| //===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tablegen backend emits a DAG instruction selector. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "DAGISelEmitter.h" |
| #include "Record.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Streams.h" |
| #include <algorithm> |
| #include <deque> |
| using namespace llvm; |
| |
| //===----------------------------------------------------------------------===// |
| // DAGISelEmitter Helper methods |
| // |
| |
| /// NodeIsComplexPattern - return true if N is a leaf node and a subclass of |
| /// ComplexPattern. |
| static bool NodeIsComplexPattern(TreePatternNode *N) { |
| return (N->isLeaf() && |
| dynamic_cast<DefInit*>(N->getLeafValue()) && |
| static_cast<DefInit*>(N->getLeafValue())->getDef()-> |
| isSubClassOf("ComplexPattern")); |
| } |
| |
| /// NodeGetComplexPattern - return the pointer to the ComplexPattern if N |
| /// is a leaf node and a subclass of ComplexPattern, else it returns NULL. |
| static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N, |
| CodeGenDAGPatterns &CGP) { |
| if (N->isLeaf() && |
| dynamic_cast<DefInit*>(N->getLeafValue()) && |
| static_cast<DefInit*>(N->getLeafValue())->getDef()-> |
| isSubClassOf("ComplexPattern")) { |
| return &CGP.getComplexPattern(static_cast<DefInit*>(N->getLeafValue()) |
| ->getDef()); |
| } |
| return NULL; |
| } |
| |
| /// getPatternSize - Return the 'size' of this pattern. We want to match large |
| /// patterns before small ones. This is used to determine the size of a |
| /// pattern. |
| static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) { |
| assert((EMVT::isExtIntegerInVTs(P->getExtTypes()) || |
| EMVT::isExtFloatingPointInVTs(P->getExtTypes()) || |
| P->getExtTypeNum(0) == MVT::isVoid || |
| P->getExtTypeNum(0) == MVT::Flag || |
| P->getExtTypeNum(0) == MVT::iPTR || |
| P->getExtTypeNum(0) == MVT::iPTRAny) && |
| "Not a valid pattern node to size!"); |
| unsigned Size = 3; // The node itself. |
| // If the root node is a ConstantSDNode, increases its size. |
| // e.g. (set R32:$dst, 0). |
| if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) |
| Size += 2; |
| |
| // FIXME: This is a hack to statically increase the priority of patterns |
| // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. |
| // Later we can allow complexity / cost for each pattern to be (optionally) |
| // specified. To get best possible pattern match we'll need to dynamically |
| // calculate the complexity of all patterns a dag can potentially map to. |
| const ComplexPattern *AM = NodeGetComplexPattern(P, CGP); |
| if (AM) |
| Size += AM->getNumOperands() * 3; |
| |
| // If this node has some predicate function that must match, it adds to the |
| // complexity of this node. |
| if (!P->getPredicateFn().empty()) |
| ++Size; |
| |
| // Count children in the count if they are also nodes. |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = P->getChild(i); |
| if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other) |
| Size += getPatternSize(Child, CGP); |
| else if (Child->isLeaf()) { |
| if (dynamic_cast<IntInit*>(Child->getLeafValue())) |
| Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). |
| else if (NodeIsComplexPattern(Child)) |
| Size += getPatternSize(Child, CGP); |
| else if (!Child->getPredicateFn().empty()) |
| ++Size; |
| } |
| } |
| |
| return Size; |
| } |
| |
| /// getResultPatternCost - Compute the number of instructions for this pattern. |
| /// This is a temporary hack. We should really include the instruction |
| /// latencies in this calculation. |
| static unsigned getResultPatternCost(TreePatternNode *P, |
| CodeGenDAGPatterns &CGP) { |
| if (P->isLeaf()) return 0; |
| |
| unsigned Cost = 0; |
| Record *Op = P->getOperator(); |
| if (Op->isSubClassOf("Instruction")) { |
| Cost++; |
| CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName()); |
| if (II.usesCustomDAGSchedInserter) |
| Cost += 10; |
| } |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) |
| Cost += getResultPatternCost(P->getChild(i), CGP); |
| return Cost; |
| } |
| |
| /// getResultPatternCodeSize - Compute the code size of instructions for this |
| /// pattern. |
| static unsigned getResultPatternSize(TreePatternNode *P, |
| CodeGenDAGPatterns &CGP) { |
| if (P->isLeaf()) return 0; |
| |
| unsigned Cost = 0; |
| Record *Op = P->getOperator(); |
| if (Op->isSubClassOf("Instruction")) { |
| Cost += Op->getValueAsInt("CodeSize"); |
| } |
| for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) |
| Cost += getResultPatternSize(P->getChild(i), CGP); |
| return Cost; |
| } |
| |
| // PatternSortingPredicate - return true if we prefer to match LHS before RHS. |
| // In particular, we want to match maximal patterns first and lowest cost within |
| // a particular complexity first. |
| struct PatternSortingPredicate { |
| PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {} |
| CodeGenDAGPatterns &CGP; |
| |
| bool operator()(const PatternToMatch *LHS, |
| const PatternToMatch *RHS) { |
| unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP); |
| unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP); |
| LHSSize += LHS->getAddedComplexity(); |
| RHSSize += RHS->getAddedComplexity(); |
| if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost |
| if (LHSSize < RHSSize) return false; |
| |
| // If the patterns have equal complexity, compare generated instruction cost |
| unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP); |
| unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP); |
| if (LHSCost < RHSCost) return true; |
| if (LHSCost > RHSCost) return false; |
| |
| return getResultPatternSize(LHS->getDstPattern(), CGP) < |
| getResultPatternSize(RHS->getDstPattern(), CGP); |
| } |
| }; |
| |
| /// getRegisterValueType - Look up and return the first ValueType of specified |
| /// RegisterClass record |
| static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { |
| if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R)) |
| return RC->getValueTypeNum(0); |
| return MVT::Other; |
| } |
| |
| |
| /// RemoveAllTypes - A quick recursive walk over a pattern which removes all |
| /// type information from it. |
| static void RemoveAllTypes(TreePatternNode *N) { |
| N->removeTypes(); |
| if (!N->isLeaf()) |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) |
| RemoveAllTypes(N->getChild(i)); |
| } |
| |
| /// NodeHasProperty - return true if TreePatternNode has the specified |
| /// property. |
| static bool NodeHasProperty(TreePatternNode *N, SDNP Property, |
| CodeGenDAGPatterns &CGP) { |
| if (N->isLeaf()) { |
| const ComplexPattern *CP = NodeGetComplexPattern(N, CGP); |
| if (CP) |
| return CP->hasProperty(Property); |
| return false; |
| } |
| Record *Operator = N->getOperator(); |
| if (!Operator->isSubClassOf("SDNode")) return false; |
| |
| return CGP.getSDNodeInfo(Operator).hasProperty(Property); |
| } |
| |
| static bool PatternHasProperty(TreePatternNode *N, SDNP Property, |
| CodeGenDAGPatterns &CGP) { |
| if (NodeHasProperty(N, Property, CGP)) |
| return true; |
| |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = N->getChild(i); |
| if (PatternHasProperty(Child, Property, CGP)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { |
| return CGP.getSDNodeInfo(Op).getEnumName(); |
| } |
| |
| static |
| bool DisablePatternForFastISel(TreePatternNode *N, CodeGenDAGPatterns &CGP) { |
| bool isStore = !N->isLeaf() && |
| getOpcodeName(N->getOperator(), CGP) == "ISD::STORE"; |
| if (!isStore && NodeHasProperty(N, SDNPHasChain, CGP)) |
| return false; |
| |
| bool HasChain = false; |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { |
| TreePatternNode *Child = N->getChild(i); |
| if (PatternHasProperty(Child, SDNPHasChain, CGP)) { |
| HasChain = true; |
| break; |
| } |
| } |
| return HasChain; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Node Transformation emitter implementation. |
| // |
| void DAGISelEmitter::EmitNodeTransforms(std::ostream &OS) { |
| // Walk the pattern fragments, adding them to a map, which sorts them by |
| // name. |
| typedef std::map<std::string, CodeGenDAGPatterns::NodeXForm> NXsByNameTy; |
| NXsByNameTy NXsByName; |
| |
| for (CodeGenDAGPatterns::nx_iterator I = CGP.nx_begin(), E = CGP.nx_end(); |
| I != E; ++I) |
| NXsByName.insert(std::make_pair(I->first->getName(), I->second)); |
| |
| OS << "\n// Node transformations.\n"; |
| |
| for (NXsByNameTy::iterator I = NXsByName.begin(), E = NXsByName.end(); |
| I != E; ++I) { |
| Record *SDNode = I->second.first; |
| std::string Code = I->second.second; |
| |
| if (Code.empty()) continue; // Empty code? Skip it. |
| |
| std::string ClassName = CGP.getSDNodeInfo(SDNode).getSDClassName(); |
| const char *C2 = ClassName == "SDNode" ? "N" : "inN"; |
| |
| OS << "inline SDValue Transform_" << I->first << "(SDNode *" << C2 |
| << ") {\n"; |
| if (ClassName != "SDNode") |
| OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; |
| OS << Code << "\n}\n"; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Predicate emitter implementation. |
| // |
| |
| void DAGISelEmitter::EmitPredicateFunctions(std::ostream &OS) { |
| OS << "\n// Predicate functions.\n"; |
| |
| // Walk the pattern fragments, adding them to a map, which sorts them by |
| // name. |
| typedef std::map<std::string, std::pair<Record*, TreePattern*> > PFsByNameTy; |
| PFsByNameTy PFsByName; |
| |
| for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end(); |
| I != E; ++I) |
| PFsByName.insert(std::make_pair(I->first->getName(), *I)); |
| |
| |
| for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end(); |
| I != E; ++I) { |
| Record *PatFragRecord = I->second.first;// Record that derives from PatFrag. |
| TreePattern *P = I->second.second; |
| |
| // If there is a code init for this fragment, emit the predicate code. |
| std::string Code = PatFragRecord->getValueAsCode("Predicate"); |
| if (Code.empty()) continue; |
| |
| if (P->getOnlyTree()->isLeaf()) |
| OS << "inline bool Predicate_" << PatFragRecord->getName() |
| << "(SDNode *N) {\n"; |
| else { |
| std::string ClassName = |
| CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); |
| const char *C2 = ClassName == "SDNode" ? "N" : "inN"; |
| |
| OS << "inline bool Predicate_" << PatFragRecord->getName() |
| << "(SDNode *" << C2 << ") {\n"; |
| if (ClassName != "SDNode") |
| OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; |
| } |
| OS << Code << "\n}\n"; |
| } |
| |
| OS << "\n\n"; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // PatternCodeEmitter implementation. |
| // |
| class PatternCodeEmitter { |
| private: |
| CodeGenDAGPatterns &CGP; |
| |
| // Predicates. |
| std::string PredicateCheck; |
| // Pattern cost. |
| unsigned Cost; |
| // Instruction selector pattern. |
| TreePatternNode *Pattern; |
| // Matched instruction. |
| TreePatternNode *Instruction; |
| |
| // Node to name mapping |
| std::map<std::string, std::string> VariableMap; |
| // Node to operator mapping |
| std::map<std::string, Record*> OperatorMap; |
| // Name of the folded node which produces a flag. |
| std::pair<std::string, unsigned> FoldedFlag; |
| // Names of all the folded nodes which produce chains. |
| std::vector<std::pair<std::string, unsigned> > FoldedChains; |
| // Original input chain(s). |
| std::vector<std::pair<std::string, std::string> > OrigChains; |
| std::set<std::string> Duplicates; |
| |
| /// LSI - Load/Store information. |
| /// Save loads/stores matched by a pattern, and generate a MemOperandSDNode |
| /// for each memory access. This facilitates the use of AliasAnalysis in |
| /// the backend. |
| std::vector<std::string> LSI; |
| |
| /// GeneratedCode - This is the buffer that we emit code to. The first int |
| /// indicates whether this is an exit predicate (something that should be |
| /// tested, and if true, the match fails) [when 1], or normal code to emit |
| /// [when 0], or initialization code to emit [when 2]. |
| std::vector<std::pair<unsigned, std::string> > &GeneratedCode; |
| /// GeneratedDecl - This is the set of all SDValue declarations needed for |
| /// the set of patterns for each top-level opcode. |
| std::set<std::string> &GeneratedDecl; |
| /// TargetOpcodes - The target specific opcodes used by the resulting |
| /// instructions. |
| std::vector<std::string> &TargetOpcodes; |
| std::vector<std::string> &TargetVTs; |
| /// OutputIsVariadic - Records whether the instruction output pattern uses |
| /// variable_ops. This requires that the Emit function be passed an |
| /// additional argument to indicate where the input varargs operands |
| /// begin. |
| bool &OutputIsVariadic; |
| /// NumInputRootOps - Records the number of operands the root node of the |
| /// input pattern has. This information is used in the generated code to |
| /// pass to Emit functions when variable_ops processing is needed. |
| unsigned &NumInputRootOps; |
| |
| std::string ChainName; |
| unsigned TmpNo; |
| unsigned OpcNo; |
| unsigned VTNo; |
| |
| void emitCheck(const std::string &S) { |
| if (!S.empty()) |
| GeneratedCode.push_back(std::make_pair(1, S)); |
| } |
| void emitCode(const std::string &S) { |
| if (!S.empty()) |
| GeneratedCode.push_back(std::make_pair(0, S)); |
| } |
| void emitInit(const std::string &S) { |
| if (!S.empty()) |
| GeneratedCode.push_back(std::make_pair(2, S)); |
| } |
| void emitDecl(const std::string &S) { |
| assert(!S.empty() && "Invalid declaration"); |
| GeneratedDecl.insert(S); |
| } |
| void emitOpcode(const std::string &Opc) { |
| TargetOpcodes.push_back(Opc); |
| OpcNo++; |
| } |
| void emitVT(const std::string &VT) { |
| TargetVTs.push_back(VT); |
| VTNo++; |
| } |
| public: |
| PatternCodeEmitter(CodeGenDAGPatterns &cgp, std::string predcheck, |
| TreePatternNode *pattern, TreePatternNode *instr, |
| std::vector<std::pair<unsigned, std::string> > &gc, |
| std::set<std::string> &gd, |
| std::vector<std::string> &to, |
| std::vector<std::string> &tv, |
| bool &oiv, |
| unsigned &niro) |
| : CGP(cgp), PredicateCheck(predcheck), Pattern(pattern), Instruction(instr), |
| GeneratedCode(gc), GeneratedDecl(gd), |
| TargetOpcodes(to), TargetVTs(tv), |
| OutputIsVariadic(oiv), NumInputRootOps(niro), |
| TmpNo(0), OpcNo(0), VTNo(0) {} |
| |
| /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo |
| /// if the match fails. At this point, we already know that the opcode for N |
| /// matches, and the SDNode for the result has the RootName specified name. |
| void EmitMatchCode(TreePatternNode *N, TreePatternNode *P, |
| const std::string &RootName, const std::string &ChainSuffix, |
| bool &FoundChain) { |
| |
| // Save loads/stores matched by a pattern. |
| if (!N->isLeaf() && N->getName().empty()) { |
| if (NodeHasProperty(N, SDNPMemOperand, CGP)) |
| LSI.push_back(RootName); |
| } |
| |
| bool isRoot = (P == NULL); |
| // Emit instruction predicates. Each predicate is just a string for now. |
| if (isRoot) { |
| // Record input varargs info. |
| NumInputRootOps = N->getNumChildren(); |
| |
| if (DisablePatternForFastISel(N, CGP)) |
| emitCheck("!Fast"); |
| |
| emitCheck(PredicateCheck); |
| } |
| |
| if (N->isLeaf()) { |
| if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { |
| emitCheck("cast<ConstantSDNode>(" + RootName + |
| ")->getSignExtended() == " + itostr(II->getValue())); |
| return; |
| } else if (!NodeIsComplexPattern(N)) { |
| assert(0 && "Cannot match this as a leaf value!"); |
| abort(); |
| } |
| } |
| |
| // If this node has a name associated with it, capture it in VariableMap. If |
| // we already saw this in the pattern, emit code to verify dagness. |
| if (!N->getName().empty()) { |
| std::string &VarMapEntry = VariableMap[N->getName()]; |
| if (VarMapEntry.empty()) { |
| VarMapEntry = RootName; |
| } else { |
| // If we get here, this is a second reference to a specific name. Since |
| // we already have checked that the first reference is valid, we don't |
| // have to recursively match it, just check that it's the same as the |
| // previously named thing. |
| emitCheck(VarMapEntry + " == " + RootName); |
| return; |
| } |
| |
| if (!N->isLeaf()) |
| OperatorMap[N->getName()] = N->getOperator(); |
| } |
| |
| |
| // Emit code to load the child nodes and match their contents recursively. |
| unsigned OpNo = 0; |
| bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, CGP); |
| bool HasChain = PatternHasProperty(N, SDNPHasChain, CGP); |
| bool EmittedUseCheck = false; |
| if (HasChain) { |
| if (NodeHasChain) |
| OpNo = 1; |
| if (!isRoot) { |
| // Multiple uses of actual result? |
| emitCheck(RootName + ".hasOneUse()"); |
| EmittedUseCheck = true; |
| if (NodeHasChain) { |
| // If the immediate use can somehow reach this node through another |
| // path, then can't fold it either or it will create a cycle. |
| // e.g. In the following diagram, XX can reach ld through YY. If |
| // ld is folded into XX, then YY is both a predecessor and a successor |
| // of XX. |
| // |
| // [ld] |
| // ^ ^ |
| // | | |
| // / \--- |
| // / [YY] |
| // | ^ |
| // [XX]-------| |
| bool NeedCheck = P != Pattern; |
| if (!NeedCheck) { |
| const SDNodeInfo &PInfo = CGP.getSDNodeInfo(P->getOperator()); |
| NeedCheck = |
| P->getOperator() == CGP.get_intrinsic_void_sdnode() || |
| P->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || |
| P->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || |
| PInfo.getNumOperands() > 1 || |
| PInfo.hasProperty(SDNPHasChain) || |
| PInfo.hasProperty(SDNPInFlag) || |
| PInfo.hasProperty(SDNPOptInFlag); |
| } |
| |
| if (NeedCheck) { |
| std::string ParentName(RootName.begin(), RootName.end()-1); |
| emitCheck("CanBeFoldedBy(" + RootName + ".getNode(), " + ParentName + |
| ".getNode(), N.getNode())"); |
| } |
| } |
| } |
| |
| if (NodeHasChain) { |
| if (FoundChain) { |
| emitCheck("(" + ChainName + ".getNode() == " + RootName + ".getNode() || " |
| "IsChainCompatible(" + ChainName + ".getNode(), " + |
| RootName + ".getNode()))"); |
| OrigChains.push_back(std::make_pair(ChainName, RootName)); |
| } else |
| FoundChain = true; |
| ChainName = "Chain" + ChainSuffix; |
| emitInit("SDValue " + ChainName + " = " + RootName + |
| ".getOperand(0);"); |
| } |
| } |
| |
| // Don't fold any node which reads or writes a flag and has multiple uses. |
| // FIXME: We really need to separate the concepts of flag and "glue". Those |
| // real flag results, e.g. X86CMP output, can have multiple uses. |
| // FIXME: If the optional incoming flag does not exist. Then it is ok to |
| // fold it. |
| if (!isRoot && |
| (PatternHasProperty(N, SDNPInFlag, CGP) || |
| PatternHasProperty(N, SDNPOptInFlag, CGP) || |
| PatternHasProperty(N, SDNPOutFlag, CGP))) { |
| if (!EmittedUseCheck) { |
| // Multiple uses of actual result? |
| emitCheck(RootName + ".hasOneUse()"); |
| } |
| } |
| |
| // If there is a node predicate for this, emit the call. |
| if (!N->getPredicateFn().empty()) |
| emitCheck(N->getPredicateFn() + "(" + RootName + ".getNode())"); |
| |
| |
| // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is |
| // a constant without a predicate fn that has more that one bit set, handle |
| // this as a special case. This is usually for targets that have special |
| // handling of certain large constants (e.g. alpha with it's 8/16/32-bit |
| // handling stuff). Using these instructions is often far more efficient |
| // than materializing the constant. Unfortunately, both the instcombiner |
| // and the dag combiner can often infer that bits are dead, and thus drop |
| // them from the mask in the dag. For example, it might turn 'AND X, 255' |
| // into 'AND X, 254' if it knows the low bit is set. Emit code that checks |
| // to handle this. |
| if (!N->isLeaf() && |
| (N->getOperator()->getName() == "and" || |
| N->getOperator()->getName() == "or") && |
| N->getChild(1)->isLeaf() && |
| N->getChild(1)->getPredicateFn().empty()) { |
| if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) { |
| if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. |
| emitInit("SDValue " + RootName + "0" + " = " + |
| RootName + ".getOperand(" + utostr(0) + ");"); |
| emitInit("SDValue " + RootName + "1" + " = " + |
| RootName + ".getOperand(" + utostr(1) + ");"); |
| |
| emitCheck("isa<ConstantSDNode>(" + RootName + "1)"); |
| const char *MaskPredicate = N->getOperator()->getName() == "or" |
| ? "CheckOrMask(" : "CheckAndMask("; |
| emitCheck(MaskPredicate + RootName + "0, cast<ConstantSDNode>(" + |
| RootName + "1), " + itostr(II->getValue()) + ")"); |
| |
| EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), RootName, |
| ChainSuffix + utostr(0), FoundChain); |
| return; |
| } |
| } |
| } |
| |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { |
| emitInit("SDValue " + RootName + utostr(OpNo) + " = " + |
| RootName + ".getOperand(" +utostr(OpNo) + ");"); |
| |
| EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), RootName, |
| ChainSuffix + utostr(OpNo), FoundChain); |
| } |
| |
| // Handle cases when root is a complex pattern. |
| const ComplexPattern *CP; |
| if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) { |
| std::string Fn = CP->getSelectFunc(); |
| unsigned NumOps = CP->getNumOperands(); |
| for (unsigned i = 0; i < NumOps; ++i) { |
| emitDecl("CPTmp" + utostr(i)); |
| emitCode("SDValue CPTmp" + utostr(i) + ";"); |
| } |
| if (CP->hasProperty(SDNPHasChain)) { |
| emitDecl("CPInChain"); |
| emitDecl("Chain" + ChainSuffix); |
| emitCode("SDValue CPInChain;"); |
| emitCode("SDValue Chain" + ChainSuffix + ";"); |
| } |
| |
| std::string Code = Fn + "(" + RootName + ", " + RootName; |
| for (unsigned i = 0; i < NumOps; i++) |
| Code += ", CPTmp" + utostr(i); |
| if (CP->hasProperty(SDNPHasChain)) { |
| ChainName = "Chain" + ChainSuffix; |
| Code += ", CPInChain, Chain" + ChainSuffix; |
| } |
| emitCheck(Code + ")"); |
| } |
| } |
| |
| void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent, |
| const std::string &RootName, |
| const std::string &ParentRootName, |
| const std::string &ChainSuffix, bool &FoundChain) { |
| if (!Child->isLeaf()) { |
| // If it's not a leaf, recursively match. |
| const SDNodeInfo &CInfo = CGP.getSDNodeInfo(Child->getOperator()); |
| emitCheck(RootName + ".getOpcode() == " + |
| CInfo.getEnumName()); |
| EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain); |
| bool HasChain = false; |
| if (NodeHasProperty(Child, SDNPHasChain, CGP)) { |
| HasChain = true; |
| FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults())); |
| } |
| if (NodeHasProperty(Child, SDNPOutFlag, CGP)) { |
| assert(FoldedFlag.first == "" && FoldedFlag.second == 0 && |
| "Pattern folded multiple nodes which produce flags?"); |
| FoldedFlag = std::make_pair(RootName, |
| CInfo.getNumResults() + (unsigned)HasChain); |
| } |
| } else { |
| // If this child has a name associated with it, capture it in VarMap. If |
| // we already saw this in the pattern, emit code to verify dagness. |
| if (!Child->getName().empty()) { |
| std::string &VarMapEntry = VariableMap[Child->getName()]; |
| if (VarMapEntry.empty()) { |
| VarMapEntry = RootName; |
| } else { |
| // If we get here, this is a second reference to a specific name. |
| // Since we already have checked that the first reference is valid, |
| // we don't have to recursively match it, just check that it's the |
| // same as the previously named thing. |
| emitCheck(VarMapEntry + " == " + RootName); |
| Duplicates.insert(RootName); |
| return; |
| } |
| } |
| |
| // Handle leaves of various types. |
| if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { |
| Record *LeafRec = DI->getDef(); |
| if (LeafRec->isSubClassOf("RegisterClass") || |
| LeafRec->getName() == "ptr_rc") { |
| // Handle register references. Nothing to do here. |
| } else if (LeafRec->isSubClassOf("Register")) { |
| // Handle register references. |
| } else if (LeafRec->isSubClassOf("ComplexPattern")) { |
| // Handle complex pattern. |
| const ComplexPattern *CP = NodeGetComplexPattern(Child, CGP); |
| std::string Fn = CP->getSelectFunc(); |
| unsigned NumOps = CP->getNumOperands(); |
| for (unsigned i = 0; i < NumOps; ++i) { |
| emitDecl("CPTmp" + utostr(i)); |
| emitCode("SDValue CPTmp" + utostr(i) + ";"); |
| } |
| if (CP->hasProperty(SDNPHasChain)) { |
| const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Parent->getOperator()); |
| FoldedChains.push_back(std::make_pair("CPInChain", |
| PInfo.getNumResults())); |
| ChainName = "Chain" + ChainSuffix; |
| emitDecl("CPInChain"); |
| emitDecl(ChainName); |
| emitCode("SDValue CPInChain;"); |
| emitCode("SDValue " + ChainName + ";"); |
| } |
| |
| std::string Code = Fn + "("; |
| if (CP->hasAttribute(CPAttrParentAsRoot)) { |
| Code += ParentRootName + ", "; |
| } else { |
| Code += "N, "; |
| } |
| if (CP->hasProperty(SDNPHasChain)) { |
| std::string ParentName(RootName.begin(), RootName.end()-1); |
| Code += ParentName + ", "; |
| } |
| Code += RootName; |
| for (unsigned i = 0; i < NumOps; i++) |
| Code += ", CPTmp" + utostr(i); |
| if (CP->hasProperty(SDNPHasChain)) |
| Code += ", CPInChain, Chain" + ChainSuffix; |
| emitCheck(Code + ")"); |
| } else if (LeafRec->getName() == "srcvalue") { |
| // Place holder for SRCVALUE nodes. Nothing to do here. |
| } else if (LeafRec->isSubClassOf("ValueType")) { |
| // Make sure this is the specified value type. |
| emitCheck("cast<VTSDNode>(" + RootName + |
| ")->getVT() == MVT::" + LeafRec->getName()); |
| } else if (LeafRec->isSubClassOf("CondCode")) { |
| // Make sure this is the specified cond code. |
| emitCheck("cast<CondCodeSDNode>(" + RootName + |
| ")->get() == ISD::" + LeafRec->getName()); |
| } else { |
| #ifndef NDEBUG |
| Child->dump(); |
| cerr << " "; |
| #endif |
| assert(0 && "Unknown leaf type!"); |
| } |
| |
| // If there is a node predicate for this, emit the call. |
| if (!Child->getPredicateFn().empty()) |
| emitCheck(Child->getPredicateFn() + "(" + RootName + |
| ".getNode())"); |
| } else if (IntInit *II = |
| dynamic_cast<IntInit*>(Child->getLeafValue())) { |
| emitCheck("isa<ConstantSDNode>(" + RootName + ")"); |
| unsigned CTmp = TmpNo++; |
| emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+ |
| RootName + ")->getSignExtended();"); |
| |
| emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue())); |
| } else { |
| #ifndef NDEBUG |
| Child->dump(); |
| #endif |
| assert(0 && "Unknown leaf type!"); |
| } |
| } |
| } |
| |
| /// EmitResultCode - Emit the action for a pattern. Now that it has matched |
| /// we actually have to build a DAG! |
| std::vector<std::string> |
| EmitResultCode(TreePatternNode *N, std::vector<Record*> DstRegs, |
| bool InFlagDecled, bool ResNodeDecled, |
| bool LikeLeaf = false, bool isRoot = false) { |
| // List of arguments of getTargetNode() or SelectNodeTo(). |
| std::vector<std::string> NodeOps; |
| // This is something selected from the pattern we matched. |
| if (!N->getName().empty()) { |
| const std::string &VarName = N->getName(); |
| std::string Val = VariableMap[VarName]; |
| bool ModifiedVal = false; |
| if (Val.empty()) { |
| cerr << "Variable '" << VarName << " referenced but not defined " |
| << "and not caught earlier!\n"; |
| abort(); |
| } |
| if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') { |
| // Already selected this operand, just return the tmpval. |
| NodeOps.push_back(Val); |
| return NodeOps; |
| } |
| |
| const ComplexPattern *CP; |
| unsigned ResNo = TmpNo++; |
| if (!N->isLeaf() && N->getOperator()->getName() == "imm") { |
| assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); |
| std::string CastType; |
| std::string TmpVar = "Tmp" + utostr(ResNo); |
| switch (N->getTypeNum(0)) { |
| default: |
| cerr << "Cannot handle " << getEnumName(N->getTypeNum(0)) |
| << " type as an immediate constant. Aborting\n"; |
| abort(); |
| case MVT::i1: CastType = "bool"; break; |
| case MVT::i8: CastType = "unsigned char"; break; |
| case MVT::i16: CastType = "unsigned short"; break; |
| case MVT::i32: CastType = "unsigned"; break; |
| case MVT::i64: CastType = "uint64_t"; break; |
| } |
| emitCode("SDValue " + TmpVar + |
| " = CurDAG->getTargetConstant(((" + CastType + |
| ") cast<ConstantSDNode>(" + Val + ")->getZExtValue()), " + |
| getEnumName(N->getTypeNum(0)) + ");"); |
| // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this |
| // value if used multiple times by this pattern result. |
| Val = TmpVar; |
| ModifiedVal = true; |
| NodeOps.push_back(Val); |
| } else if (!N->isLeaf() && N->getOperator()->getName() == "fpimm") { |
| assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); |
| std::string TmpVar = "Tmp" + utostr(ResNo); |
| emitCode("SDValue " + TmpVar + |
| " = CurDAG->getTargetConstantFP(*cast<ConstantFPSDNode>(" + |
| Val + ")->getConstantFPValue(), cast<ConstantFPSDNode>(" + |
| Val + ")->getValueType(0));"); |
| // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this |
| // value if used multiple times by this pattern result. |
| Val = TmpVar; |
| ModifiedVal = true; |
| NodeOps.push_back(Val); |
| } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ |
| Record *Op = OperatorMap[N->getName()]; |
| // Transform ExternalSymbol to TargetExternalSymbol |
| if (Op && Op->getName() == "externalsym") { |
| std::string TmpVar = "Tmp"+utostr(ResNo); |
| emitCode("SDValue " + TmpVar + " = CurDAG->getTarget" |
| "ExternalSymbol(cast<ExternalSymbolSDNode>(" + |
| Val + ")->getSymbol(), " + |
| getEnumName(N->getTypeNum(0)) + ");"); |
| // Add Tmp<ResNo> to VariableMap, so that we don't multiply select |
| // this value if used multiple times by this pattern result. |
| Val = TmpVar; |
| ModifiedVal = true; |
| } |
| NodeOps.push_back(Val); |
| } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr" |
| || N->getOperator()->getName() == "tglobaltlsaddr")) { |
| Record *Op = OperatorMap[N->getName()]; |
| // Transform GlobalAddress to TargetGlobalAddress |
| if (Op && (Op->getName() == "globaladdr" || |
| Op->getName() == "globaltlsaddr")) { |
| std::string TmpVar = "Tmp" + utostr(ResNo); |
| emitCode("SDValue " + TmpVar + " = CurDAG->getTarget" |
| "GlobalAddress(cast<GlobalAddressSDNode>(" + Val + |
| ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) + |
| ");"); |
| // Add Tmp<ResNo> to VariableMap, so that we don't multiply select |
| // this value if used multiple times by this pattern result. |
| Val = TmpVar; |
| ModifiedVal = true; |
| } |
| NodeOps.push_back(Val); |
| } else if (!N->isLeaf() |
| && (N->getOperator()->getName() == "texternalsym" |
| || N->getOperator()->getName() == "tconstpool")) { |
| // Do not rewrite the variable name, since we don't generate a new |
| // temporary. |
| NodeOps.push_back(Val); |
| } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) { |
| for (unsigned i = 0; i < CP->getNumOperands(); ++i) { |
| emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");"); |
| NodeOps.push_back("CPTmp" + utostr(i)); |
| } |
| } else { |
| // This node, probably wrapped in a SDNodeXForm, behaves like a leaf |
| // node even if it isn't one. Don't select it. |
| if (!LikeLeaf) { |
| emitCode("AddToISelQueue(" + Val + ");"); |
| if (isRoot && N->isLeaf()) { |
| emitCode("ReplaceUses(N, " + Val + ");"); |
| emitCode("return NULL;"); |
| } |
| } |
| NodeOps.push_back(Val); |
| } |
| |
| if (ModifiedVal) { |
| VariableMap[VarName] = Val; |
| } |
| return NodeOps; |
| } |
| if (N->isLeaf()) { |
| // If this is an explicit register reference, handle it. |
| if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { |
| unsigned ResNo = TmpNo++; |
| if (DI->getDef()->isSubClassOf("Register")) { |
| emitCode("SDValue Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" + |
| getQualifiedName(DI->getDef()) + ", " + |
| getEnumName(N->getTypeNum(0)) + ");"); |
| NodeOps.push_back("Tmp" + utostr(ResNo)); |
| return NodeOps; |
| } else if (DI->getDef()->getName() == "zero_reg") { |
| emitCode("SDValue Tmp" + utostr(ResNo) + |
| " = CurDAG->getRegister(0, " + |
| getEnumName(N->getTypeNum(0)) + ");"); |
| NodeOps.push_back("Tmp" + utostr(ResNo)); |
| return NodeOps; |
| } |
| } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { |
| unsigned ResNo = TmpNo++; |
| assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); |
| emitCode("SDValue Tmp" + utostr(ResNo) + |
| " = CurDAG->getTargetConstant(0x" + itohexstr(II->getValue()) + |
| "ULL, " + getEnumName(N->getTypeNum(0)) + ");"); |
| NodeOps.push_back("Tmp" + utostr(ResNo)); |
| return NodeOps; |
| } |
| |
| #ifndef NDEBUG |
| N->dump(); |
| #endif |
| assert(0 && "Unknown leaf type!"); |
| return NodeOps; |
| } |
| |
| Record *Op = N->getOperator(); |
| if (Op->isSubClassOf("Instruction")) { |
| const CodeGenTarget &CGT = CGP.getTargetInfo(); |
| CodeGenInstruction &II = CGT.getInstruction(Op->getName()); |
| const DAGInstruction &Inst = CGP.getInstruction(Op); |
| const TreePattern *InstPat = Inst.getPattern(); |
| // FIXME: Assume actual pattern comes before "implicit". |
| TreePatternNode *InstPatNode = |
| isRoot ? (InstPat ? InstPat->getTree(0) : Pattern) |
| : (InstPat ? InstPat->getTree(0) : NULL); |
| if (InstPatNode && InstPatNode->getOperator()->getName() == "set") { |
| InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); |
| } |
| bool IsVariadic = isRoot && II.isVariadic; |
| // FIXME: fix how we deal with physical register operands. |
| bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0; |
| bool HasImpResults = isRoot && DstRegs.size() > 0; |
| bool NodeHasOptInFlag = isRoot && |
| PatternHasProperty(Pattern, SDNPOptInFlag, CGP); |
| bool NodeHasInFlag = isRoot && |
| PatternHasProperty(Pattern, SDNPInFlag, CGP); |
| bool NodeHasOutFlag = isRoot && |
| PatternHasProperty(Pattern, SDNPOutFlag, CGP); |
| bool NodeHasChain = InstPatNode && |
| PatternHasProperty(InstPatNode, SDNPHasChain, CGP); |
| bool InputHasChain = isRoot && |
| NodeHasProperty(Pattern, SDNPHasChain, CGP); |
| unsigned NumResults = Inst.getNumResults(); |
| unsigned NumDstRegs = HasImpResults ? DstRegs.size() : 0; |
| |
| // Record output varargs info. |
| OutputIsVariadic = IsVariadic; |
| |
| if (NodeHasOptInFlag) { |
| emitCode("bool HasInFlag = " |
| "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);"); |
| } |
| if (IsVariadic) |
| emitCode("SmallVector<SDValue, 8> Ops" + utostr(OpcNo) + ";"); |
| |
| // How many results is this pattern expected to produce? |
| unsigned NumPatResults = 0; |
| for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) { |
| MVT::SimpleValueType VT = Pattern->getTypeNum(i); |
| if (VT != MVT::isVoid && VT != MVT::Flag) |
| NumPatResults++; |
| } |
| |
| if (OrigChains.size() > 0) { |
| // The original input chain is being ignored. If it is not just |
| // pointing to the op that's being folded, we should create a |
| // TokenFactor with it and the chain of the folded op as the new chain. |
| // We could potentially be doing multiple levels of folding, in that |
| // case, the TokenFactor can have more operands. |
| emitCode("SmallVector<SDValue, 8> InChains;"); |
| for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) { |
| emitCode("if (" + OrigChains[i].first + ".getNode() != " + |
| OrigChains[i].second + ".getNode()) {"); |
| emitCode(" AddToISelQueue(" + OrigChains[i].first + ");"); |
| emitCode(" InChains.push_back(" + OrigChains[i].first + ");"); |
| emitCode("}"); |
| } |
| emitCode("AddToISelQueue(" + ChainName + ");"); |
| emitCode("InChains.push_back(" + ChainName + ");"); |
| emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, " |
| "&InChains[0], InChains.size());"); |
| } |
| |
| // Loop over all of the operands of the instruction pattern, emitting code |
| // to fill them all in. The node 'N' usually has number children equal to |
| // the number of input operands of the instruction. However, in cases |
| // where there are predicate operands for an instruction, we need to fill |
| // in the 'execute always' values. Match up the node operands to the |
| // instruction operands to do this. |
| std::vector<std::string> AllOps; |
| for (unsigned ChildNo = 0, InstOpNo = NumResults; |
| InstOpNo != II.OperandList.size(); ++InstOpNo) { |
| std::vector<std::string> Ops; |
| |
| // Determine what to emit for this operand. |
| Record *OperandNode = II.OperandList[InstOpNo].Rec; |
| if ((OperandNode->isSubClassOf("PredicateOperand") || |
| OperandNode->isSubClassOf("OptionalDefOperand")) && |
| !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { |
| // This is a predicate or optional def operand; emit the |
| // 'default ops' operands. |
| const DAGDefaultOperand &DefaultOp = |
| CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec); |
| for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) { |
| Ops = EmitResultCode(DefaultOp.DefaultOps[i], DstRegs, |
| InFlagDecled, ResNodeDecled); |
| AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); |
| } |
| } else { |
| // Otherwise this is a normal operand or a predicate operand without |
| // 'execute always'; emit it. |
| Ops = EmitResultCode(N->getChild(ChildNo), DstRegs, |
| InFlagDecled, ResNodeDecled); |
| AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); |
| ++ChildNo; |
| } |
| } |
| |
| // Emit all the chain and CopyToReg stuff. |
| bool ChainEmitted = NodeHasChain; |
| if (NodeHasChain) |
| emitCode("AddToISelQueue(" + ChainName + ");"); |
| if (NodeHasInFlag || HasImpInputs) |
| EmitInFlagSelectCode(Pattern, "N", ChainEmitted, |
| InFlagDecled, ResNodeDecled, true); |
| if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) { |
| if (!InFlagDecled) { |
| emitCode("SDValue InFlag(0, 0);"); |
| InFlagDecled = true; |
| } |
| if (NodeHasOptInFlag) { |
| emitCode("if (HasInFlag) {"); |
| emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);"); |
| emitCode(" AddToISelQueue(InFlag);"); |
| emitCode("}"); |
| } |
| } |
| |
| unsigned ResNo = TmpNo++; |
| |
| unsigned OpsNo = OpcNo; |
| std::string CodePrefix; |
| bool ChainAssignmentNeeded = NodeHasChain && !isRoot; |
| std::deque<std::string> After; |
| std::string NodeName; |
| if (!isRoot) { |
| NodeName = "Tmp" + utostr(ResNo); |
| CodePrefix = "SDValue " + NodeName + "("; |
| } else { |
| NodeName = "ResNode"; |
| if (!ResNodeDecled) { |
| CodePrefix = "SDNode *" + NodeName + " = "; |
| ResNodeDecled = true; |
| } else |
| CodePrefix = NodeName + " = "; |
| } |
| |
| std::string Code = "Opc" + utostr(OpcNo); |
| |
| emitOpcode(II.Namespace + "::" + II.TheDef->getName()); |
| |
| // Output order: results, chain, flags |
| // Result types. |
| if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) { |
| Code += ", VT" + utostr(VTNo); |
| emitVT(getEnumName(N->getTypeNum(0))); |
| } |
| // Add types for implicit results in physical registers, scheduler will |
| // care of adding copyfromreg nodes. |
| for (unsigned i = 0; i < NumDstRegs; i++) { |
| Record *RR = DstRegs[i]; |
| if (RR->isSubClassOf("Register")) { |
| MVT::SimpleValueType RVT = getRegisterValueType(RR, CGT); |
| Code += ", " + getEnumName(RVT); |
| } |
| } |
| if (NodeHasChain) |
| Code += ", MVT::Other"; |
| if (NodeHasOutFlag) |
| Code += ", MVT::Flag"; |
| |
| // Inputs. |
| if (IsVariadic) { |
| for (unsigned i = 0, e = AllOps.size(); i != e; ++i) |
| emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");"); |
| AllOps.clear(); |
| |
| // Figure out whether any operands at the end of the op list are not |
| // part of the variable section. |
| std::string EndAdjust; |
| if (NodeHasInFlag || HasImpInputs) |
| EndAdjust = "-1"; // Always has one flag. |
| else if (NodeHasOptInFlag) |
| EndAdjust = "-(HasInFlag?1:0)"; // May have a flag. |
| |
| emitCode("for (unsigned i = NumInputRootOps + " + utostr(NodeHasChain) + |
| ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {"); |
| |
| emitCode(" AddToISelQueue(N.getOperand(i));"); |
| emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));"); |
| emitCode("}"); |
| } |
| |
| // Generate MemOperandSDNodes nodes for each memory accesses covered by |
| // this pattern. |
| if (II.isSimpleLoad | II.mayLoad | II.mayStore) { |
| std::vector<std::string>::const_iterator mi, mie; |
| for (mi = LSI.begin(), mie = LSI.end(); mi != mie; ++mi) { |
| emitCode("SDValue LSI_" + *mi + " = " |
| "CurDAG->getMemOperand(cast<MemSDNode>(" + |
| *mi + ")->getMemOperand());"); |
| if (IsVariadic) |
| emitCode("Ops" + utostr(OpsNo) + ".push_back(LSI_" + *mi + ");"); |
| else |
| AllOps.push_back("LSI_" + *mi); |
| } |
| } |
| |
| if (NodeHasChain) { |
| if (IsVariadic) |
| emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");"); |
| else |
| AllOps.push_back(ChainName); |
| } |
| |
| if (IsVariadic) { |
| if (NodeHasInFlag || HasImpInputs) |
| emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);"); |
| else if (NodeHasOptInFlag) { |
| emitCode("if (HasInFlag)"); |
| emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);"); |
| } |
| Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) + |
| ".size()"; |
| } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) |
| AllOps.push_back("InFlag"); |
| |
| unsigned NumOps = AllOps.size(); |
| if (NumOps) { |
| if (!NodeHasOptInFlag && NumOps < 4) { |
| for (unsigned i = 0; i != NumOps; ++i) |
| Code += ", " + AllOps[i]; |
| } else { |
| std::string OpsCode = "SDValue Ops" + utostr(OpsNo) + "[] = { "; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| OpsCode += AllOps[i]; |
| if (i != NumOps-1) |
| OpsCode += ", "; |
| } |
| emitCode(OpsCode + " };"); |
| Code += ", Ops" + utostr(OpsNo) + ", "; |
| if (NodeHasOptInFlag) { |
| Code += "HasInFlag ? "; |
| Code += utostr(NumOps) + " : " + utostr(NumOps-1); |
| } else |
| Code += utostr(NumOps); |
| } |
| } |
| |
| if (!isRoot) |
| Code += "), 0"; |
| |
| std::vector<std::string> ReplaceFroms; |
| std::vector<std::string> ReplaceTos; |
| if (!isRoot) { |
| NodeOps.push_back("Tmp" + utostr(ResNo)); |
| } else { |
| |
| if (NodeHasOutFlag) { |
| if (!InFlagDecled) { |
| After.push_back("SDValue InFlag(ResNode, " + |
| utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + |
| ");"); |
| InFlagDecled = true; |
| } else |
| After.push_back("InFlag = SDValue(ResNode, " + |
| utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + |
| ");"); |
| } |
| |
| if (FoldedChains.size() > 0) { |
| std::string Code; |
| for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) { |
| ReplaceFroms.push_back("SDValue(" + |
| FoldedChains[j].first + ".getNode(), " + |
| utostr(FoldedChains[j].second) + |
| ")"); |
| ReplaceTos.push_back("SDValue(ResNode, " + |
| utostr(NumResults+NumDstRegs) + ")"); |
| } |
| } |
| |
| if (NodeHasOutFlag) { |
| if (FoldedFlag.first != "") { |
| ReplaceFroms.push_back("SDValue(" + FoldedFlag.first + ".getNode(), " + |
| utostr(FoldedFlag.second) + ")"); |
| ReplaceTos.push_back("InFlag"); |
| } else { |
| assert(NodeHasProperty(Pattern, SDNPOutFlag, CGP)); |
| ReplaceFroms.push_back("SDValue(N.getNode(), " + |
| utostr(NumPatResults + (unsigned)InputHasChain) |
| + ")"); |
| ReplaceTos.push_back("InFlag"); |
| } |
| } |
| |
| if (!ReplaceFroms.empty() && InputHasChain) { |
| ReplaceFroms.push_back("SDValue(N.getNode(), " + |
| utostr(NumPatResults) + ")"); |
| ReplaceTos.push_back("SDValue(" + ChainName + ".getNode(), " + |
| ChainName + ".getResNo()" + ")"); |
| ChainAssignmentNeeded |= NodeHasChain; |
| } |
| |
| // User does not expect the instruction would produce a chain! |
| if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) { |
| ; |
| } else if (InputHasChain && !NodeHasChain) { |
| // One of the inner node produces a chain. |
| if (NodeHasOutFlag) { |
| ReplaceFroms.push_back("SDValue(N.getNode(), " + |
| utostr(NumPatResults+1) + |
| ")"); |
| ReplaceTos.push_back("SDValue(ResNode, N.getResNo()-1)"); |
| } |
| ReplaceFroms.push_back("SDValue(N.getNode(), " + |
| utostr(NumPatResults) + ")"); |
| ReplaceTos.push_back(ChainName); |
| } |
| } |
| |
| if (ChainAssignmentNeeded) { |
| // Remember which op produces the chain. |
| std::string ChainAssign; |
| if (!isRoot) |
| ChainAssign = ChainName + " = SDValue(" + NodeName + |
| ".getNode(), " + utostr(NumResults+NumDstRegs) + ");"; |
| else |
| ChainAssign = ChainName + " = SDValue(" + NodeName + |
| ", " + utostr(NumResults+NumDstRegs) + ");"; |
| |
| After.push_front(ChainAssign); |
| } |
| |
| if (ReplaceFroms.size() == 1) { |
| After.push_back("ReplaceUses(" + ReplaceFroms[0] + ", " + |
| ReplaceTos[0] + ");"); |
| } else if (!ReplaceFroms.empty()) { |
| After.push_back("const SDValue Froms[] = {"); |
| for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i) |
| After.push_back(" " + ReplaceFroms[i] + (i + 1 != e ? "," : "")); |
| After.push_back("};"); |
| After.push_back("const SDValue Tos[] = {"); |
| for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i) |
| After.push_back(" " + ReplaceTos[i] + (i + 1 != e ? "," : "")); |
| After.push_back("};"); |
| After.push_back("ReplaceUses(Froms, Tos, " + |
| itostr(ReplaceFroms.size()) + ");"); |
| } |
| |
| // We prefer to use SelectNodeTo since it avoids allocation when |
| // possible and it avoids CSE map recalculation for the node's |
| // users, however it's tricky to use in a non-root context. |
| // |
| // We also don't use if the pattern replacement is being used to |
| // jettison a chain result, since morphing the node in place |
| // would leave users of the chain dangling. |
| // |
| if (!isRoot || (InputHasChain && !NodeHasChain)) { |
| Code = "CurDAG->getTargetNode(" + Code; |
| } else { |
| Code = "CurDAG->SelectNodeTo(N.getNode(), " + Code; |
| } |
| if (isRoot) { |
| if (After.empty()) |
| CodePrefix = "return "; |
| else |
| After.push_back("return ResNode;"); |
| } |
| |
| emitCode(CodePrefix + Code + ");"); |
| for (unsigned i = 0, e = After.size(); i != e; ++i) |
| emitCode(After[i]); |
| |
| return NodeOps; |
| } else if (Op->isSubClassOf("SDNodeXForm")) { |
| assert(N->getNumChildren() == 1 && "node xform should have one child!"); |
| // PatLeaf node - the operand may or may not be a leaf node. But it should |
| // behave like one. |
| std::vector<std::string> Ops = |
| EmitResultCode(N->getChild(0), DstRegs, InFlagDecled, |
| ResNodeDecled, true); |
| unsigned ResNo = TmpNo++; |
| emitCode("SDValue Tmp" + utostr(ResNo) + " = Transform_" + Op->getName() |
| + "(" + Ops.back() + ".getNode());"); |
| NodeOps.push_back("Tmp" + utostr(ResNo)); |
| if (isRoot) |
| emitCode("return Tmp" + utostr(ResNo) + ".getNode();"); |
| return NodeOps; |
| } else { |
| N->dump(); |
| cerr << "\n"; |
| throw std::string("Unknown node in result pattern!"); |
| } |
| } |
| |
| /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' |
| /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that |
| /// 'Pat' may be missing types. If we find an unresolved type to add a check |
| /// for, this returns true otherwise false if Pat has all types. |
| bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other, |
| const std::string &Prefix, bool isRoot = false) { |
| // Did we find one? |
| if (Pat->getExtTypes() != Other->getExtTypes()) { |
| // Move a type over from 'other' to 'pat'. |
| Pat->setTypes(Other->getExtTypes()); |
| // The top level node type is checked outside of the select function. |
| if (!isRoot) |
| emitCheck(Prefix + ".getNode()->getValueType(0) == " + |
| getName(Pat->getTypeNum(0))); |
| return true; |
| } |
| |
| unsigned OpNo = |
| (unsigned) NodeHasProperty(Pat, SDNPHasChain, CGP); |
| for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo) |
| if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), |
| Prefix + utostr(OpNo))) |
| return true; |
| return false; |
| } |
| |
| private: |
| /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is |
| /// being built. |
| void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName, |
| bool &ChainEmitted, bool &InFlagDecled, |
| bool &ResNodeDecled, bool isRoot = false) { |
| const CodeGenTarget &T = CGP.getTargetInfo(); |
| unsigned OpNo = |
| (unsigned) NodeHasProperty(N, SDNPHasChain, CGP); |
| bool HasInFlag = NodeHasProperty(N, SDNPInFlag, CGP); |
| for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { |
| TreePatternNode *Child = N->getChild(i); |
| if (!Child->isLeaf()) { |
| EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted, |
| InFlagDecled, ResNodeDecled); |
| } else { |
| if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { |
| if (!Child->getName().empty()) { |
| std::string Name = RootName + utostr(OpNo); |
| if (Duplicates.find(Name) != Duplicates.end()) |
| // A duplicate! Do not emit a copy for this node. |
| continue; |
| } |
| |
| Record *RR = DI->getDef(); |
| if (RR->isSubClassOf("Register")) { |
| MVT::SimpleValueType RVT = getRegisterValueType(RR, T); |
| if (RVT == MVT::Flag) { |
| if (!InFlagDecled) { |
| emitCode("SDValue InFlag = " + RootName + utostr(OpNo) + ";"); |
| InFlagDecled = true; |
| } else |
| emitCode("InFlag = " + RootName + utostr(OpNo) + ";"); |
| emitCode("AddToISelQueue(InFlag);"); |
| } else { |
| if (!ChainEmitted) { |
| emitCode("SDValue Chain = CurDAG->getEntryNode();"); |
| ChainName = "Chain"; |
| ChainEmitted = true; |
| } |
| emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");"); |
| if (!InFlagDecled) { |
| emitCode("SDValue InFlag(0, 0);"); |
| InFlagDecled = true; |
| } |
| std::string Decl = (!ResNodeDecled) ? "SDNode *" : ""; |
| emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName + |
| ", " + getQualifiedName(RR) + |
| ", " + RootName + utostr(OpNo) + ", InFlag).getNode();"); |
| ResNodeDecled = true; |
| emitCode(ChainName + " = SDValue(ResNode, 0);"); |
| emitCode("InFlag = SDValue(ResNode, 1);"); |
| } |
| } |
| } |
| } |
| } |
| |
| if (HasInFlag) { |
| if (!InFlagDecled) { |
| emitCode("SDValue InFlag = " + RootName + |
| ".getOperand(" + utostr(OpNo) + ");"); |
| InFlagDecled = true; |
| } else |
| emitCode("InFlag = " + RootName + |
| ".getOperand(" + utostr(OpNo) + ");"); |
| emitCode("AddToISelQueue(InFlag);"); |
| } |
| } |
| }; |
| |
| /// EmitCodeForPattern - Given a pattern to match, emit code to the specified |
| /// stream to match the pattern, and generate the code for the match if it |
| /// succeeds. Returns true if the pattern is not guaranteed to match. |
| void DAGISelEmitter::GenerateCodeForPattern(const PatternToMatch &Pattern, |
| std::vector<std::pair<unsigned, std::string> > &GeneratedCode, |
| std::set<std::string> &GeneratedDecl, |
| std::vector<std::string> &TargetOpcodes, |
| std::vector<std::string> &TargetVTs, |
| bool &OutputIsVariadic, |
| unsigned &NumInputRootOps) { |
| OutputIsVariadic = false; |
| NumInputRootOps = 0; |
| |
| PatternCodeEmitter Emitter(CGP, Pattern.getPredicateCheck(), |
| Pattern.getSrcPattern(), Pattern.getDstPattern(), |
| GeneratedCode, GeneratedDecl, |
| TargetOpcodes, TargetVTs, |
| OutputIsVariadic, NumInputRootOps); |
| |
| // Emit the matcher, capturing named arguments in VariableMap. |
| bool FoundChain = false; |
| Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain); |
| |
| // TP - Get *SOME* tree pattern, we don't care which. |
| TreePattern &TP = *CGP.pf_begin()->second; |
| |
| // At this point, we know that we structurally match the pattern, but the |
| // types of the nodes may not match. Figure out the fewest number of type |
| // comparisons we need to emit. For example, if there is only one integer |
| // type supported by a target, there should be no type comparisons at all for |
| // integer patterns! |
| // |
| // To figure out the fewest number of type checks needed, clone the pattern, |
| // remove the types, then perform type inference on the pattern as a whole. |
| // If there are unresolved types, emit an explicit check for those types, |
| // apply the type to the tree, then rerun type inference. Iterate until all |
| // types are resolved. |
| // |
| TreePatternNode *Pat = Pattern.getSrcPattern()->clone(); |
| RemoveAllTypes(Pat); |
| |
| do { |
| // Resolve/propagate as many types as possible. |
| try { |
| bool MadeChange = true; |
| while (MadeChange) |
| MadeChange = Pat->ApplyTypeConstraints(TP, |
| true/*Ignore reg constraints*/); |
| } catch (...) { |
| assert(0 && "Error: could not find consistent types for something we" |
| " already decided was ok!"); |
| abort(); |
| } |
| |
| // Insert a check for an unresolved type and add it to the tree. If we find |
| // an unresolved type to add a check for, this returns true and we iterate, |
| // otherwise we are done. |
| } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true)); |
| |
| Emitter.EmitResultCode(Pattern.getDstPattern(), Pattern.getDstRegs(), |
| false, false, false, true); |
| delete Pat; |
| } |
| |
| /// EraseCodeLine - Erase one code line from all of the patterns. If removing |
| /// a line causes any of them to be empty, remove them and return true when |
| /// done. |
| static bool EraseCodeLine(std::vector<std::pair<const PatternToMatch*, |
| std::vector<std::pair<unsigned, std::string> > > > |
| &Patterns) { |
| bool ErasedPatterns = false; |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| Patterns[i].second.pop_back(); |
| if (Patterns[i].second.empty()) { |
| Patterns.erase(Patterns.begin()+i); |
| --i; --e; |
| ErasedPatterns = true; |
| } |
| } |
| return ErasedPatterns; |
| } |
| |
| /// EmitPatterns - Emit code for at least one pattern, but try to group common |
| /// code together between the patterns. |
| void DAGISelEmitter::EmitPatterns(std::vector<std::pair<const PatternToMatch*, |
| std::vector<std::pair<unsigned, std::string> > > > |
| &Patterns, unsigned Indent, |
| std::ostream &OS) { |
| typedef std::pair<unsigned, std::string> CodeLine; |
| typedef std::vector<CodeLine> CodeList; |
| typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList; |
| |
| if (Patterns.empty()) return; |
| |
| // Figure out how many patterns share the next code line. Explicitly copy |
| // FirstCodeLine so that we don't invalidate a reference when changing |
| // Patterns. |
| const CodeLine FirstCodeLine = Patterns.back().second.back(); |
| unsigned LastMatch = Patterns.size()-1; |
| while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine) |
| --LastMatch; |
| |
| // If not all patterns share this line, split the list into two pieces. The |
| // first chunk will use this line, the second chunk won't. |
| if (LastMatch != 0) { |
| PatternList Shared(Patterns.begin()+LastMatch, Patterns.end()); |
| PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch); |
| |
| // FIXME: Emit braces? |
| if (Shared.size() == 1) { |
| const PatternToMatch &Pattern = *Shared.back().first; |
| OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; |
| Pattern.getSrcPattern()->print(OS); |
| OS << "\n" << std::string(Indent, ' ') << "// Emits: "; |
| Pattern.getDstPattern()->print(OS); |
| OS << "\n"; |
| unsigned AddedComplexity = Pattern.getAddedComplexity(); |
| OS << std::string(Indent, ' ') << "// Pattern complexity = " |
| << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity |
| << " cost = " |
| << getResultPatternCost(Pattern.getDstPattern(), CGP) |
| << " size = " |
| << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n"; |
| } |
| if (FirstCodeLine.first != 1) { |
| OS << std::string(Indent, ' ') << "{\n"; |
| Indent += 2; |
| } |
| EmitPatterns(Shared, Indent, OS); |
| if (FirstCodeLine.first != 1) { |
| Indent -= 2; |
| OS << std::string(Indent, ' ') << "}\n"; |
| } |
| |
| if (Other.size() == 1) { |
| const PatternToMatch &Pattern = *Other.back().first; |
| OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; |
| Pattern.getSrcPattern()->print(OS); |
| OS << "\n" << std::string(Indent, ' ') << "// Emits: "; |
| Pattern.getDstPattern()->print(OS); |
| OS << "\n"; |
| unsigned AddedComplexity = Pattern.getAddedComplexity(); |
| OS << std::string(Indent, ' ') << "// Pattern complexity = " |
| << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity |
| << " cost = " |
| << getResultPatternCost(Pattern.getDstPattern(), CGP) |
| << " size = " |
| << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n"; |
| } |
| EmitPatterns(Other, Indent, OS); |
| return; |
| } |
| |
| // Remove this code from all of the patterns that share it. |
| bool ErasedPatterns = EraseCodeLine(Patterns); |
| |
| bool isPredicate = FirstCodeLine.first == 1; |
| |
| // Otherwise, every pattern in the list has this line. Emit it. |
| if (!isPredicate) { |
| // Normal code. |
| OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n"; |
| } else { |
| OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second; |
| |
| // If the next code line is another predicate, and if all of the pattern |
| // in this group share the same next line, emit it inline now. Do this |
| // until we run out of common predicates. |
| while (!ErasedPatterns && Patterns.back().second.back().first == 1) { |
| // Check that all of fhe patterns in Patterns end with the same predicate. |
| bool AllEndWithSamePredicate = true; |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) |
| if (Patterns[i].second.back() != Patterns.back().second.back()) { |
| AllEndWithSamePredicate = false; |
| break; |
| } |
| // If all of the predicates aren't the same, we can't share them. |
| if (!AllEndWithSamePredicate) break; |
| |
| // Otherwise we can. Emit it shared now. |
| OS << " &&\n" << std::string(Indent+4, ' ') |
| << Patterns.back().second.back().second; |
| ErasedPatterns = EraseCodeLine(Patterns); |
| } |
| |
| OS << ") {\n"; |
| Indent += 2; |
| } |
| |
| EmitPatterns(Patterns, Indent, OS); |
| |
| if (isPredicate) |
| OS << std::string(Indent-2, ' ') << "}\n"; |
| } |
| |
| static std::string getLegalCName(std::string OpName) { |
| std::string::size_type pos = OpName.find("::"); |
| if (pos != std::string::npos) |
| OpName.replace(pos, 2, "_"); |
| return OpName; |
| } |
| |
| void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { |
| const CodeGenTarget &Target = CGP.getTargetInfo(); |
| |
| // Get the namespace to insert instructions into. |
| std::string InstNS = Target.getInstNamespace(); |
| if (!InstNS.empty()) InstNS += "::"; |
| |
| // Group the patterns by their top-level opcodes. |
| std::map<std::string, std::vector<const PatternToMatch*> > PatternsByOpcode; |
| // All unique target node emission functions. |
| std::map<std::string, unsigned> EmitFunctions; |
| for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), |
| E = CGP.ptm_end(); I != E; ++I) { |
| const PatternToMatch &Pattern = *I; |
| |
| TreePatternNode *Node = Pattern.getSrcPattern(); |
| if (!Node->isLeaf()) { |
| PatternsByOpcode[getOpcodeName(Node->getOperator(), CGP)]. |
| push_back(&Pattern); |
| } else { |
| const ComplexPattern *CP; |
| if (dynamic_cast<IntInit*>(Node->getLeafValue())) { |
| PatternsByOpcode[getOpcodeName(CGP.getSDNodeNamed("imm"), CGP)]. |
| push_back(&Pattern); |
| } else if ((CP = NodeGetComplexPattern(Node, CGP))) { |
| std::vector<Record*> OpNodes = CP->getRootNodes(); |
| for (unsigned j = 0, e = OpNodes.size(); j != e; j++) { |
| PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)] |
| .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)].begin(), |
| &Pattern); |
| } |
| } else { |
| cerr << "Unrecognized opcode '"; |
| Node->dump(); |
| cerr << "' on tree pattern '"; |
| cerr << Pattern.getDstPattern()->getOperator()->getName() << "'!\n"; |
| exit(1); |
| } |
| } |
| } |
| |
| // For each opcode, there might be multiple select functions, one per |
| // ValueType of the node (or its first operand if it doesn't produce a |
| // non-chain result. |
| std::map<std::string, std::vector<std::string> > OpcodeVTMap; |
| |
| // Emit one Select_* method for each top-level opcode. We do this instead of |
| // emitting one giant switch statement to support compilers where this will |
| // result in the recursive functions taking less stack space. |
| for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator |
| PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); |
| PBOI != E; ++PBOI) { |
| const std::string &OpName = PBOI->first; |
| std::vector<const PatternToMatch*> &PatternsOfOp = PBOI->second; |
| assert(!PatternsOfOp.empty() && "No patterns but map has entry?"); |
| |
| // We want to emit all of the matching code now. However, we want to emit |
| // the matches in order of minimal cost. Sort the patterns so the least |
| // cost one is at the start. |
| std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(), |
| PatternSortingPredicate(CGP)); |
| |
| // Split them into groups by type. |
| std::map<MVT::SimpleValueType, |
| std::vector<const PatternToMatch*> > PatternsByType; |
| for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) { |
| const PatternToMatch *Pat = PatternsOfOp[i]; |
| TreePatternNode *SrcPat = Pat->getSrcPattern(); |
| PatternsByType[SrcPat->getTypeNum(0)].push_back(Pat); |
| } |
| |
| for (std::map<MVT::SimpleValueType, |
| std::vector<const PatternToMatch*> >::iterator |
| II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE; |
| ++II) { |
| MVT::SimpleValueType OpVT = II->first; |
| std::vector<const PatternToMatch*> &Patterns = II->second; |
| typedef std::vector<std::pair<unsigned,std::string> > CodeList; |
| typedef std::vector<std::pair<unsigned,std::string> >::iterator CodeListI; |
| |
| std::vector<std::pair<const PatternToMatch*, CodeList> > CodeForPatterns; |
| std::vector<std::vector<std::string> > PatternOpcodes; |
| std::vector<std::vector<std::string> > PatternVTs; |
| std::vector<std::set<std::string> > PatternDecls; |
| std::vector<bool> OutputIsVariadicFlags; |
| std::vector<unsigned> NumInputRootOpsCounts; |
| for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { |
| CodeList GeneratedCode; |
| std::set<std::string> GeneratedDecl; |
| std::vector<std::string> TargetOpcodes; |
| std::vector<std::string> TargetVTs; |
| bool OutputIsVariadic; |
| unsigned NumInputRootOps; |
| GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl, |
| TargetOpcodes, TargetVTs, |
| OutputIsVariadic, NumInputRootOps); |
| CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode)); |
| PatternDecls.push_back(GeneratedDecl); |
| PatternOpcodes.push_back(TargetOpcodes); |
| PatternVTs.push_back(TargetVTs); |
| OutputIsVariadicFlags.push_back(OutputIsVariadic); |
| NumInputRootOpsCounts.push_back(NumInputRootOps); |
| } |
| |
| // Scan the code to see if all of the patterns are reachable and if it is |
| // possible that the last one might not match. |
| bool mightNotMatch = true; |
| for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { |
| CodeList &GeneratedCode = CodeForPatterns[i].second; |
| mightNotMatch = false; |
| |
| for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) { |
| if (GeneratedCode[j].first == 1) { // predicate. |
| mightNotMatch = true; |
| break; |
| } |
| } |
| |
| // If this pattern definitely matches, and if it isn't the last one, the |
| // patterns after it CANNOT ever match. Error out. |
| if (mightNotMatch == false && i != CodeForPatterns.size()-1) { |
| cerr << "Pattern '"; |
| CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream()); |
| cerr << "' is impossible to select!\n"; |
| exit(1); |
| } |
| } |
| |
| // Factor target node emission code (emitted by EmitResultCode) into |
| // separate functions. Uniquing and share them among all instruction |
| // selection routines. |
| for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { |
| CodeList &GeneratedCode = CodeForPatterns[i].second; |
| std::vector<std::string> &TargetOpcodes = PatternOpcodes[i]; |
| std::vector<std::string> &TargetVTs = PatternVTs[i]; |
| std::set<std::string> Decls = PatternDecls[i]; |
| bool OutputIsVariadic = OutputIsVariadicFlags[i]; |
| unsigned NumInputRootOps = NumInputRootOpsCounts[i]; |
| std::vector<std::string> AddedInits; |
| int CodeSize = (int)GeneratedCode.size(); |
| int LastPred = -1; |
| for (int j = CodeSize-1; j >= 0; --j) { |
| if (LastPred == -1 && GeneratedCode[j].first == 1) |
| LastPred = j; |
| else if (LastPred != -1 && GeneratedCode[j].first == 2) |
| AddedInits.push_back(GeneratedCode[j].second); |
| } |
| |
| std::string CalleeCode = "(const SDValue &N"; |
| std::string CallerCode = "(N"; |
| for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) { |
| CalleeCode += ", unsigned Opc" + utostr(j); |
| CallerCode += ", " + TargetOpcodes[j]; |
| } |
| for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) { |
| CalleeCode += ", MVT VT" + utostr(j); |
| CallerCode += ", " + TargetVTs[j]; |
| } |
| for (std::set<std::string>::iterator |
| I = Decls.begin(), E = Decls.end(); I != E; ++I) { |
| std::string Name = *I; |
| CalleeCode += ", SDValue &" + Name; |
| CallerCode += ", " + Name; |
| } |
| |
| if (OutputIsVariadic) { |
| CalleeCode += ", unsigned NumInputRootOps"; |
| CallerCode += ", " + utostr(NumInputRootOps); |
| } |
| |
| CallerCode += ");"; |
| CalleeCode += ") "; |
| // Prevent emission routines from being inlined to reduce selection |
| // routines stack frame sizes. |
| CalleeCode += "DISABLE_INLINE "; |
| CalleeCode += "{\n"; |
| |
| for (std::vector<std::string>::const_reverse_iterator |
| I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I) |
| CalleeCode += " " + *I + "\n"; |
| |
| for (int j = LastPred+1; j < CodeSize; ++j) |
| CalleeCode += " " + GeneratedCode[j].second + "\n"; |
| for (int j = LastPred+1; j < CodeSize; ++j) |
| GeneratedCode.pop_back(); |
| CalleeCode += "}\n"; |
| |
| // Uniquing the emission routines. |
| unsigned EmitFuncNum; |
| std::map<std::string, unsigned>::iterator EFI = |
| EmitFunctions.find(CalleeCode); |
| if (EFI != EmitFunctions.end()) { |
| EmitFuncNum = EFI->second; |
| } else { |
| EmitFuncNum = EmitFunctions.size(); |
| EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum)); |
| OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode; |
| } |
| |
| // Replace the emission code within selection routines with calls to the |
| // emission functions. |
| CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode; |
| GeneratedCode.push_back(std::make_pair(false, CallerCode)); |
| } |
| |
| // Print function. |
| std::string OpVTStr; |
| if (OpVT == MVT::iPTR) { |
| OpVTStr = "_iPTR"; |
| } else if (OpVT == MVT::iPTRAny) { |
| OpVTStr = "_iPTRAny"; |
| } else if (OpVT == MVT::isVoid) { |
| // Nodes with a void result actually have a first result type of either |
| // Other (a chain) or Flag. Since there is no one-to-one mapping from |
| // void to this case, we handle it specially here. |
| } else { |
| OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::' |
| } |
| std::map<std::string, std::vector<std::string> >::iterator OpVTI = |
| OpcodeVTMap.find(OpName); |
| if (OpVTI == OpcodeVTMap.end()) { |
| std::vector<std::string> VTSet; |
| VTSet.push_back(OpVTStr); |
| OpcodeVTMap.insert(std::make_pair(OpName, VTSet)); |
| } else |
| OpVTI->second.push_back(OpVTStr); |
| |
| OS << "SDNode *Select_" << getLegalCName(OpName) |
| << OpVTStr << "(const SDValue &N) {\n"; |
| |
| // Loop through and reverse all of the CodeList vectors, as we will be |
| // accessing them from their logical front, but accessing the end of a |
| // vector is more efficient. |
| for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { |
| CodeList &GeneratedCode = CodeForPatterns[i].second; |
| std::reverse(GeneratedCode.begin(), GeneratedCode.end()); |
| } |
| |
| // Next, reverse the list of patterns itself for the same reason. |
| std::reverse(CodeForPatterns.begin(), CodeForPatterns.end()); |
| |
| // Emit all of the patterns now, grouped together to share code. |
| EmitPatterns(CodeForPatterns, 2, OS); |
| |
| // If the last pattern has predicates (which could fail) emit code to |
| // catch the case where nothing handles a pattern. |
| if (mightNotMatch) { |
| OS << " cerr << \"Cannot yet select: \";\n"; |
| if (OpName != "ISD::INTRINSIC_W_CHAIN" && |
| OpName != "ISD::INTRINSIC_WO_CHAIN" && |
| OpName != "ISD::INTRINSIC_VOID") { |
| OS << " N.getNode()->dump(CurDAG);\n"; |
| } else { |
| OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand(" |
| "N.getOperand(0).getValueType() == MVT::Other))->getZExtValue();\n" |
| << " cerr << \"intrinsic %\"<< " |
| "Intrinsic::getName((Intrinsic::ID)iid);\n"; |
| } |
| OS << " cerr << '\\n';\n" |
| << " abort();\n" |
| << " return NULL;\n"; |
| } |
| OS << "}\n\n"; |
| } |
| } |
| |
| // Emit boilerplate. |
| OS << "SDNode *Select_INLINEASM(SDValue N) {\n" |
| << " std::vector<SDValue> Ops(N.getNode()->op_begin(), N.getNode()->op_end());\n" |
| << " SelectInlineAsmMemoryOperands(Ops);\n\n" |
| |
| << " // Ensure that the asm operands are themselves selected.\n" |
| << " for (unsigned j = 0, e = Ops.size(); j != e; ++j)\n" |
| << " AddToISelQueue(Ops[j]);\n\n" |
| |
| << " std::vector<MVT> VTs;\n" |
| << " VTs.push_back(MVT::Other);\n" |
| << " VTs.push_back(MVT::Flag);\n" |
| << " SDValue New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], " |
| "Ops.size());\n" |
| << " return New.getNode();\n" |
| << "}\n\n"; |
| |
| OS << "SDNode *Select_UNDEF(const SDValue &N) {\n" |
| << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::IMPLICIT_DEF,\n" |
| << " N.getValueType());\n" |
| << "}\n\n"; |
| |
| OS << "SDNode *Select_DBG_LABEL(const SDValue &N) {\n" |
| << " SDValue Chain = N.getOperand(0);\n" |
| << " unsigned C = cast<LabelSDNode>(N)->getLabelID();\n" |
| << " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n" |
| << " AddToISelQueue(Chain);\n" |
| << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::DBG_LABEL,\n" |
| << " MVT::Other, Tmp, Chain);\n" |
| << "}\n\n"; |
| |
| OS << "SDNode *Select_EH_LABEL(const SDValue &N) {\n" |
| << " SDValue Chain = N.getOperand(0);\n" |
| << " unsigned C = cast<LabelSDNode>(N)->getLabelID();\n" |
| << " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n" |
| << " AddToISelQueue(Chain);\n" |
| << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::EH_LABEL,\n" |
| << " MVT::Other, Tmp, Chain);\n" |
| << "}\n\n"; |
| |
| OS << "SDNode *Select_DECLARE(const SDValue &N) {\n" |
| << " SDValue Chain = N.getOperand(0);\n" |
| << " SDValue N1 = N.getOperand(1);\n" |
| << " SDValue N2 = N.getOperand(2);\n" |
| << " if (!isa<FrameIndexSDNode>(N1) || !isa<GlobalAddressSDNode>(N2)) {\n" |
| << " cerr << \"Cannot yet select llvm.dbg.declare: \";\n" |
| << " N.getNode()->dump(CurDAG);\n" |
| << " abort();\n" |
| << " }\n" |
| << " int FI = cast<FrameIndexSDNode>(N1)->getIndex();\n" |
| << " GlobalValue *GV = cast<GlobalAddressSDNode>(N2)->getGlobal();\n" |
| << " SDValue Tmp1 = " |
| << "CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());\n" |
| << " SDValue Tmp2 = " |
| << "CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());\n" |
| << " AddToISelQueue(Chain);\n" |
| << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::DECLARE,\n" |
| << " MVT::Other, Tmp1, Tmp2, Chain);\n" |
| << "}\n\n"; |
| |
| OS << "SDNode *Select_EXTRACT_SUBREG(const SDValue &N) {\n" |
| << " SDValue N0 = N.getOperand(0);\n" |
| << " SDValue N1 = N.getOperand(1);\n" |
| << " unsigned C = cast<ConstantSDNode>(N1)->getZExtValue();\n" |
| << " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n" |
| << " AddToISelQueue(N0);\n" |
| << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::EXTRACT_SUBREG,\n" |
| << " N.getValueType(), N0, Tmp);\n" |
| << "}\n\n"; |
| |
| OS << "SDNode *Select_INSERT_SUBREG(const SDValue &N) {\n" |
| << " SDValue N0 = N.getOperand(0);\n" |
| << " SDValue N1 = N.getOperand(1);\n" |
| << " SDValue N2 = N.getOperand(2);\n" |
| << " unsigned C = cast<ConstantSDNode>(N2)->getZExtValue();\n" |
| << " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n" |
| << " AddToISelQueue(N1);\n" |
| << " AddToISelQueue(N0);\n" |
| << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::INSERT_SUBREG,\n" |
| << " N.getValueType(), N0, N1, Tmp);\n" |
| << "}\n\n"; |
| |
| OS << "// The main instruction selector code.\n" |
| << "SDNode *SelectCode(SDValue N) {\n" |
| << " if (N.isMachineOpcode()) {\n" |
| << " return NULL; // Already selected.\n" |
| << " }\n\n" |
| << " MVT::SimpleValueType NVT = N.getNode()->getValueType(0).getSimpleVT();\n" |
| << " switch (N.getOpcode()) {\n" |
| << " default: break;\n" |
| << " case ISD::EntryToken: // These leaves remain the same.\n" |
| << " case ISD::BasicBlock:\n" |
| << " case ISD::Register:\n" |
| << " case ISD::HANDLENODE:\n" |
| << " case ISD::TargetConstant:\n" |
| << " case ISD::TargetConstantFP:\n" |
| << " case ISD::TargetConstantPool:\n" |
| << " case ISD::TargetFrameIndex:\n" |
| << " case ISD::TargetExternalSymbol:\n" |
| << " case ISD::TargetJumpTable:\n" |
| << " case ISD::TargetGlobalTLSAddress:\n" |
| << " case ISD::TargetGlobalAddress: {\n" |
| << " return NULL;\n" |
| << " }\n" |
| << " case ISD::AssertSext:\n" |
| << " case ISD::AssertZext: {\n" |
| << " AddToISelQueue(N.getOperand(0));\n" |
| << " ReplaceUses(N, N.getOperand(0));\n" |
| << " return NULL;\n" |
| << " }\n" |
| << " case ISD::TokenFactor:\n" |
| << " case ISD::CopyFromReg:\n" |
| << " case ISD::CopyToReg: {\n" |
| << " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n" |
| << " AddToISelQueue(N.getOperand(i));\n" |
| << " return NULL;\n" |
| << " }\n" |
| << " case ISD::INLINEASM: return Select_INLINEASM(N);\n" |
| << " case ISD::DBG_LABEL: return Select_DBG_LABEL(N);\n" |
| << " case ISD::EH_LABEL: return Select_EH_LABEL(N);\n" |
| << " case ISD::DECLARE: return Select_DECLARE(N);\n" |
| << " case ISD::EXTRACT_SUBREG: return Select_EXTRACT_SUBREG(N);\n" |
| << " case ISD::INSERT_SUBREG: return Select_INSERT_SUBREG(N);\n" |
| << " case ISD::UNDEF: return Select_UNDEF(N);\n"; |
| |
| |
| // Loop over all of the case statements, emiting a call to each method we |
| // emitted above. |
| for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator |
| PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); |
| PBOI != E; ++PBOI) { |
| const std::string &OpName = PBOI->first; |
| // Potentially multiple versions of select for this opcode. One for each |
| // ValueType of the node (or its first true operand if it doesn't produce a |
| // result. |
| std::map<std::string, std::vector<std::string> >::iterator OpVTI = |
| OpcodeVTMap.find(OpName); |
| std::vector<std::string> &OpVTs = OpVTI->second; |
| OS << " case " << OpName << ": {\n"; |
| // Keep track of whether we see a pattern that has an iPtr result. |
| bool HasPtrPattern = false; |
| bool HasDefaultPattern = false; |
| |
| OS << " switch (NVT) {\n"; |
| for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) { |
| std::string &VTStr = OpVTs[i]; |
| if (VTStr.empty()) { |
| HasDefaultPattern = true; |
| continue; |
| } |
| |
| // If this is a match on iPTR: don't emit it directly, we need special |
| // code. |
| if (VTStr == "_iPTR") { |
| HasPtrPattern = true; |
| continue; |
| } |
| OS << " case MVT::" << VTStr.substr(1) << ":\n" |
| << " return Select_" << getLegalCName(OpName) |
| << VTStr << "(N);\n"; |
| } |
| OS << " default:\n"; |
| |
| // If there is an iPTR result version of this pattern, emit it here. |
| if (HasPtrPattern) { |
| OS << " if (TLI.getPointerTy() == NVT)\n"; |
| OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n"; |
| } |
| if (HasDefaultPattern) { |
| OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; |
| } |
| OS << " break;\n"; |
| OS << " }\n"; |
| OS << " break;\n"; |
| OS << " }\n"; |
| } |
| |
| OS << " } // end of big switch.\n\n" |
| << " cerr << \"Cannot yet select: \";\n" |
| << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n" |
| << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n" |
| << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n" |
| << " N.getNode()->dump(CurDAG);\n" |
| << " } else {\n" |
| << " unsigned iid = cast<ConstantSDNode>(N.getOperand(" |
| "N.getOperand(0).getValueType() == " |
| "MVT::Other))->getZExtValue();\n" |
| << " cerr << \"intrinsic %\"<< " |
| "Intrinsic::getName((Intrinsic::ID)iid);\n" |
| << " }\n" |
| << " cerr << '\\n';\n" |
| << " abort();\n" |
| << " return NULL;\n" |
| << "}\n"; |
| } |
| |
| void DAGISelEmitter::run(std::ostream &OS) { |
| EmitSourceFileHeader("DAG Instruction Selector for the " + |
| CGP.getTargetInfo().getName() + " target", OS); |
| |
| OS << "// *** NOTE: This file is #included into the middle of the target\n" |
| << "// *** instruction selector class. These functions are really " |
| << "methods.\n\n"; |
| |
| OS << "// Include standard, target-independent definitions and methods used\n" |
| << "// by the instruction selector.\n"; |
| OS << "#include <llvm/CodeGen/DAGISelHeader.h>\n\n"; |
| |
| EmitNodeTransforms(OS); |
| EmitPredicateFunctions(OS); |
| |
| DOUT << "\n\nALL PATTERNS TO MATCH:\n\n"; |
| for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); |
| I != E; ++I) { |
| DOUT << "PATTERN: "; DEBUG(I->getSrcPattern()->dump()); |
| DOUT << "\nRESULT: "; DEBUG(I->getDstPattern()->dump()); |
| DOUT << "\n"; |
| } |
| |
| // At this point, we have full information about the 'Patterns' we need to |
| // parse, both implicitly from instructions as well as from explicit pattern |
| // definitions. Emit the resultant instruction selector. |
| EmitInstructionSelector(OS); |
| |
| } |