdge(brNode, toNode, SchedGraphEdge::CtrlDep, |
| SchedGraphEdge::NonDataDep, 0); |
| break; // only one incoming edge is enough |
| } |
| } |
| |
| // Add CD edges from each instruction preceding the first branch |
| // to the first branch. Use a latency of 0 as above. |
| // |
| for (unsigned i = first; i != 0; --i) { |
| SchedGraphNode* fromNode = getGraphNodeForInstr(termMvec[i-1]); |
| assert(fromNode && "No node for instr generated for branch?"); |
| (void) new SchedGraphEdge(fromNode, firstBrNode, SchedGraphEdge::CtrlDep, |
| SchedGraphEdge::NonDataDep, 0); |
| } |
| |
| // Now add CD edges to the first branch instruction in the sequence from |
| // all preceding instructions in the basic block. Use 0 latency again. |
| // |
| for (unsigned i=0, N=MBB.size(); i < N; i++) { |
| if (MBB[i] == termMvec[first]) // reached the first branch |
| break; |
| |
| SchedGraphNode* fromNode = this->getGraphNodeForInstr(MBB[i]); |
| if (fromNode == NULL) |
| continue; // dummy instruction, e.g., PHI |
| |
| (void) new SchedGraphEdge(fromNode, firstBrNode, |
| SchedGraphEdge::CtrlDep, |
| SchedGraphEdge::NonDataDep, 0); |
| |
| // If we find any other machine instructions (other than due to |
| // the terminator) that also have delay slots, add an outgoing edge |
| // from the instruction to the instructions in the delay slots. |
| // |
| unsigned d = mii.getNumDelaySlots(MBB[i]->getOpCode()); |
| assert(i+d < N && "Insufficient delay slots for instruction?"); |
| |
| for (unsigned j=1; j <= d; j++) { |
| SchedGraphNode* toNode = this->getGraphNodeForInstr(MBB[i+j]); |
| assert(toNode && "No node for machine instr in delay slot?"); |
| (void) new SchedGraphEdge(fromNode, toNode, |
| SchedGraphEdge::CtrlDep, |
| SchedGraphEdge::NonDataDep, 0); |
| } |
| } |
| } |
| |
| static const int SG_LOAD_REF = 0; |
| static const int SG_STORE_REF = 1; |
| static const int SG_CALL_REF = 2; |
| |
| static const unsigned int SG_DepOrderArray[][3] = { |
| { SchedGraphEdge::NonDataDep, |
| SchedGraphEdge::AntiDep, |
| SchedGraphEdge::AntiDep }, |
| { SchedGraphEdge::TrueDep, |
| SchedGraphEdge::OutputDep, |
| SchedGraphEdge::TrueDep | SchedGraphEdge::OutputDep }, |
| { SchedGraphEdge::TrueDep, |
| SchedGraphEdge::AntiDep | SchedGraphEdge::OutputDep, |
| SchedGraphEdge::TrueDep | SchedGraphEdge::AntiDep |
| | SchedGraphEdge::OutputDep } |
| }; |
| |
| |
| // Add a dependence edge between every pair of machine load/store/call |
| // instructions, where at least one is a store or a call. |
| // Use latency 1 just to ensure that memory operations are ordered; |
| // latency does not otherwise matter (true dependences enforce that). |
| // |
| void SchedGraph::addMemEdges(const std::vector<SchedGraphNode*>& memNodeVec, |
| const TargetMachine& target) { |
| const TargetInstrInfo& mii = target.getInstrInfo(); |
| |
| // Instructions in memNodeVec are in execution order within the basic block, |
| // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>. |
| // |
| for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++) { |
| MachineOpCode fromOpCode = memNodeVec[im]->getOpCode(); |
| int fromType = (mii.isCall(fromOpCode)? SG_CALL_REF |
| : (mii.isLoad(fromOpCode)? SG_LOAD_REF |
| : SG_STORE_REF)); |
| for (unsigned jm=im+1; jm < NM; jm++) { |
| MachineOpCode toOpCode = memNodeVec[jm]->getOpCode(); |
| int toType = (mii.isCall(toOpCode)? SG_CALL_REF |
| : (mii.isLoad(toOpCode)? SG_LOAD_REF |
| : SG_STORE_REF)); |
| |
| if (fromType != SG_LOAD_REF || toType != SG_LOAD_REF) |
| (void) new SchedGraphEdge(memNodeVec[im], memNodeVec[jm], |
| SchedGraphEdge::MemoryDep, |
| SG_DepOrderArray[fromType][toType], 1); |
| } |
| } |
| } |
| |
| // Add edges from/to CC reg instrs to/from call instrs. |
| // Essentially this prevents anything that sets or uses a CC reg from being |
| // reordered w.r.t. a call. |
| // Use a latency of 0 because we only need to prevent out-of-order issue, |
| // like with control dependences. |
| // |
| void SchedGraph::addCallDepEdges(const std::vector<SchedGraphNode*>& callDepNodeVec, |
| const TargetMachine& target) { |
| const TargetInstrInfo& mii = target.getInstrInfo(); |
| |
| // Instructions in memNodeVec are in execution order within the basic block, |
| // so simply look at all pairs <memNodeVec[i], memNodeVec[j: j > i]>. |
| // |
| for (unsigned ic=0, NC=callDepNodeVec.size(); ic < NC; ic++) |
| if (mii.isCall(callDepNodeVec[ic]->getOpCode())) { |
| // Add SG_CALL_REF edges from all preds to this instruction. |
| for (unsigned jc=0; jc < ic; jc++) |
| (void) new SchedGraphEdge(callDepNodeVec[jc], callDepNodeVec[ic], |
| SchedGraphEdge::MachineRegister, |
| MachineIntRegsRID, 0); |
| |
| // And do the same from this instruction to all successors. |
| for (unsigned jc=ic+1; jc < NC; jc++) |
| (void) new SchedGraphEdge(callDepNodeVec[ic], callDepNodeVec[jc], |
| SchedGraphEdge::MachineRegister, |
| MachineIntRegsRID, 0); |
| } |
| |
| #ifdef CALL_DEP_NODE_VEC_CANNOT_WORK |
| // Find the call instruction nodes and put them in a vector. |
| std::vector<SchedGraphNode*> callNodeVec; |
| for (unsigned im=0, NM=memNodeVec.size(); im < NM; im++) |
| if (mii.isCall(memNodeVec[im]->getOpCode())) |
| callNodeVec.push_back(memNodeVec[im]); |
| |
| // Now walk the entire basic block, looking for CC instructions *and* |
| // call instructions, and keep track of the order of the instructions. |
| // Use the call node vec to quickly find earlier and later call nodes |
| // relative to the current CC instruction. |
| // |
| int lastCallNodeIdx = -1; |
| for (unsigned i=0, N=bbMvec.size(); i < N; i++) |
| if (mii.isCall(bbMvec[i]->getOpCode())) { |
| ++lastCallNodeIdx; |
| for ( ; lastCallNodeIdx < (int)callNodeVec.size(); ++lastCallNodeIdx) |
| if (callNodeVec[lastCallNodeIdx]->getMachineInstr() == bbMvec[i]) |
| break; |
| assert(lastCallNodeIdx < (int)callNodeVec.size() && "Missed Call?"); |
| } |
| else if (mii.isCCInstr(bbMvec[i]->getOpCode())) { |
| // Add incoming/outgoing edges from/to preceding/later calls |
| SchedGraphNode* ccNode = this->getGraphNodeForInstr(bbMvec[i]); |
| int j=0; |
| for ( ; j <= lastCallNodeIdx; j++) |
| (void) new SchedGraphEdge(callNodeVec[j], ccNode, |
| MachineCCRegsRID, 0); |
| for ( ; j < (int) callNodeVec.size(); j++) |
| (void) new SchedGraphEdge(ccNode, callNodeVec[j], |
| MachineCCRegsRID, 0); |
| } |
| #endif |
| } |
| |
| |
| void SchedGraph::addMachineRegEdges(RegToRefVecMap& regToRefVecMap, |
| const TargetMachine& target) { |
| // This code assumes that two registers with different numbers are |
| // not aliased! |
| // |
| for (RegToRefVecMap::iterator I = regToRefVecMap.begin(); |
| I != regToRefVecMap.end(); ++I) { |
| int regNum = (*I).first; |
| RefVec& regRefVec = (*I).second; |
| |
| // regRefVec is ordered by control flow order in the basic block |
| for (unsigned i=0; i < regRefVec.size(); ++i) { |
| SchedGraphNode* node = regRefVec[i].first; |
| unsigned int opNum = regRefVec[i].second; |
| const MachineOperand& mop = |
| node->getMachineInstr()->getExplOrImplOperand(opNum); |
| bool isDef = mop.isDef() && !mop.isUse(); |
| bool isDefAndUse = mop.isDef() && mop.isUse(); |
| |
| for (unsigned p=0; p < i; ++p) { |
| SchedGraphNode* prevNode = regRefVec[p].first; |
| if (prevNode != node) { |
| unsigned int prevOpNum = regRefVec[p].second; |
| const MachineOperand& prevMop = |
| prevNode->getMachineInstr()->getExplOrImplOperand(prevOpNum); |
| bool prevIsDef = prevMop.isDef() && !prevMop.isUse(); |
| bool prevIsDefAndUse = prevMop.isDef() && prevMop.isUse(); |
| if (isDef) { |
| if (prevIsDef) |
| new SchedGraphEdge(prevNode, node, regNum, |
| SchedGraphEdge::OutputDep); |
| if (!prevIsDef || prevIsDefAndUse) |
| new SchedGraphEdge(prevNode, node, regNum, |
| SchedGraphEdge::AntiDep); |
| } |
| |
| if (prevIsDef) |
| if (!isDef || isDefAndUse) |
| new SchedGraphEdge(prevNode, node, regNum, |
| SchedGraphEdge::TrueDep); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| // Adds dependences to/from refNode from/to all other defs |
| // in the basic block. refNode may be a use, a def, or both. |
| // We do not consider other uses because we are not building use-use deps. |
| // |
| void SchedGraph::addEdgesForValue(SchedGraphNode* refNode, |
| const RefVec& defVec, |
| const Value* defValue, |
| bool refNodeIsDef, |
| bool refNodeIsUse, |
| const TargetMachine& target) { |
| // Add true or output dep edges from all def nodes before refNode in BB. |
| // Add anti or output dep edges to all def nodes after refNode. |
| for (RefVec::const_iterator I=defVec.begin(), E=defVec.end(); I != E; ++I) { |
| if ((*I).first == refNode) |
| continue; // Dont add any self-loops |
| |
| if ((*I).first->getOrigIndexInBB() < refNode->getOrigIndexInBB()) { |
| // (*).first is before refNode |
| if (refNodeIsDef && !refNodeIsUse) |
| (void) new SchedGraphEdge((*I).first, refNode, defValue, |
| SchedGraphEdge::OutputDep); |
| if (refNodeIsUse) |
| (void) new SchedGraphEdge((*I).first, refNode, defValue, |
| SchedGraphEdge::TrueDep); |
| } else { |
| // (*).first is after refNode |
| if (refNodeIsDef && !refNodeIsUse) |
| (void) new SchedGraphEdge(refNode, (*I).first, defValue, |
| SchedGraphEdge::OutputDep); |
| if (refNodeIsUse) |
| (void) new SchedGraphEdge(refNode, (*I).first, defValue, |
| SchedGraphEdge::AntiDep); |
| } |
| } |
| } |
| |
| |
| void SchedGraph::addEdgesForInstruction(const MachineInstr& MI, |
| const ValueToDefVecMap& valueToDefVecMap, |
| const TargetMachine& target) { |
| SchedGraphNode* node = getGraphNodeForInstr(&MI); |
| if (node == NULL) |
| return; |
| |
| // Add edges for all operands of the machine instruction. |
| // |
| for (unsigned i = 0, numOps = MI.getNumOperands(); i != numOps; ++i) { |
| switch (MI.getOperand(i).getType()) { |
| case MachineOperand::MO_VirtualRegister: |
| case MachineOperand::MO_CCRegister: |
| if (const Value* srcI = MI.getOperand(i).getVRegValue()) { |
| ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI); |
| if (I != valueToDefVecMap.end()) |
| addEdgesForValue(node, I->second, srcI, |
| MI.getOperand(i).isDef(), MI.getOperand(i).isUse(), |
| target); |
| } |
| break; |
| |
| case MachineOperand::MO_MachineRegister: |
| break; |
| |
| case MachineOperand::MO_SignExtendedImmed: |
| case MachineOperand::MO_UnextendedImmed: |
| case MachineOperand::MO_PCRelativeDisp: |
| case MachineOperand::MO_ConstantPoolIndex: |
| break; // nothing to do for immediate fields |
| |
| default: |
| assert(0 && "Unknown machine operand type in SchedGraph builder"); |
| break; |
| } |
| } |
| |
| // Add edges for values implicitly used by the machine instruction. |
| // Examples include function arguments to a Call instructions or the return |
| // value of a Ret instruction. |
| // |
| for (unsigned i=0, N=MI.getNumImplicitRefs(); i < N; ++i) |
| if (MI.getImplicitOp(i).isUse()) |
| if (const Value* srcI = MI.getImplicitRef(i)) { |
| ValueToDefVecMap::const_iterator I = valueToDefVecMap.find(srcI); |
| if (I != valueToDefVecMap.end()) |
| addEdgesForValue(node, I->second, srcI, |
| MI.getImplicitOp(i).isDef(), |
| MI.getImplicitOp(i).isUse(), target); |
| } |
| } |
| |
| |
| void SchedGraph::findDefUseInfoAtInstr(const TargetMachine& target, |
| SchedGraphNode* node, |
| std::vector<SchedGraphNode*>& memNodeVec, |
| std::vector<SchedGraphNode*>& callDepNodeVec, |
| RegToRefVecMap& regToRefVecMap, |
| ValueToDefVecMap& valueToDefVecMap) { |
| const TargetInstrInfo& mii = target.getInstrInfo(); |
| |
| MachineOpCode opCode = node->getOpCode(); |
| |
| if (mii.isCall(opCode) || mii.isCCInstr(opCode)) |
| callDepNodeVec.push_back(node); |
| |
| if (mii.isLoad(opCode) || mii.isStore(opCode) || mii.isCall(opCode)) |
| memNodeVec.push_back(node); |
| |
| // Collect the register references and value defs. for explicit operands |
| // |
| const MachineInstr& MI = *node->getMachineInstr(); |
| for (int i=0, numOps = (int) MI.getNumOperands(); i < numOps; i++) { |
| const MachineOperand& mop = MI.getOperand(i); |
| |
| // if this references a register other than the hardwired |
| // "zero" register, record the reference. |
| if (mop.hasAllocatedReg()) { |
| int regNum = mop.getAllocatedRegNum(); |
| |
| // If this is not a dummy zero register, record the reference in order |
| if (regNum != target.getRegInfo().getZeroRegNum()) |
| regToRefVecMap[mop.getAllocatedRegNum()] |
| .push_back(std::make_pair(node, i)); |
| |
| // If this is a volatile register, add the instruction to callDepVec |
| // (only if the node is not already on the callDepVec!) |
| if (callDepNodeVec.size() == 0 || callDepNodeVec.back() != node) |
| { |
| unsigned rcid; |
| int regInClass = target.getRegInfo().getClassRegNum(regNum, rcid); |
| if (target.getRegInfo().getMachineRegClass(rcid) |
| ->isRegVolatile(regInClass)) |
| callDepNodeVec.push_back(node); |
| } |
| |
| continue; // nothing more to do |
| } |
| |
| // ignore all other non-def operands |
| if (!MI.getOperand(i).isDef()) |
| continue; |
| |
| // We must be defining a value. |
| assert((mop.getType() == MachineOperand::MO_VirtualRegister || |
| mop.getType() == MachineOperand::MO_CCRegister) |
| && "Do not expect any other kind of operand to be defined!"); |
| assert(mop.getVRegValue() != NULL && "Null value being defined?"); |
| |
| valueToDefVecMap[mop.getVRegValue()].push_back(std::make_pair(node, i)); |
| } |
| |
| // |
| // Collect value defs. for implicit operands. They may have allocated |
| // physical registers also. |
| // |
| for (unsigned i=0, N = MI.getNumImplicitRefs(); i != N; ++i) { |
| const MachineOperand& mop = MI.getImplicitOp(i); |
| if (mop.hasAllocatedReg()) { |
| int regNum = mop.getAllocatedRegNum(); |
| if (regNum != target.getRegInfo().getZeroRegNum()) |
| regToRefVecMap[mop.getAllocatedRegNum()] |
| .push_back(std::make_pair(node, i + MI.getNumOperands())); |
| continue; // nothing more to do |
| } |
| |
| if (mop.isDef()) { |
| assert(MI.getImplicitRef(i) != NULL && "Null value being defined?"); |
| valueToDefVecMap[MI.getImplicitRef(i)].push_back( |
| std::make_pair(node, -i)); |
| } |
| } |
| } |
| |
| |
| void SchedGraph::buildNodesForBB(const TargetMachine& target, |
| MachineBasicBlock& MBB, |
| std::vector<SchedGraphNode*>& memNodeVec, |
| std::vector<SchedGraphNode*>& callDepNodeVec, |
| RegToRefVecMap& regToRefVecMap, |
| ValueToDefVecMap& valueToDefVecMap) { |
| const TargetInstrInfo& mii = target.getInstrInfo(); |
| |
| // Build graph nodes for each VM instruction and gather def/use info. |
| // Do both those together in a single pass over all machine instructions. |
| for (unsigned i=0; i < MBB.size(); i++) |
| if (!mii.isDummyPhiInstr(MBB[i]->getOpCode())) { |
| SchedGraphNode* node = new SchedGraphNode(getNumNodes(), &MBB, i, target); |
| noteGraphNodeForInstr(MBB[i], node); |
| |
| // Remember all register references and value defs |
| findDefUseInfoAtInstr(target, node, memNodeVec, callDepNodeVec, |
| regToRefVecMap, valueToDefVecMap); |
| } |
| } |
| |
| |
| void SchedGraph::buildGraph(const TargetMachine& target) { |
| // Use this data structure to note all machine operands that compute |
| // ordinary LLVM values. These must be computed defs (i.e., instructions). |
| // Note that there may be multiple machine instructions that define |
| // each Value. |
| ValueToDefVecMap valueToDefVecMap; |
| |
| // Use this data structure to note all memory instructions. |
| // We use this to add memory dependence edges without a second full walk. |
| std::vector<SchedGraphNode*> memNodeVec; |
| |
| // Use this data structure to note all instructions that access physical |
| // registers that can be modified by a call (including call instructions) |
| std::vector<SchedGraphNode*> callDepNodeVec; |
| |
| // Use this data structure to note any uses or definitions of |
| // machine registers so we can add edges for those later without |
| // extra passes over the nodes. |
| // The vector holds an ordered list of references to the machine reg, |
| // ordered according to control-flow order. This only works for a |
| // single basic block, hence the assertion. Each reference is identified |
| // by the pair: <node, operand-number>. |
| // |
| RegToRefVecMap regToRefVecMap; |
| |
| // Make a dummy root node. We'll add edges to the real roots later. |
| graphRoot = new SchedGraphNode(0, NULL, -1, target); |
| graphLeaf = new SchedGraphNode(1, NULL, -1, target); |
| |
| //---------------------------------------------------------------- |
| // First add nodes for all the machine instructions in the basic block |
| // because this greatly simplifies identifying which edges to add. |
| // Do this one VM instruction at a time since the SchedGraphNode needs that. |
| // Also, remember the load/store instructions to add memory deps later. |
| //---------------------------------------------------------------- |
| |
| buildNodesForBB(target, MBB, memNodeVec, callDepNodeVec, |
| regToRefVecMap, valueToDefVecMap); |
| |
| //---------------------------------------------------------------- |
| // Now add edges for the following (all are incoming edges except (4)): |
| // (1) operands of the machine instruction, including hidden operands |
| // (2) machine register dependences |
| // (3) memory load/store dependences |
| // (3) other resource dependences for the machine instruction, if any |
| // (4) output dependences when multiple machine instructions define the |
| // same value; all must have been generated from a single VM instrn |
| // (5) control dependences to branch instructions generated for the |
| // terminator instruction of the BB. Because of delay slots and |
| // 2-way conditional branches, multiple CD edges are needed |
| // (see addCDEdges for details). |
| // Also, note any uses or defs of machine registers. |
| // |
| //---------------------------------------------------------------- |
| |
| // First, add edges to the terminator instruction of the basic block. |
| this->addCDEdges(MBB.getBasicBlock()->getTerminator(), target); |
| |
| // Then add memory dep edges: store->load, load->store, and store->store. |
| // Call instructions are treated as both load and store. |
| this->addMemEdges(memNodeVec, target); |
| |
| // Then add edges between call instructions and CC set/use instructions |
| this->addCallDepEdges(callDepNodeVec, target); |
| |
| // Then add incoming def-use (SSA) edges for each machine instruction. |
| for (unsigned i=0, N=MBB.size(); i < N; i++) |
| addEdgesForInstruction(*MBB[i], valueToDefVecMap, target); |
| |
| #ifdef NEED_SEPARATE_NONSSA_EDGES_CODE |
| // Then add non-SSA edges for all VM instructions in the block. |
| // We assume that all machine instructions that define a value are |
| // generated from the VM instruction corresponding to that value. |
| // TODO: This could probably be done much more efficiently. |
| for (BasicBlock::const_iterator II = bb->begin(); II != bb->end(); ++II) |
| this->addNonSSAEdgesForValue(*II, target); |
| #endif //NEED_SEPARATE_NONSSA_EDGES_CODE |
| |
| // Then add edges for dependences on machine registers |
| this->addMachineRegEdges(regToRefVecMap, target); |
| |
| // Finally, add edges from the dummy root and to dummy leaf |
| this->addDummyEdges(); |
| } |
| |
| |
| // |
| // class SchedGraphSet |
| // |
| SchedGraphSet::SchedGraphSet(const Function* _function, |
| const TargetMachine& target) : |
| function(_function) { |
| buildGraphsForMethod(function, target); |
| } |
| |
| SchedGraphSet::~SchedGraphSet() { |
| // delete all the graphs |
| for(iterator I = begin(), E = end(); I != E; ++I) |
| delete *I; // destructor is a friend |
| } |
| |
| |
| void SchedGraphSet::dump() const { |
| std::cerr << "======== Sched graphs for function `" << function->getName() |
| << "' ========\n\n"; |
| |
| for (const_iterator I=begin(); I != end(); ++I) |
| (*I)->dump(); |
| |
| std::cerr << "\n====== End graphs for function `" << function->getName() |
| << "' ========\n\n"; |
| } |
| |
| |
| void SchedGraphSet::buildGraphsForMethod(const Function *F, |
| const TargetMachine& target) { |
| MachineFunction &MF = MachineFunction::get(F); |
| for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) |
| addGraph(new SchedGraph(*I, target)); |
| } |
| |
| |
| void SchedGraphEdge::print(std::ostream &os) const { |
| os << "edge [" << src->getNodeId() << "] -> [" |
| << sink->getNodeId() << "] : "; |
| |
| switch(depType) { |
| case SchedGraphEdge::CtrlDep: |
| os<< "Control Dep"; |
| break; |
| case SchedGraphEdge::ValueDep: |
| os<< "Reg Value " << val; |
| break; |
| case SchedGraphEdge::MemoryDep: |
| os<< "Memory Dep"; |
| break; |
| case SchedGraphEdge::MachineRegister: |
| os<< "Reg " << machineRegNum; |
| break; |
| case SchedGraphEdge::MachineResource: |
| os<<"Resource "<< resourceId; |
| break; |
| default: |
| assert(0); |
| break; |
| } |
| |
| os << " : delay = " << minDelay << "\n"; |
| } |
| |
| void SchedGraphNode::print(std::ostream &os) const { |
| os << std::string(8, ' ') |
| << "Node " << ID << " : " |
| << "latency = " << latency << "\n" << std::string(12, ' '); |
| |
| if (getMachineInstr() == NULL) |
| os << "(Dummy node)\n"; |
| else { |
| os << *getMachineInstr() << "\n" << std::string(12, ' '); |
| os << inEdges.size() << " Incoming Edges:\n"; |
| for (unsigned i=0, N = inEdges.size(); i < N; i++) |
| os << std::string(16, ' ') << *inEdges[i]; |
| |
| os << std::string(12, ' ') << outEdges.size() |
| << " Outgoing Edges:\n"; |
| for (unsigned i=0, N= outEdges.size(); i < N; i++) |
| os << std::string(16, ' ') << *outEdges[i]; |
| } |
| } |
| |
| } // End llvm namespace |