| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
 |                       "http://www.w3.org/TR/html4/strict.dtd"> | 
 |  | 
 | <html> | 
 | <head> | 
 |   <title>Kaleidoscope: Extending the Language: User-defined Operators</title> | 
 |   <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
 |   <meta name="author" content="Chris Lattner"> | 
 |   <meta name="author" content="Erick Tryzelaar"> | 
 |   <link rel="stylesheet" href="../llvm.css" type="text/css"> | 
 | </head> | 
 |  | 
 | <body> | 
 |  | 
 | <div class="doc_title">Kaleidoscope: Extending the Language: User-defined Operators</div> | 
 |  | 
 | <ul> | 
 | <li><a href="index.html">Up to Tutorial Index</a></li> | 
 | <li>Chapter 6 | 
 |   <ol> | 
 |     <li><a href="#intro">Chapter 6 Introduction</a></li> | 
 |     <li><a href="#idea">User-defined Operators: the Idea</a></li> | 
 |     <li><a href="#binary">User-defined Binary Operators</a></li> | 
 |     <li><a href="#unary">User-defined Unary Operators</a></li> | 
 |     <li><a href="#example">Kicking the Tires</a></li> | 
 |     <li><a href="#code">Full Code Listing</a></li> | 
 |   </ol> | 
 | </li> | 
 | <li><a href="OCamlLangImpl7.html">Chapter 7</a>: Extending the Language: Mutable | 
 | Variables / SSA Construction</li> | 
 | </ul> | 
 |  | 
 | <div class="doc_author"> | 
 | 	<p> | 
 | 		Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> | 
 | 		and <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a> | 
 | 	</p> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="intro">Chapter 6 Introduction</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Welcome to Chapter 6 of the "<a href="index.html">Implementing a language | 
 | with LLVM</a>" tutorial.  At this point in our tutorial, we now have a fully | 
 | functional language that is fairly minimal, but also useful.  There | 
 | is still one big problem with it, however. Our language doesn't have many | 
 | useful operators (like division, logical negation, or even any comparisons | 
 | besides less-than).</p> | 
 |  | 
 | <p>This chapter of the tutorial takes a wild digression into adding user-defined | 
 | operators to the simple and beautiful Kaleidoscope language. This digression now | 
 | gives us a simple and ugly language in some ways, but also a powerful one at the | 
 | same time.  One of the great things about creating your own language is that you | 
 | get to decide what is good or bad.  In this tutorial we'll assume that it is | 
 | okay to use this as a way to show some interesting parsing techniques.</p> | 
 |  | 
 | <p>At the end of this tutorial, we'll run through an example Kaleidoscope | 
 | application that <a href="#example">renders the Mandelbrot set</a>.  This gives | 
 | an example of what you can build with Kaleidoscope and its feature set.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="idea">User-defined Operators: the Idea</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | The "operator overloading" that we will add to Kaleidoscope is more general than | 
 | languages like C++.  In C++, you are only allowed to redefine existing | 
 | operators: you can't programatically change the grammar, introduce new | 
 | operators, change precedence levels, etc.  In this chapter, we will add this | 
 | capability to Kaleidoscope, which will let the user round out the set of | 
 | operators that are supported.</p> | 
 |  | 
 | <p>The point of going into user-defined operators in a tutorial like this is to | 
 | show the power and flexibility of using a hand-written parser.  Thus far, the parser | 
 | we have been implementing uses recursive descent for most parts of the grammar and | 
 | operator precedence parsing for the expressions.  See <a | 
 | href="OCamlLangImpl2.html">Chapter 2</a> for details.  Without using operator | 
 | precedence parsing, it would be very difficult to allow the programmer to | 
 | introduce new operators into the grammar: the grammar is dynamically extensible | 
 | as the JIT runs.</p> | 
 |  | 
 | <p>The two specific features we'll add are programmable unary operators (right | 
 | now, Kaleidoscope has no unary operators at all) as well as binary operators. | 
 | An example of this is:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | # Logical unary not. | 
 | def unary!(v) | 
 |   if v then | 
 |     0 | 
 |   else | 
 |     1; | 
 |  | 
 | # Define > with the same precedence as <. | 
 | def binary> 10 (LHS RHS) | 
 |   RHS < LHS; | 
 |  | 
 | # Binary "logical or", (note that it does not "short circuit") | 
 | def binary| 5 (LHS RHS) | 
 |   if LHS then | 
 |     1 | 
 |   else if RHS then | 
 |     1 | 
 |   else | 
 |     0; | 
 |  | 
 | # Define = with slightly lower precedence than relationals. | 
 | def binary= 9 (LHS RHS) | 
 |   !(LHS < RHS | LHS > RHS); | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Many languages aspire to being able to implement their standard runtime | 
 | library in the language itself.  In Kaleidoscope, we can implement significant | 
 | parts of the language in the library!</p> | 
 |  | 
 | <p>We will break down implementation of these features into two parts: | 
 | implementing support for user-defined binary operators and adding unary | 
 | operators.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="binary">User-defined Binary Operators</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Adding support for user-defined binary operators is pretty simple with our | 
 | current framework.  We'll first add support for the unary/binary keywords:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | type token = | 
 |   ... | 
 |   <b>(* operators *) | 
 |   | Binary | Unary</b> | 
 |  | 
 | ... | 
 |  | 
 | and lex_ident buffer = parser | 
 |   ... | 
 |       | "for" -> [< 'Token.For; stream >] | 
 |       | "in" -> [< 'Token.In; stream >] | 
 |       <b>| "binary" -> [< 'Token.Binary; stream >] | 
 |       | "unary" -> [< 'Token.Unary; stream >]</b> | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This just adds lexer support for the unary and binary keywords, like we | 
 | did in <a href="OCamlLangImpl5.html#iflexer">previous chapters</a>.  One nice | 
 | thing about our current AST, is that we represent binary operators with full | 
 | generalisation by using their ASCII code as the opcode.  For our extended | 
 | operators, we'll use this same representation, so we don't need any new AST or | 
 | parser support.</p> | 
 |  | 
 | <p>On the other hand, we have to be able to represent the definitions of these | 
 | new operators, in the "def binary| 5" part of the function definition.  In our | 
 | grammar so far, the "name" for the function definition is parsed as the | 
 | "prototype" production and into the <tt>Ast.Prototype</tt> AST node.  To | 
 | represent our new user-defined operators as prototypes, we have to extend | 
 | the  <tt>Ast.Prototype</tt> AST node like this:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | (* proto - This type represents the "prototype" for a function, which captures | 
 |  * its name, and its argument names (thus implicitly the number of arguments the | 
 |  * function takes). *) | 
 | type proto = | 
 |   | Prototype of string * string array | 
 |   <b>| BinOpPrototype of string * string array * int</b> | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Basically, in addition to knowing a name for the prototype, we now keep track | 
 | of whether it was an operator, and if it was, what precedence level the operator | 
 | is at.  The precedence is only used for binary operators (as you'll see below, | 
 | it just doesn't apply for unary operators).  Now that we have a way to represent | 
 | the prototype for a user-defined operator, we need to parse it:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | (* prototype | 
 |  *   ::= id '(' id* ')' | 
 |  <b>*   ::= binary LETTER number? (id, id) | 
 |  *   ::= unary LETTER number? (id) *)</b> | 
 | let parse_prototype = | 
 |   let rec parse_args accumulator = parser | 
 |     | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e | 
 |     | [< >] -> accumulator | 
 |   in | 
 |   let parse_operator = parser | 
 |     | [< 'Token.Unary >] -> "unary", 1 | 
 |     | [< 'Token.Binary >] -> "binary", 2 | 
 |   in | 
 |   let parse_binary_precedence = parser | 
 |     | [< 'Token.Number n >] -> int_of_float n | 
 |     | [< >] -> 30 | 
 |   in | 
 |   parser | 
 |   | [< 'Token.Ident id; | 
 |        'Token.Kwd '(' ?? "expected '(' in prototype"; | 
 |        args=parse_args []; | 
 |        'Token.Kwd ')' ?? "expected ')' in prototype" >] -> | 
 |       (* success. *) | 
 |       Ast.Prototype (id, Array.of_list (List.rev args)) | 
 |   <b>| [< (prefix, kind)=parse_operator; | 
 |        'Token.Kwd op ?? "expected an operator"; | 
 |        (* Read the precedence if present. *) | 
 |        binary_precedence=parse_binary_precedence; | 
 |        'Token.Kwd '(' ?? "expected '(' in prototype"; | 
 |         args=parse_args []; | 
 |        'Token.Kwd ')' ?? "expected ')' in prototype" >] -> | 
 |       let name = prefix ^ (String.make 1 op) in | 
 |       let args = Array.of_list (List.rev args) in | 
 |  | 
 |       (* Verify right number of arguments for operator. *) | 
 |       if Array.length args != kind | 
 |       then raise (Stream.Error "invalid number of operands for operator") | 
 |       else | 
 |         if kind == 1 then | 
 |           Ast.Prototype (name, args) | 
 |         else | 
 |           Ast.BinOpPrototype (name, args, binary_precedence)</b> | 
 |   | [< >] -> | 
 |       raise (Stream.Error "expected function name in prototype") | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This is all fairly straightforward parsing code, and we have already seen | 
 | a lot of similar code in the past.  One interesting part about the code above is | 
 | the couple lines that set up <tt>name</tt> for binary operators.  This builds | 
 | names like "binary@" for a newly defined "@" operator.  This then takes | 
 | advantage of the fact that symbol names in the LLVM symbol table are allowed to | 
 | have any character in them, including embedded nul characters.</p> | 
 |  | 
 | <p>The next interesting thing to add, is codegen support for these binary | 
 | operators.  Given our current structure, this is a simple addition of a default | 
 | case for our existing binary operator node:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | let codegen_expr = function | 
 |   ... | 
 |   | Ast.Binary (op, lhs, rhs) -> | 
 |       let lhs_val = codegen_expr lhs in | 
 |       let rhs_val = codegen_expr rhs in | 
 |       begin | 
 |         match op with | 
 |         | '+' -> build_add lhs_val rhs_val "addtmp" builder | 
 |         | '-' -> build_sub lhs_val rhs_val "subtmp" builder | 
 |         | '*' -> build_mul lhs_val rhs_val "multmp" builder | 
 |         | '<' -> | 
 |             (* Convert bool 0/1 to double 0.0 or 1.0 *) | 
 |             let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in | 
 |             build_uitofp i double_type "booltmp" builder | 
 |         <b>| _ -> | 
 |             (* If it wasn't a builtin binary operator, it must be a user defined | 
 |              * one. Emit a call to it. *) | 
 |             let callee = "binary" ^ (String.make 1 op) in | 
 |             let callee = | 
 |               match lookup_function callee the_module with | 
 |               | Some callee -> callee | 
 |               | None -> raise (Error "binary operator not found!") | 
 |             in | 
 |             build_call callee [|lhs_val; rhs_val|] "binop" builder</b> | 
 |       end | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>As you can see above, the new code is actually really simple.  It just does | 
 | a lookup for the appropriate operator in the symbol table and generates a | 
 | function call to it.  Since user-defined operators are just built as normal | 
 | functions (because the "prototype" boils down to a function with the right | 
 | name) everything falls into place.</p> | 
 |  | 
 | <p>The final piece of code we are missing, is a bit of top level magic:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | let codegen_func the_fpm = function | 
 |   | Ast.Function (proto, body) -> | 
 |       Hashtbl.clear named_values; | 
 |       let the_function = codegen_proto proto in | 
 |  | 
 |       <b>(* If this is an operator, install it. *) | 
 |       begin match proto with | 
 |       | Ast.BinOpPrototype (name, args, prec) -> | 
 |           let op = name.[String.length name - 1] in | 
 |           Hashtbl.add Parser.binop_precedence op prec; | 
 |       | _ -> () | 
 |       end;</b> | 
 |  | 
 |       (* Create a new basic block to start insertion into. *) | 
 |       let bb = append_block "entry" the_function in | 
 |       position_at_end bb builder; | 
 |       ... | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Basically, before codegening a function, if it is a user-defined operator, we | 
 | register it in the precedence table.  This allows the binary operator parsing | 
 | logic we already have in place to handle it.  Since we are working on a | 
 | fully-general operator precedence parser, this is all we need to do to "extend | 
 | the grammar".</p> | 
 |  | 
 | <p>Now we have useful user-defined binary operators.  This builds a lot | 
 | on the previous framework we built for other operators.  Adding unary operators | 
 | is a bit more challenging, because we don't have any framework for it yet - lets | 
 | see what it takes.</p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="unary">User-defined Unary Operators</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Since we don't currently support unary operators in the Kaleidoscope | 
 | language, we'll need to add everything to support them.  Above, we added simple | 
 | support for the 'unary' keyword to the lexer.  In addition to that, we need an | 
 | AST node:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | type expr = | 
 |   ... | 
 |   (* variant for a unary operator. *) | 
 |   | Unary of char * expr | 
 |   ... | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This AST node is very simple and obvious by now.  It directly mirrors the | 
 | binary operator AST node, except that it only has one child.  With this, we | 
 | need to add the parsing logic.  Parsing a unary operator is pretty simple: we'll | 
 | add a new function to do it:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | (* unary | 
 |  *   ::= primary | 
 |  *   ::= '!' unary *) | 
 | and parse_unary = parser | 
 |   (* If this is a unary operator, read it. *) | 
 |   | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] -> | 
 |       Ast.Unary (op, operand) | 
 |  | 
 |   (* If the current token is not an operator, it must be a primary expr. *) | 
 |   | [< stream >] -> parse_primary stream | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>The grammar we add is pretty straightforward here.  If we see a unary | 
 | operator when parsing a primary operator, we eat the operator as a prefix and | 
 | parse the remaining piece as another unary operator.  This allows us to handle | 
 | multiple unary operators (e.g. "!!x").  Note that unary operators can't have | 
 | ambiguous parses like binary operators can, so there is no need for precedence | 
 | information.</p> | 
 |  | 
 | <p>The problem with this function, is that we need to call ParseUnary from | 
 | somewhere.  To do this, we change previous callers of ParsePrimary to call | 
 | <tt>parse_unary</tt> instead:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | (* binoprhs | 
 |  *   ::= ('+' primary)* *) | 
 | and parse_bin_rhs expr_prec lhs stream = | 
 |         ... | 
 |         <b>(* Parse the unary expression after the binary operator. *) | 
 |         let rhs = parse_unary stream in</b> | 
 |         ... | 
 |  | 
 | ... | 
 |  | 
 | (* expression | 
 |  *   ::= primary binoprhs *) | 
 | and parse_expr = parser | 
 |   | [< lhs=<b>parse_unary</b>; stream >] -> parse_bin_rhs 0 lhs stream | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>With these two simple changes, we are now able to parse unary operators and build the | 
 | AST for them.  Next up, we need to add parser support for prototypes, to parse | 
 | the unary operator prototype.  We extend the binary operator code above | 
 | with:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | (* prototype | 
 |  *   ::= id '(' id* ')' | 
 |  *   ::= binary LETTER number? (id, id) | 
 |  <b>*   ::= unary LETTER number? (id)</b> *) | 
 | let parse_prototype = | 
 |   let rec parse_args accumulator = parser | 
 |     | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e | 
 |     | [< >] -> accumulator | 
 |   in | 
 |   <b>let parse_operator = parser | 
 |     | [< 'Token.Unary >] -> "unary", 1 | 
 |     | [< 'Token.Binary >] -> "binary", 2 | 
 |   in</b> | 
 |   let parse_binary_precedence = parser | 
 |     | [< 'Token.Number n >] -> int_of_float n | 
 |     | [< >] -> 30 | 
 |   in | 
 |   parser | 
 |   | [< 'Token.Ident id; | 
 |        'Token.Kwd '(' ?? "expected '(' in prototype"; | 
 |        args=parse_args []; | 
 |        'Token.Kwd ')' ?? "expected ')' in prototype" >] -> | 
 |       (* success. *) | 
 |       Ast.Prototype (id, Array.of_list (List.rev args)) | 
 |   <b>| [< (prefix, kind)=parse_operator; | 
 |        'Token.Kwd op ?? "expected an operator"; | 
 |        (* Read the precedence if present. *) | 
 |        binary_precedence=parse_binary_precedence; | 
 |        'Token.Kwd '(' ?? "expected '(' in prototype"; | 
 |         args=parse_args []; | 
 |        'Token.Kwd ')' ?? "expected ')' in prototype" >] -> | 
 |       let name = prefix ^ (String.make 1 op) in | 
 |       let args = Array.of_list (List.rev args) in | 
 |  | 
 |       (* Verify right number of arguments for operator. *) | 
 |       if Array.length args != kind | 
 |       then raise (Stream.Error "invalid number of operands for operator") | 
 |       else | 
 |         if kind == 1 then | 
 |           Ast.Prototype (name, args) | 
 |         else | 
 |           Ast.BinOpPrototype (name, args, binary_precedence)</b> | 
 |   | [< >] -> | 
 |       raise (Stream.Error "expected function name in prototype") | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>As with binary operators, we name unary operators with a name that includes | 
 | the operator character.  This assists us at code generation time.  Speaking of, | 
 | the final piece we need to add is codegen support for unary operators.  It looks | 
 | like this:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | let rec codegen_expr = function | 
 |   ... | 
 |   | Ast.Unary (op, operand) -> | 
 |       let operand = codegen_expr operand in | 
 |       let callee = "unary" ^ (String.make 1 op) in | 
 |       let callee = | 
 |         match lookup_function callee the_module with | 
 |         | Some callee -> callee | 
 |         | None -> raise (Error "unknown unary operator") | 
 |       in | 
 |       build_call callee [|operand|] "unop" builder | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This code is similar to, but simpler than, the code for binary operators.  It | 
 | is simpler primarily because it doesn't need to handle any predefined operators. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="example">Kicking the Tires</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>It is somewhat hard to believe, but with a few simple extensions we've | 
 | covered in the last chapters, we have grown a real-ish language.  With this, we | 
 | can do a lot of interesting things, including I/O, math, and a bunch of other | 
 | things.  For example, we can now add a nice sequencing operator (printd is | 
 | defined to print out the specified value and a newline):</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>extern printd(x);</b> | 
 | Read extern: declare double @printd(double) | 
 | ready> <b>def binary : 1 (x y) 0;  # Low-precedence operator that ignores operands.</b> | 
 | .. | 
 | ready> <b>printd(123) : printd(456) : printd(789);</b> | 
 | 123.000000 | 
 | 456.000000 | 
 | 789.000000 | 
 | Evaluated to 0.000000 | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>We can also define a bunch of other "primitive" operations, such as:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | # Logical unary not. | 
 | def unary!(v) | 
 |   if v then | 
 |     0 | 
 |   else | 
 |     1; | 
 |  | 
 | # Unary negate. | 
 | def unary-(v) | 
 |   0-v; | 
 |  | 
 | # Define > with the same precedence as >. | 
 | def binary> 10 (LHS RHS) | 
 |   RHS < LHS; | 
 |  | 
 | # Binary logical or, which does not short circuit. | 
 | def binary| 5 (LHS RHS) | 
 |   if LHS then | 
 |     1 | 
 |   else if RHS then | 
 |     1 | 
 |   else | 
 |     0; | 
 |  | 
 | # Binary logical and, which does not short circuit. | 
 | def binary& 6 (LHS RHS) | 
 |   if !LHS then | 
 |     0 | 
 |   else | 
 |     !!RHS; | 
 |  | 
 | # Define = with slightly lower precedence than relationals. | 
 | def binary = 9 (LHS RHS) | 
 |   !(LHS < RHS | LHS > RHS); | 
 |  | 
 | </pre> | 
 | </div> | 
 |  | 
 |  | 
 | <p>Given the previous if/then/else support, we can also define interesting | 
 | functions for I/O.  For example, the following prints out a character whose | 
 | "density" reflects the value passed in: the lower the value, the denser the | 
 | character:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> | 
 | <b> | 
 | extern putchard(char) | 
 | def printdensity(d) | 
 |   if d > 8 then | 
 |     putchard(32)  # ' ' | 
 |   else if d > 4 then | 
 |     putchard(46)  # '.' | 
 |   else if d > 2 then | 
 |     putchard(43)  # '+' | 
 |   else | 
 |     putchard(42); # '*'</b> | 
 | ... | 
 | ready> <b>printdensity(1): printdensity(2): printdensity(3) : | 
 |           printdensity(4): printdensity(5): printdensity(9): putchard(10);</b> | 
 | *++.. | 
 | Evaluated to 0.000000 | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Based on these simple primitive operations, we can start to define more | 
 | interesting things.  For example, here's a little function that solves for the | 
 | number of iterations it takes a function in the complex plane to | 
 | converge:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | # determine whether the specific location diverges. | 
 | # Solve for z = z^2 + c in the complex plane. | 
 | def mandleconverger(real imag iters creal cimag) | 
 |   if iters > 255 | (real*real + imag*imag > 4) then | 
 |     iters | 
 |   else | 
 |     mandleconverger(real*real - imag*imag + creal, | 
 |                     2*real*imag + cimag, | 
 |                     iters+1, creal, cimag); | 
 |  | 
 | # return the number of iterations required for the iteration to escape | 
 | def mandleconverge(real imag) | 
 |   mandleconverger(real, imag, 0, real, imag); | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>This "z = z<sup>2</sup> + c" function is a beautiful little creature that is the basis | 
 | for computation of the <a | 
 | href="http://en.wikipedia.org/wiki/Mandelbrot_set">Mandelbrot Set</a>.  Our | 
 | <tt>mandelconverge</tt> function returns the number of iterations that it takes | 
 | for a complex orbit to escape, saturating to 255.  This is not a very useful | 
 | function by itself, but if you plot its value over a two-dimensional plane, | 
 | you can see the Mandelbrot set.  Given that we are limited to using putchard | 
 | here, our amazing graphical output is limited, but we can whip together | 
 | something using the density plotter above:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | # compute and plot the mandlebrot set with the specified 2 dimensional range | 
 | # info. | 
 | def mandelhelp(xmin xmax xstep   ymin ymax ystep) | 
 |   for y = ymin, y < ymax, ystep in ( | 
 |     (for x = xmin, x < xmax, xstep in | 
 |        printdensity(mandleconverge(x,y))) | 
 |     : putchard(10) | 
 |   ) | 
 |  | 
 | # mandel - This is a convenient helper function for ploting the mandelbrot set | 
 | # from the specified position with the specified Magnification. | 
 | def mandel(realstart imagstart realmag imagmag) | 
 |   mandelhelp(realstart, realstart+realmag*78, realmag, | 
 |              imagstart, imagstart+imagmag*40, imagmag); | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Given this, we can try plotting out the mandlebrot set!  Lets try it out:</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | ready> <b>mandel(-2.3, -1.3, 0.05, 0.07);</b> | 
 | *******************************+++++++++++************************************* | 
 | *************************+++++++++++++++++++++++******************************* | 
 | **********************+++++++++++++++++++++++++++++**************************** | 
 | *******************+++++++++++++++++++++.. ...++++++++************************* | 
 | *****************++++++++++++++++++++++.... ...+++++++++*********************** | 
 | ***************+++++++++++++++++++++++.....   ...+++++++++********************* | 
 | **************+++++++++++++++++++++++....     ....+++++++++******************** | 
 | *************++++++++++++++++++++++......      .....++++++++******************* | 
 | ************+++++++++++++++++++++.......       .......+++++++****************** | 
 | ***********+++++++++++++++++++....                ... .+++++++***************** | 
 | **********+++++++++++++++++.......                     .+++++++**************** | 
 | *********++++++++++++++...........                    ...+++++++*************** | 
 | ********++++++++++++............                      ...++++++++************** | 
 | ********++++++++++... ..........                        .++++++++************** | 
 | *******+++++++++.....                                   .+++++++++************* | 
 | *******++++++++......                                  ..+++++++++************* | 
 | *******++++++.......                                   ..+++++++++************* | 
 | *******+++++......                                     ..+++++++++************* | 
 | *******.... ....                                      ...+++++++++************* | 
 | *******.... .                                         ...+++++++++************* | 
 | *******+++++......                                    ...+++++++++************* | 
 | *******++++++.......                                   ..+++++++++************* | 
 | *******++++++++......                                   .+++++++++************* | 
 | *******+++++++++.....                                  ..+++++++++************* | 
 | ********++++++++++... ..........                        .++++++++************** | 
 | ********++++++++++++............                      ...++++++++************** | 
 | *********++++++++++++++..........                     ...+++++++*************** | 
 | **********++++++++++++++++........                     .+++++++**************** | 
 | **********++++++++++++++++++++....                ... ..+++++++**************** | 
 | ***********++++++++++++++++++++++.......       .......++++++++***************** | 
 | ************+++++++++++++++++++++++......      ......++++++++****************** | 
 | **************+++++++++++++++++++++++....      ....++++++++******************** | 
 | ***************+++++++++++++++++++++++.....   ...+++++++++********************* | 
 | *****************++++++++++++++++++++++....  ...++++++++*********************** | 
 | *******************+++++++++++++++++++++......++++++++************************* | 
 | *********************++++++++++++++++++++++.++++++++*************************** | 
 | *************************+++++++++++++++++++++++******************************* | 
 | ******************************+++++++++++++************************************ | 
 | ******************************************************************************* | 
 | ******************************************************************************* | 
 | ******************************************************************************* | 
 | Evaluated to 0.000000 | 
 | ready> <b>mandel(-2, -1, 0.02, 0.04);</b> | 
 | **************************+++++++++++++++++++++++++++++++++++++++++++++++++++++ | 
 | ***********************++++++++++++++++++++++++++++++++++++++++++++++++++++++++ | 
 | *********************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++. | 
 | *******************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++... | 
 | *****************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++..... | 
 | ***************++++++++++++++++++++++++++++++++++++++++++++++++++++++++........ | 
 | **************++++++++++++++++++++++++++++++++++++++++++++++++++++++........... | 
 | ************+++++++++++++++++++++++++++++++++++++++++++++++++++++.............. | 
 | ***********++++++++++++++++++++++++++++++++++++++++++++++++++........        . | 
 | **********++++++++++++++++++++++++++++++++++++++++++++++............. | 
 | ********+++++++++++++++++++++++++++++++++++++++++++.................. | 
 | *******+++++++++++++++++++++++++++++++++++++++....................... | 
 | ******+++++++++++++++++++++++++++++++++++........................... | 
 | *****++++++++++++++++++++++++++++++++............................ | 
 | *****++++++++++++++++++++++++++++............................... | 
 | ****++++++++++++++++++++++++++......   ......................... | 
 | ***++++++++++++++++++++++++.........     ......    ........... | 
 | ***++++++++++++++++++++++............ | 
 | **+++++++++++++++++++++.............. | 
 | **+++++++++++++++++++................ | 
 | *++++++++++++++++++................. | 
 | *++++++++++++++++............ ... | 
 | *++++++++++++++.............. | 
 | *+++....++++................ | 
 | *..........  ........... | 
 | * | 
 | *..........  ........... | 
 | *+++....++++................ | 
 | *++++++++++++++.............. | 
 | *++++++++++++++++............ ... | 
 | *++++++++++++++++++................. | 
 | **+++++++++++++++++++................ | 
 | **+++++++++++++++++++++.............. | 
 | ***++++++++++++++++++++++............ | 
 | ***++++++++++++++++++++++++.........     ......    ........... | 
 | ****++++++++++++++++++++++++++......   ......................... | 
 | *****++++++++++++++++++++++++++++............................... | 
 | *****++++++++++++++++++++++++++++++++............................ | 
 | ******+++++++++++++++++++++++++++++++++++........................... | 
 | *******+++++++++++++++++++++++++++++++++++++++....................... | 
 | ********+++++++++++++++++++++++++++++++++++++++++++.................. | 
 | Evaluated to 0.000000 | 
 | ready> <b>mandel(-0.9, -1.4, 0.02, 0.03);</b> | 
 | ******************************************************************************* | 
 | ******************************************************************************* | 
 | ******************************************************************************* | 
 | **********+++++++++++++++++++++************************************************ | 
 | *+++++++++++++++++++++++++++++++++++++++*************************************** | 
 | +++++++++++++++++++++++++++++++++++++++++++++********************************** | 
 | ++++++++++++++++++++++++++++++++++++++++++++++++++***************************** | 
 | ++++++++++++++++++++++++++++++++++++++++++++++++++++++************************* | 
 | +++++++++++++++++++++++++++++++++++++++++++++++++++++++++********************** | 
 | +++++++++++++++++++++++++++++++++.........++++++++++++++++++******************* | 
 | +++++++++++++++++++++++++++++++....   ......+++++++++++++++++++**************** | 
 | +++++++++++++++++++++++++++++.......  ........+++++++++++++++++++************** | 
 | ++++++++++++++++++++++++++++........   ........++++++++++++++++++++************ | 
 | +++++++++++++++++++++++++++.........     ..  ...+++++++++++++++++++++********** | 
 | ++++++++++++++++++++++++++...........        ....++++++++++++++++++++++******** | 
 | ++++++++++++++++++++++++.............       .......++++++++++++++++++++++****** | 
 | +++++++++++++++++++++++.............        ........+++++++++++++++++++++++**** | 
 | ++++++++++++++++++++++...........           ..........++++++++++++++++++++++*** | 
 | ++++++++++++++++++++...........                .........++++++++++++++++++++++* | 
 | ++++++++++++++++++............                  ...........++++++++++++++++++++ | 
 | ++++++++++++++++...............                 .............++++++++++++++++++ | 
 | ++++++++++++++.................                 ...............++++++++++++++++ | 
 | ++++++++++++..................                  .................++++++++++++++ | 
 | +++++++++..................                      .................+++++++++++++ | 
 | ++++++........        .                               .........  ..++++++++++++ | 
 | ++............                                         ......    ....++++++++++ | 
 | ..............                                                    ...++++++++++ | 
 | ..............                                                    ....+++++++++ | 
 | ..............                                                    .....++++++++ | 
 | .............                                                    ......++++++++ | 
 | ...........                                                     .......++++++++ | 
 | .........                                                       ........+++++++ | 
 | .........                                                       ........+++++++ | 
 | .........                                                           ....+++++++ | 
 | ........                                                             ...+++++++ | 
 | .......                                                              ...+++++++ | 
 |                                                                     ....+++++++ | 
 |                                                                    .....+++++++ | 
 |                                                                     ....+++++++ | 
 |                                                                     ....+++++++ | 
 |                                                                     ....+++++++ | 
 | Evaluated to 0.000000 | 
 | ready> <b>^D</b> | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>At this point, you may be starting to realize that Kaleidoscope is a real | 
 | and powerful language.  It may not be self-similar :), but it can be used to | 
 | plot things that are!</p> | 
 |  | 
 | <p>With this, we conclude the "adding user-defined operators" chapter of the | 
 | tutorial.  We have successfully augmented our language, adding the ability to | 
 | extend the language in the library, and we have shown how this can be used to | 
 | build a simple but interesting end-user application in Kaleidoscope.  At this | 
 | point, Kaleidoscope can build a variety of applications that are functional and | 
 | can call functions with side-effects, but it can't actually define and mutate a | 
 | variable itself.</p> | 
 |  | 
 | <p>Strikingly, variable mutation is an important feature of some | 
 | languages, and it is not at all obvious how to <a href="OCamlLangImpl7.html">add | 
 | support for mutable variables</a> without having to add an "SSA construction" | 
 | phase to your front-end.  In the next chapter, we will describe how you can | 
 | add variable mutation without building SSA in your front-end.</p> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"><a name="code">Full Code Listing</a></div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | Here is the complete code listing for our running example, enhanced with the | 
 | if/then/else and for expressions..  To build this example, use: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | # Compile | 
 | ocamlbuild toy.byte | 
 | # Run | 
 | ./toy.byte | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Here is the code:</p> | 
 |  | 
 | <dl> | 
 | <dt>_tags:</dt> | 
 | <dd class="doc_code"> | 
 | <pre> | 
 | <{lexer,parser}.ml>: use_camlp4, pp(camlp4of) | 
 | <*.{byte,native}>: g++, use_llvm, use_llvm_analysis | 
 | <*.{byte,native}>: use_llvm_executionengine, use_llvm_target | 
 | <*.{byte,native}>: use_llvm_scalar_opts, use_bindings | 
 | </pre> | 
 | </dd> | 
 |  | 
 | <dt>myocamlbuild.ml:</dt> | 
 | <dd class="doc_code"> | 
 | <pre> | 
 | open Ocamlbuild_plugin;; | 
 |  | 
 | ocaml_lib ~extern:true "llvm";; | 
 | ocaml_lib ~extern:true "llvm_analysis";; | 
 | ocaml_lib ~extern:true "llvm_executionengine";; | 
 | ocaml_lib ~extern:true "llvm_target";; | 
 | ocaml_lib ~extern:true "llvm_scalar_opts";; | 
 |  | 
 | flag ["link"; "ocaml"; "g++"] (S[A"-cc"; A"g++"]);; | 
 | dep ["link"; "ocaml"; "use_bindings"] ["bindings.o"];; | 
 | </pre> | 
 | </dd> | 
 |  | 
 | <dt>token.ml:</dt> | 
 | <dd class="doc_code"> | 
 | <pre> | 
 | (*===----------------------------------------------------------------------=== | 
 |  * Lexer Tokens | 
 |  *===----------------------------------------------------------------------===*) | 
 |  | 
 | (* The lexer returns these 'Kwd' if it is an unknown character, otherwise one of | 
 |  * these others for known things. *) | 
 | type token = | 
 |   (* commands *) | 
 |   | Def | Extern | 
 |  | 
 |   (* primary *) | 
 |   | Ident of string | Number of float | 
 |  | 
 |   (* unknown *) | 
 |   | Kwd of char | 
 |  | 
 |   (* control *) | 
 |   | If | Then | Else | 
 |   | For | In | 
 |  | 
 |   (* operators *) | 
 |   | Binary | Unary | 
 | </pre> | 
 | </dd> | 
 |  | 
 | <dt>lexer.ml:</dt> | 
 | <dd class="doc_code"> | 
 | <pre> | 
 | (*===----------------------------------------------------------------------=== | 
 |  * Lexer | 
 |  *===----------------------------------------------------------------------===*) | 
 |  | 
 | let rec lex = parser | 
 |   (* Skip any whitespace. *) | 
 |   | [< ' (' ' | '\n' | '\r' | '\t'); stream >] -> lex stream | 
 |  | 
 |   (* identifier: [a-zA-Z][a-zA-Z0-9] *) | 
 |   | [< ' ('A' .. 'Z' | 'a' .. 'z' as c); stream >] -> | 
 |       let buffer = Buffer.create 1 in | 
 |       Buffer.add_char buffer c; | 
 |       lex_ident buffer stream | 
 |  | 
 |   (* number: [0-9.]+ *) | 
 |   | [< ' ('0' .. '9' as c); stream >] -> | 
 |       let buffer = Buffer.create 1 in | 
 |       Buffer.add_char buffer c; | 
 |       lex_number buffer stream | 
 |  | 
 |   (* Comment until end of line. *) | 
 |   | [< ' ('#'); stream >] -> | 
 |       lex_comment stream | 
 |  | 
 |   (* Otherwise, just return the character as its ascii value. *) | 
 |   | [< 'c; stream >] -> | 
 |       [< 'Token.Kwd c; lex stream >] | 
 |  | 
 |   (* end of stream. *) | 
 |   | [< >] -> [< >] | 
 |  | 
 | and lex_number buffer = parser | 
 |   | [< ' ('0' .. '9' | '.' as c); stream >] -> | 
 |       Buffer.add_char buffer c; | 
 |       lex_number buffer stream | 
 |   | [< stream=lex >] -> | 
 |       [< 'Token.Number (float_of_string (Buffer.contents buffer)); stream >] | 
 |  | 
 | and lex_ident buffer = parser | 
 |   | [< ' ('A' .. 'Z' | 'a' .. 'z' | '0' .. '9' as c); stream >] -> | 
 |       Buffer.add_char buffer c; | 
 |       lex_ident buffer stream | 
 |   | [< stream=lex >] -> | 
 |       match Buffer.contents buffer with | 
 |       | "def" -> [< 'Token.Def; stream >] | 
 |       | "extern" -> [< 'Token.Extern; stream >] | 
 |       | "if" -> [< 'Token.If; stream >] | 
 |       | "then" -> [< 'Token.Then; stream >] | 
 |       | "else" -> [< 'Token.Else; stream >] | 
 |       | "for" -> [< 'Token.For; stream >] | 
 |       | "in" -> [< 'Token.In; stream >] | 
 |       | "binary" -> [< 'Token.Binary; stream >] | 
 |       | "unary" -> [< 'Token.Unary; stream >] | 
 |       | id -> [< 'Token.Ident id; stream >] | 
 |  | 
 | and lex_comment = parser | 
 |   | [< ' ('\n'); stream=lex >] -> stream | 
 |   | [< 'c; e=lex_comment >] -> e | 
 |   | [< >] -> [< >] | 
 | </pre> | 
 | </dd> | 
 |  | 
 | <dt>ast.ml:</dt> | 
 | <dd class="doc_code"> | 
 | <pre> | 
 | (*===----------------------------------------------------------------------=== | 
 |  * Abstract Syntax Tree (aka Parse Tree) | 
 |  *===----------------------------------------------------------------------===*) | 
 |  | 
 | (* expr - Base type for all expression nodes. *) | 
 | type expr = | 
 |   (* variant for numeric literals like "1.0". *) | 
 |   | Number of float | 
 |  | 
 |   (* variant for referencing a variable, like "a". *) | 
 |   | Variable of string | 
 |  | 
 |   (* variant for a unary operator. *) | 
 |   | Unary of char * expr | 
 |  | 
 |   (* variant for a binary operator. *) | 
 |   | Binary of char * expr * expr | 
 |  | 
 |   (* variant for function calls. *) | 
 |   | Call of string * expr array | 
 |  | 
 |   (* variant for if/then/else. *) | 
 |   | If of expr * expr * expr | 
 |  | 
 |   (* variant for for/in. *) | 
 |   | For of string * expr * expr * expr option * expr | 
 |  | 
 | (* proto - This type represents the "prototype" for a function, which captures | 
 |  * its name, and its argument names (thus implicitly the number of arguments the | 
 |  * function takes). *) | 
 | type proto = | 
 |   | Prototype of string * string array | 
 |   | BinOpPrototype of string * string array * int | 
 |  | 
 | (* func - This type represents a function definition itself. *) | 
 | type func = Function of proto * expr | 
 | </pre> | 
 | </dd> | 
 |  | 
 | <dt>parser.ml:</dt> | 
 | <dd class="doc_code"> | 
 | <pre> | 
 | (*===---------------------------------------------------------------------=== | 
 |  * Parser | 
 |  *===---------------------------------------------------------------------===*) | 
 |  | 
 | (* binop_precedence - This holds the precedence for each binary operator that is | 
 |  * defined *) | 
 | let binop_precedence:(char, int) Hashtbl.t = Hashtbl.create 10 | 
 |  | 
 | (* precedence - Get the precedence of the pending binary operator token. *) | 
 | let precedence c = try Hashtbl.find binop_precedence c with Not_found -> -1 | 
 |  | 
 | (* primary | 
 |  *   ::= identifier | 
 |  *   ::= numberexpr | 
 |  *   ::= parenexpr | 
 |  *   ::= ifexpr | 
 |  *   ::= forexpr *) | 
 | let rec parse_primary = parser | 
 |   (* numberexpr ::= number *) | 
 |   | [< 'Token.Number n >] -> Ast.Number n | 
 |  | 
 |   (* parenexpr ::= '(' expression ')' *) | 
 |   | [< 'Token.Kwd '('; e=parse_expr; 'Token.Kwd ')' ?? "expected ')'" >] -> e | 
 |  | 
 |   (* identifierexpr | 
 |    *   ::= identifier | 
 |    *   ::= identifier '(' argumentexpr ')' *) | 
 |   | [< 'Token.Ident id; stream >] -> | 
 |       let rec parse_args accumulator = parser | 
 |         | [< e=parse_expr; stream >] -> | 
 |             begin parser | 
 |               | [< 'Token.Kwd ','; e=parse_args (e :: accumulator) >] -> e | 
 |               | [< >] -> e :: accumulator | 
 |             end stream | 
 |         | [< >] -> accumulator | 
 |       in | 
 |       let rec parse_ident id = parser | 
 |         (* Call. *) | 
 |         | [< 'Token.Kwd '('; | 
 |              args=parse_args []; | 
 |              'Token.Kwd ')' ?? "expected ')'">] -> | 
 |             Ast.Call (id, Array.of_list (List.rev args)) | 
 |  | 
 |         (* Simple variable ref. *) | 
 |         | [< >] -> Ast.Variable id | 
 |       in | 
 |       parse_ident id stream | 
 |  | 
 |   (* ifexpr ::= 'if' expr 'then' expr 'else' expr *) | 
 |   | [< 'Token.If; c=parse_expr; | 
 |        'Token.Then ?? "expected 'then'"; t=parse_expr; | 
 |        'Token.Else ?? "expected 'else'"; e=parse_expr >] -> | 
 |       Ast.If (c, t, e) | 
 |  | 
 |   (* forexpr | 
 |         ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression *) | 
 |   | [< 'Token.For; | 
 |        'Token.Ident id ?? "expected identifier after for"; | 
 |        'Token.Kwd '=' ?? "expected '=' after for"; | 
 |        stream >] -> | 
 |       begin parser | 
 |         | [< | 
 |              start=parse_expr; | 
 |              'Token.Kwd ',' ?? "expected ',' after for"; | 
 |              end_=parse_expr; | 
 |              stream >] -> | 
 |             let step = | 
 |               begin parser | 
 |               | [< 'Token.Kwd ','; step=parse_expr >] -> Some step | 
 |               | [< >] -> None | 
 |               end stream | 
 |             in | 
 |             begin parser | 
 |             | [< 'Token.In; body=parse_expr >] -> | 
 |                 Ast.For (id, start, end_, step, body) | 
 |             | [< >] -> | 
 |                 raise (Stream.Error "expected 'in' after for") | 
 |             end stream | 
 |         | [< >] -> | 
 |             raise (Stream.Error "expected '=' after for") | 
 |       end stream | 
 |  | 
 |   | [< >] -> raise (Stream.Error "unknown token when expecting an expression.") | 
 |  | 
 | (* unary | 
 |  *   ::= primary | 
 |  *   ::= '!' unary *) | 
 | and parse_unary = parser | 
 |   (* If this is a unary operator, read it. *) | 
 |   | [< 'Token.Kwd op when op != '(' && op != ')'; operand=parse_expr >] -> | 
 |       Ast.Unary (op, operand) | 
 |  | 
 |   (* If the current token is not an operator, it must be a primary expr. *) | 
 |   | [< stream >] -> parse_primary stream | 
 |  | 
 | (* binoprhs | 
 |  *   ::= ('+' primary)* *) | 
 | and parse_bin_rhs expr_prec lhs stream = | 
 |   match Stream.peek stream with | 
 |   (* If this is a binop, find its precedence. *) | 
 |   | Some (Token.Kwd c) when Hashtbl.mem binop_precedence c -> | 
 |       let token_prec = precedence c in | 
 |  | 
 |       (* If this is a binop that binds at least as tightly as the current binop, | 
 |        * consume it, otherwise we are done. *) | 
 |       if token_prec < expr_prec then lhs else begin | 
 |         (* Eat the binop. *) | 
 |         Stream.junk stream; | 
 |  | 
 |         (* Parse the unary expression after the binary operator. *) | 
 |         let rhs = parse_unary stream in | 
 |  | 
 |         (* Okay, we know this is a binop. *) | 
 |         let rhs = | 
 |           match Stream.peek stream with | 
 |           | Some (Token.Kwd c2) -> | 
 |               (* If BinOp binds less tightly with rhs than the operator after | 
 |                * rhs, let the pending operator take rhs as its lhs. *) | 
 |               let next_prec = precedence c2 in | 
 |               if token_prec < next_prec | 
 |               then parse_bin_rhs (token_prec + 1) rhs stream | 
 |               else rhs | 
 |           | _ -> rhs | 
 |         in | 
 |  | 
 |         (* Merge lhs/rhs. *) | 
 |         let lhs = Ast.Binary (c, lhs, rhs) in | 
 |         parse_bin_rhs expr_prec lhs stream | 
 |       end | 
 |   | _ -> lhs | 
 |  | 
 | (* expression | 
 |  *   ::= primary binoprhs *) | 
 | and parse_expr = parser | 
 |   | [< lhs=parse_unary; stream >] -> parse_bin_rhs 0 lhs stream | 
 |  | 
 | (* prototype | 
 |  *   ::= id '(' id* ')' | 
 |  *   ::= binary LETTER number? (id, id) | 
 |  *   ::= unary LETTER number? (id) *) | 
 | let parse_prototype = | 
 |   let rec parse_args accumulator = parser | 
 |     | [< 'Token.Ident id; e=parse_args (id::accumulator) >] -> e | 
 |     | [< >] -> accumulator | 
 |   in | 
 |   let parse_operator = parser | 
 |     | [< 'Token.Unary >] -> "unary", 1 | 
 |     | [< 'Token.Binary >] -> "binary", 2 | 
 |   in | 
 |   let parse_binary_precedence = parser | 
 |     | [< 'Token.Number n >] -> int_of_float n | 
 |     | [< >] -> 30 | 
 |   in | 
 |   parser | 
 |   | [< 'Token.Ident id; | 
 |        'Token.Kwd '(' ?? "expected '(' in prototype"; | 
 |        args=parse_args []; | 
 |        'Token.Kwd ')' ?? "expected ')' in prototype" >] -> | 
 |       (* success. *) | 
 |       Ast.Prototype (id, Array.of_list (List.rev args)) | 
 |   | [< (prefix, kind)=parse_operator; | 
 |        'Token.Kwd op ?? "expected an operator"; | 
 |        (* Read the precedence if present. *) | 
 |        binary_precedence=parse_binary_precedence; | 
 |        'Token.Kwd '(' ?? "expected '(' in prototype"; | 
 |         args=parse_args []; | 
 |        'Token.Kwd ')' ?? "expected ')' in prototype" >] -> | 
 |       let name = prefix ^ (String.make 1 op) in | 
 |       let args = Array.of_list (List.rev args) in | 
 |  | 
 |       (* Verify right number of arguments for operator. *) | 
 |       if Array.length args != kind | 
 |       then raise (Stream.Error "invalid number of operands for operator") | 
 |       else | 
 |         if kind == 1 then | 
 |           Ast.Prototype (name, args) | 
 |         else | 
 |           Ast.BinOpPrototype (name, args, binary_precedence) | 
 |   | [< >] -> | 
 |       raise (Stream.Error "expected function name in prototype") | 
 |  | 
 | (* definition ::= 'def' prototype expression *) | 
 | let parse_definition = parser | 
 |   | [< 'Token.Def; p=parse_prototype; e=parse_expr >] -> | 
 |       Ast.Function (p, e) | 
 |  | 
 | (* toplevelexpr ::= expression *) | 
 | let parse_toplevel = parser | 
 |   | [< e=parse_expr >] -> | 
 |       (* Make an anonymous proto. *) | 
 |       Ast.Function (Ast.Prototype ("", [||]), e) | 
 |  | 
 | (*  external ::= 'extern' prototype *) | 
 | let parse_extern = parser | 
 |   | [< 'Token.Extern; e=parse_prototype >] -> e | 
 | </pre> | 
 | </dd> | 
 |  | 
 | <dt>codegen.ml:</dt> | 
 | <dd class="doc_code"> | 
 | <pre> | 
 | (*===----------------------------------------------------------------------=== | 
 |  * Code Generation | 
 |  *===----------------------------------------------------------------------===*) | 
 |  | 
 | open Llvm | 
 |  | 
 | exception Error of string | 
 |  | 
 | let the_module = create_module "my cool jit" | 
 | let builder = builder () | 
 | let named_values:(string, llvalue) Hashtbl.t = Hashtbl.create 10 | 
 |  | 
 | let rec codegen_expr = function | 
 |   | Ast.Number n -> const_float double_type n | 
 |   | Ast.Variable name -> | 
 |       (try Hashtbl.find named_values name with | 
 |         | Not_found -> raise (Error "unknown variable name")) | 
 |   | Ast.Unary (op, operand) -> | 
 |       let operand = codegen_expr operand in | 
 |       let callee = "unary" ^ (String.make 1 op) in | 
 |       let callee = | 
 |         match lookup_function callee the_module with | 
 |         | Some callee -> callee | 
 |         | None -> raise (Error "unknown unary operator") | 
 |       in | 
 |       build_call callee [|operand|] "unop" builder | 
 |   | Ast.Binary (op, lhs, rhs) -> | 
 |       let lhs_val = codegen_expr lhs in | 
 |       let rhs_val = codegen_expr rhs in | 
 |       begin | 
 |         match op with | 
 |         | '+' -> build_add lhs_val rhs_val "addtmp" builder | 
 |         | '-' -> build_sub lhs_val rhs_val "subtmp" builder | 
 |         | '*' -> build_mul lhs_val rhs_val "multmp" builder | 
 |         | '<' -> | 
 |             (* Convert bool 0/1 to double 0.0 or 1.0 *) | 
 |             let i = build_fcmp Fcmp.Ult lhs_val rhs_val "cmptmp" builder in | 
 |             build_uitofp i double_type "booltmp" builder | 
 |         | _ -> | 
 |             (* If it wasn't a builtin binary operator, it must be a user defined | 
 |              * one. Emit a call to it. *) | 
 |             let callee = "binary" ^ (String.make 1 op) in | 
 |             let callee = | 
 |               match lookup_function callee the_module with | 
 |               | Some callee -> callee | 
 |               | None -> raise (Error "binary operator not found!") | 
 |             in | 
 |             build_call callee [|lhs_val; rhs_val|] "binop" builder | 
 |       end | 
 |   | Ast.Call (callee, args) -> | 
 |       (* Look up the name in the module table. *) | 
 |       let callee = | 
 |         match lookup_function callee the_module with | 
 |         | Some callee -> callee | 
 |         | None -> raise (Error "unknown function referenced") | 
 |       in | 
 |       let params = params callee in | 
 |  | 
 |       (* If argument mismatch error. *) | 
 |       if Array.length params == Array.length args then () else | 
 |         raise (Error "incorrect # arguments passed"); | 
 |       let args = Array.map codegen_expr args in | 
 |       build_call callee args "calltmp" builder | 
 |   | Ast.If (cond, then_, else_) -> | 
 |       let cond = codegen_expr cond in | 
 |  | 
 |       (* Convert condition to a bool by comparing equal to 0.0 *) | 
 |       let zero = const_float double_type 0.0 in | 
 |       let cond_val = build_fcmp Fcmp.One cond zero "ifcond" builder in | 
 |  | 
 |       (* Grab the first block so that we might later add the conditional branch | 
 |        * to it at the end of the function. *) | 
 |       let start_bb = insertion_block builder in | 
 |       let the_function = block_parent start_bb in | 
 |  | 
 |       let then_bb = append_block "then" the_function in | 
 |  | 
 |       (* Emit 'then' value. *) | 
 |       position_at_end then_bb builder; | 
 |       let then_val = codegen_expr then_ in | 
 |  | 
 |       (* Codegen of 'then' can change the current block, update then_bb for the | 
 |        * phi. We create a new name because one is used for the phi node, and the | 
 |        * other is used for the conditional branch. *) | 
 |       let new_then_bb = insertion_block builder in | 
 |  | 
 |       (* Emit 'else' value. *) | 
 |       let else_bb = append_block "else" the_function in | 
 |       position_at_end else_bb builder; | 
 |       let else_val = codegen_expr else_ in | 
 |  | 
 |       (* Codegen of 'else' can change the current block, update else_bb for the | 
 |        * phi. *) | 
 |       let new_else_bb = insertion_block builder in | 
 |  | 
 |       (* Emit merge block. *) | 
 |       let merge_bb = append_block "ifcont" the_function in | 
 |       position_at_end merge_bb builder; | 
 |       let incoming = [(then_val, new_then_bb); (else_val, new_else_bb)] in | 
 |       let phi = build_phi incoming "iftmp" builder in | 
 |  | 
 |       (* Return to the start block to add the conditional branch. *) | 
 |       position_at_end start_bb builder; | 
 |       ignore (build_cond_br cond_val then_bb else_bb builder); | 
 |  | 
 |       (* Set a unconditional branch at the end of the 'then' block and the | 
 |        * 'else' block to the 'merge' block. *) | 
 |       position_at_end new_then_bb builder; ignore (build_br merge_bb builder); | 
 |       position_at_end new_else_bb builder; ignore (build_br merge_bb builder); | 
 |  | 
 |       (* Finally, set the builder to the end of the merge block. *) | 
 |       position_at_end merge_bb builder; | 
 |  | 
 |       phi | 
 |   | Ast.For (var_name, start, end_, step, body) -> | 
 |       (* Emit the start code first, without 'variable' in scope. *) | 
 |       let start_val = codegen_expr start in | 
 |  | 
 |       (* Make the new basic block for the loop header, inserting after current | 
 |        * block. *) | 
 |       let preheader_bb = insertion_block builder in | 
 |       let the_function = block_parent preheader_bb in | 
 |       let loop_bb = append_block "loop" the_function in | 
 |  | 
 |       (* Insert an explicit fall through from the current block to the | 
 |        * loop_bb. *) | 
 |       ignore (build_br loop_bb builder); | 
 |  | 
 |       (* Start insertion in loop_bb. *) | 
 |       position_at_end loop_bb builder; | 
 |  | 
 |       (* Start the PHI node with an entry for start. *) | 
 |       let variable = build_phi [(start_val, preheader_bb)] var_name builder in | 
 |  | 
 |       (* Within the loop, the variable is defined equal to the PHI node. If it | 
 |        * shadows an existing variable, we have to restore it, so save it | 
 |        * now. *) | 
 |       let old_val = | 
 |         try Some (Hashtbl.find named_values var_name) with Not_found -> None | 
 |       in | 
 |       Hashtbl.add named_values var_name variable; | 
 |  | 
 |       (* Emit the body of the loop.  This, like any other expr, can change the | 
 |        * current BB.  Note that we ignore the value computed by the body, but | 
 |        * don't allow an error *) | 
 |       ignore (codegen_expr body); | 
 |  | 
 |       (* Emit the step value. *) | 
 |       let step_val = | 
 |         match step with | 
 |         | Some step -> codegen_expr step | 
 |         (* If not specified, use 1.0. *) | 
 |         | None -> const_float double_type 1.0 | 
 |       in | 
 |  | 
 |       let next_var = build_add variable step_val "nextvar" builder in | 
 |  | 
 |       (* Compute the end condition. *) | 
 |       let end_cond = codegen_expr end_ in | 
 |  | 
 |       (* Convert condition to a bool by comparing equal to 0.0. *) | 
 |       let zero = const_float double_type 0.0 in | 
 |       let end_cond = build_fcmp Fcmp.One end_cond zero "loopcond" builder in | 
 |  | 
 |       (* Create the "after loop" block and insert it. *) | 
 |       let loop_end_bb = insertion_block builder in | 
 |       let after_bb = append_block "afterloop" the_function in | 
 |  | 
 |       (* Insert the conditional branch into the end of loop_end_bb. *) | 
 |       ignore (build_cond_br end_cond loop_bb after_bb builder); | 
 |  | 
 |       (* Any new code will be inserted in after_bb. *) | 
 |       position_at_end after_bb builder; | 
 |  | 
 |       (* Add a new entry to the PHI node for the backedge. *) | 
 |       add_incoming (next_var, loop_end_bb) variable; | 
 |  | 
 |       (* Restore the unshadowed variable. *) | 
 |       begin match old_val with | 
 |       | Some old_val -> Hashtbl.add named_values var_name old_val | 
 |       | None -> () | 
 |       end; | 
 |  | 
 |       (* for expr always returns 0.0. *) | 
 |       const_null double_type | 
 |  | 
 | let codegen_proto = function | 
 |   | Ast.Prototype (name, args) | Ast.BinOpPrototype (name, args, _) -> | 
 |       (* Make the function type: double(double,double) etc. *) | 
 |       let doubles = Array.make (Array.length args) double_type in | 
 |       let ft = function_type double_type doubles in | 
 |       let f = | 
 |         match lookup_function name the_module with | 
 |         | None -> declare_function name ft the_module | 
 |  | 
 |         (* If 'f' conflicted, there was already something named 'name'. If it | 
 |          * has a body, don't allow redefinition or reextern. *) | 
 |         | Some f -> | 
 |             (* If 'f' already has a body, reject this. *) | 
 |             if block_begin f <> At_end f then | 
 |               raise (Error "redefinition of function"); | 
 |  | 
 |             (* If 'f' took a different number of arguments, reject. *) | 
 |             if element_type (type_of f) <> ft then | 
 |               raise (Error "redefinition of function with different # args"); | 
 |             f | 
 |       in | 
 |  | 
 |       (* Set names for all arguments. *) | 
 |       Array.iteri (fun i a -> | 
 |         let n = args.(i) in | 
 |         set_value_name n a; | 
 |         Hashtbl.add named_values n a; | 
 |       ) (params f); | 
 |       f | 
 |  | 
 | let codegen_func the_fpm = function | 
 |   | Ast.Function (proto, body) -> | 
 |       Hashtbl.clear named_values; | 
 |       let the_function = codegen_proto proto in | 
 |  | 
 |       (* If this is an operator, install it. *) | 
 |       begin match proto with | 
 |       | Ast.BinOpPrototype (name, args, prec) -> | 
 |           let op = name.[String.length name - 1] in | 
 |           Hashtbl.add Parser.binop_precedence op prec; | 
 |       | _ -> () | 
 |       end; | 
 |  | 
 |       (* Create a new basic block to start insertion into. *) | 
 |       let bb = append_block "entry" the_function in | 
 |       position_at_end bb builder; | 
 |  | 
 |       try | 
 |         let ret_val = codegen_expr body in | 
 |  | 
 |         (* Finish off the function. *) | 
 |         let _ = build_ret ret_val builder in | 
 |  | 
 |         (* Validate the generated code, checking for consistency. *) | 
 |         Llvm_analysis.assert_valid_function the_function; | 
 |  | 
 |         (* Optimize the function. *) | 
 |         let _ = PassManager.run_function the_function the_fpm in | 
 |  | 
 |         the_function | 
 |       with e -> | 
 |         delete_function the_function; | 
 |         raise e | 
 | </pre> | 
 | </dd> | 
 |  | 
 | <dt>toplevel.ml:</dt> | 
 | <dd class="doc_code"> | 
 | <pre> | 
 | (*===----------------------------------------------------------------------=== | 
 |  * Top-Level parsing and JIT Driver | 
 |  *===----------------------------------------------------------------------===*) | 
 |  | 
 | open Llvm | 
 | open Llvm_executionengine | 
 |  | 
 | (* top ::= definition | external | expression | ';' *) | 
 | let rec main_loop the_fpm the_execution_engine stream = | 
 |   match Stream.peek stream with | 
 |   | None -> () | 
 |  | 
 |   (* ignore top-level semicolons. *) | 
 |   | Some (Token.Kwd ';') -> | 
 |       Stream.junk stream; | 
 |       main_loop the_fpm the_execution_engine stream | 
 |  | 
 |   | Some token -> | 
 |       begin | 
 |         try match token with | 
 |         | Token.Def -> | 
 |             let e = Parser.parse_definition stream in | 
 |             print_endline "parsed a function definition."; | 
 |             dump_value (Codegen.codegen_func the_fpm e); | 
 |         | Token.Extern -> | 
 |             let e = Parser.parse_extern stream in | 
 |             print_endline "parsed an extern."; | 
 |             dump_value (Codegen.codegen_proto e); | 
 |         | _ -> | 
 |             (* Evaluate a top-level expression into an anonymous function. *) | 
 |             let e = Parser.parse_toplevel stream in | 
 |             print_endline "parsed a top-level expr"; | 
 |             let the_function = Codegen.codegen_func the_fpm e in | 
 |             dump_value the_function; | 
 |  | 
 |             (* JIT the function, returning a function pointer. *) | 
 |             let result = ExecutionEngine.run_function the_function [||] | 
 |               the_execution_engine in | 
 |  | 
 |             print_string "Evaluated to "; | 
 |             print_float (GenericValue.as_float double_type result); | 
 |             print_newline (); | 
 |         with Stream.Error s | Codegen.Error s -> | 
 |           (* Skip token for error recovery. *) | 
 |           Stream.junk stream; | 
 |           print_endline s; | 
 |       end; | 
 |       print_string "ready> "; flush stdout; | 
 |       main_loop the_fpm the_execution_engine stream | 
 | </pre> | 
 | </dd> | 
 |  | 
 | <dt>toy.ml:</dt> | 
 | <dd class="doc_code"> | 
 | <pre> | 
 | (*===----------------------------------------------------------------------=== | 
 |  * Main driver code. | 
 |  *===----------------------------------------------------------------------===*) | 
 |  | 
 | open Llvm | 
 | open Llvm_executionengine | 
 | open Llvm_target | 
 | open Llvm_scalar_opts | 
 |  | 
 | let main () = | 
 |   (* Install standard binary operators. | 
 |    * 1 is the lowest precedence. *) | 
 |   Hashtbl.add Parser.binop_precedence '<' 10; | 
 |   Hashtbl.add Parser.binop_precedence '+' 20; | 
 |   Hashtbl.add Parser.binop_precedence '-' 20; | 
 |   Hashtbl.add Parser.binop_precedence '*' 40;    (* highest. *) | 
 |  | 
 |   (* Prime the first token. *) | 
 |   print_string "ready> "; flush stdout; | 
 |   let stream = Lexer.lex (Stream.of_channel stdin) in | 
 |  | 
 |   (* Create the JIT. *) | 
 |   let the_module_provider = ModuleProvider.create Codegen.the_module in | 
 |   let the_execution_engine = ExecutionEngine.create the_module_provider in | 
 |   let the_fpm = PassManager.create_function the_module_provider in | 
 |  | 
 |   (* Set up the optimizer pipeline.  Start with registering info about how the | 
 |    * target lays out data structures. *) | 
 |   TargetData.add (ExecutionEngine.target_data the_execution_engine) the_fpm; | 
 |  | 
 |   (* Do simple "peephole" optimizations and bit-twiddling optzn. *) | 
 |   add_instruction_combining the_fpm; | 
 |  | 
 |   (* reassociate expressions. *) | 
 |   add_reassociation the_fpm; | 
 |  | 
 |   (* Eliminate Common SubExpressions. *) | 
 |   add_gvn the_fpm; | 
 |  | 
 |   (* Simplify the control flow graph (deleting unreachable blocks, etc). *) | 
 |   add_cfg_simplification the_fpm; | 
 |  | 
 |   (* Run the main "interpreter loop" now. *) | 
 |   Toplevel.main_loop the_fpm the_execution_engine stream; | 
 |  | 
 |   (* Print out all the generated code. *) | 
 |   dump_module Codegen.the_module | 
 | ;; | 
 |  | 
 | main () | 
 | </pre> | 
 | </dd> | 
 |  | 
 | <dt>bindings.c</dt> | 
 | <dd class="doc_code"> | 
 | <pre> | 
 | #include <stdio.h> | 
 |  | 
 | /* putchard - putchar that takes a double and returns 0. */ | 
 | extern double putchard(double X) { | 
 |   putchar((char)X); | 
 |   return 0; | 
 | } | 
 |  | 
 | /* printd - printf that takes a double prints it as "%f\n", returning 0. */ | 
 | extern double printd(double X) { | 
 |   printf("%f\n", X); | 
 |   return 0; | 
 | } | 
 | </pre> | 
 | </dd> | 
 | </dl> | 
 |  | 
 | <a href="OCamlLangImpl7.html">Next: Extending the language: mutable variables / | 
 | SSA construction</a> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <hr> | 
 | <address> | 
 |   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
 |   src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a> | 
 |   <a href="http://validator.w3.org/check/referer"><img | 
 |   src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a> | 
 |  | 
 |   <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> | 
 |   <a href="mailto:idadesub@users.sourceforge.net">Erick Tryzelaar</a><br> | 
 |   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> | 
 |   Last modified: $Date: 2007-10-17 11:05:13 -0700 (Wed, 17 Oct 2007) $ | 
 | </address> | 
 | </body> | 
 | </html> |