| //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the CriticalAntiDepBreaker class, which | 
 | // implements register anti-dependence breaking along a blocks | 
 | // critical path during post-RA scheduler. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "post-RA-sched" | 
 | #include "CriticalAntiDepBreaker.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetRegisterInfo.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | CriticalAntiDepBreaker:: | 
 | CriticalAntiDepBreaker(MachineFunction& MFi) :  | 
 |   AntiDepBreaker(), MF(MFi), | 
 |   MRI(MF.getRegInfo()), | 
 |   TRI(MF.getTarget().getRegisterInfo()), | 
 |   AllocatableSet(TRI->getAllocatableSet(MF)) | 
 | { | 
 | } | 
 |  | 
 | CriticalAntiDepBreaker::~CriticalAntiDepBreaker() { | 
 | } | 
 |  | 
 | void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { | 
 |   // Clear out the register class data. | 
 |   std::fill(Classes, array_endof(Classes), | 
 |             static_cast<const TargetRegisterClass *>(0)); | 
 |  | 
 |   // Initialize the indices to indicate that no registers are live. | 
 |   const unsigned BBSize = BB->size(); | 
 |   for (unsigned i = 0; i < TRI->getNumRegs(); ++i) { | 
 |     KillIndices[i] = ~0u; | 
 |     DefIndices[i] = BBSize; | 
 |   } | 
 |  | 
 |   // Clear "do not change" set. | 
 |   KeepRegs.clear(); | 
 |  | 
 |   bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn()); | 
 |  | 
 |   // Determine the live-out physregs for this block. | 
 |   if (IsReturnBlock) { | 
 |     // In a return block, examine the function live-out regs. | 
 |     for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(), | 
 |          E = MRI.liveout_end(); I != E; ++I) { | 
 |       unsigned Reg = *I; | 
 |       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
 |       KillIndices[Reg] = BB->size(); | 
 |       DefIndices[Reg] = ~0u; | 
 |       // Repeat, for all aliases. | 
 |       for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { | 
 |         unsigned AliasReg = *Alias; | 
 |         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
 |         KillIndices[AliasReg] = BB->size(); | 
 |         DefIndices[AliasReg] = ~0u; | 
 |       } | 
 |     } | 
 |   } else { | 
 |     // In a non-return block, examine the live-in regs of all successors. | 
 |     for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), | 
 |          SE = BB->succ_end(); SI != SE; ++SI) | 
 |       for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), | 
 |            E = (*SI)->livein_end(); I != E; ++I) { | 
 |         unsigned Reg = *I; | 
 |         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
 |         KillIndices[Reg] = BB->size(); | 
 |         DefIndices[Reg] = ~0u; | 
 |         // Repeat, for all aliases. | 
 |         for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { | 
 |           unsigned AliasReg = *Alias; | 
 |           Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
 |           KillIndices[AliasReg] = BB->size(); | 
 |           DefIndices[AliasReg] = ~0u; | 
 |         } | 
 |       } | 
 |   } | 
 |  | 
 |   // Mark live-out callee-saved registers. In a return block this is | 
 |   // all callee-saved registers. In non-return this is any | 
 |   // callee-saved register that is not saved in the prolog. | 
 |   const MachineFrameInfo *MFI = MF.getFrameInfo(); | 
 |   BitVector Pristine = MFI->getPristineRegs(BB); | 
 |   for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) { | 
 |     unsigned Reg = *I; | 
 |     if (!IsReturnBlock && !Pristine.test(Reg)) continue; | 
 |     Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
 |     KillIndices[Reg] = BB->size(); | 
 |     DefIndices[Reg] = ~0u; | 
 |     // Repeat, for all aliases. | 
 |     for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { | 
 |       unsigned AliasReg = *Alias; | 
 |       Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
 |       KillIndices[AliasReg] = BB->size(); | 
 |       DefIndices[AliasReg] = ~0u; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CriticalAntiDepBreaker::FinishBlock() { | 
 |   RegRefs.clear(); | 
 |   KeepRegs.clear(); | 
 | } | 
 |  | 
 | void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count, | 
 |                                      unsigned InsertPosIndex) { | 
 |   if (MI->isDebugValue()) | 
 |     return; | 
 |   assert(Count < InsertPosIndex && "Instruction index out of expected range!"); | 
 |  | 
 |   // Any register which was defined within the previous scheduling region | 
 |   // may have been rescheduled and its lifetime may overlap with registers | 
 |   // in ways not reflected in our current liveness state. For each such | 
 |   // register, adjust the liveness state to be conservatively correct. | 
 |   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) | 
 |     if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { | 
 |       assert(KillIndices[Reg] == ~0u && "Clobbered register is live!"); | 
 |       // Mark this register to be non-renamable. | 
 |       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
 |       // Move the def index to the end of the previous region, to reflect | 
 |       // that the def could theoretically have been scheduled at the end. | 
 |       DefIndices[Reg] = InsertPosIndex; | 
 |     } | 
 |  | 
 |   PrescanInstruction(MI); | 
 |   ScanInstruction(MI, Count); | 
 | } | 
 |  | 
 | /// CriticalPathStep - Return the next SUnit after SU on the bottom-up | 
 | /// critical path. | 
 | static SDep *CriticalPathStep(SUnit *SU) { | 
 |   SDep *Next = 0; | 
 |   unsigned NextDepth = 0; | 
 |   // Find the predecessor edge with the greatest depth. | 
 |   for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); | 
 |        P != PE; ++P) { | 
 |     SUnit *PredSU = P->getSUnit(); | 
 |     unsigned PredLatency = P->getLatency(); | 
 |     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; | 
 |     // In the case of a latency tie, prefer an anti-dependency edge over | 
 |     // other types of edges. | 
 |     if (NextDepth < PredTotalLatency || | 
 |         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { | 
 |       NextDepth = PredTotalLatency; | 
 |       Next = &*P; | 
 |     } | 
 |   } | 
 |   return Next; | 
 | } | 
 |  | 
 | void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) { | 
 |   // Scan the register operands for this instruction and update | 
 |   // Classes and RegRefs. | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI->getOperand(i); | 
 |     if (!MO.isReg()) continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (Reg == 0) continue; | 
 |     const TargetRegisterClass *NewRC = 0; | 
 |      | 
 |     if (i < MI->getDesc().getNumOperands()) | 
 |       NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI); | 
 |  | 
 |     // For now, only allow the register to be changed if its register | 
 |     // class is consistent across all uses. | 
 |     if (!Classes[Reg] && NewRC) | 
 |       Classes[Reg] = NewRC; | 
 |     else if (!NewRC || Classes[Reg] != NewRC) | 
 |       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
 |  | 
 |     // Now check for aliases. | 
 |     for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { | 
 |       // If an alias of the reg is used during the live range, give up. | 
 |       // Note that this allows us to skip checking if AntiDepReg | 
 |       // overlaps with any of the aliases, among other things. | 
 |       unsigned AliasReg = *Alias; | 
 |       if (Classes[AliasReg]) { | 
 |         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
 |         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
 |       } | 
 |     } | 
 |  | 
 |     // If we're still willing to consider this register, note the reference. | 
 |     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) | 
 |       RegRefs.insert(std::make_pair(Reg, &MO)); | 
 |  | 
 |     // It's not safe to change register allocation for source operands of | 
 |     // that have special allocation requirements. | 
 |     if (MO.isUse() && MI->getDesc().hasExtraSrcRegAllocReq()) { | 
 |       if (KeepRegs.insert(Reg)) { | 
 |         for (const unsigned *Subreg = TRI->getSubRegisters(Reg); | 
 |              *Subreg; ++Subreg) | 
 |           KeepRegs.insert(*Subreg); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI, | 
 |                                              unsigned Count) { | 
 |   // Update liveness. | 
 |   // Proceding upwards, registers that are defed but not used in this | 
 |   // instruction are now dead. | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI->getOperand(i); | 
 |     if (!MO.isReg()) continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (Reg == 0) continue; | 
 |     if (!MO.isDef()) continue; | 
 |     // Ignore two-addr defs. | 
 |     if (MI->isRegTiedToUseOperand(i)) continue; | 
 |  | 
 |     DefIndices[Reg] = Count; | 
 |     KillIndices[Reg] = ~0u; | 
 |     assert(((KillIndices[Reg] == ~0u) != | 
 |             (DefIndices[Reg] == ~0u)) && | 
 |            "Kill and Def maps aren't consistent for Reg!"); | 
 |     KeepRegs.erase(Reg); | 
 |     Classes[Reg] = 0; | 
 |     RegRefs.erase(Reg); | 
 |     // Repeat, for all subregs. | 
 |     for (const unsigned *Subreg = TRI->getSubRegisters(Reg); | 
 |          *Subreg; ++Subreg) { | 
 |       unsigned SubregReg = *Subreg; | 
 |       DefIndices[SubregReg] = Count; | 
 |       KillIndices[SubregReg] = ~0u; | 
 |       KeepRegs.erase(SubregReg); | 
 |       Classes[SubregReg] = 0; | 
 |       RegRefs.erase(SubregReg); | 
 |     } | 
 |     // Conservatively mark super-registers as unusable. | 
 |     for (const unsigned *Super = TRI->getSuperRegisters(Reg); | 
 |          *Super; ++Super) { | 
 |       unsigned SuperReg = *Super; | 
 |       Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
 |     } | 
 |   } | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |     MachineOperand &MO = MI->getOperand(i); | 
 |     if (!MO.isReg()) continue; | 
 |     unsigned Reg = MO.getReg(); | 
 |     if (Reg == 0) continue; | 
 |     if (!MO.isUse()) continue; | 
 |  | 
 |     const TargetRegisterClass *NewRC = 0; | 
 |     if (i < MI->getDesc().getNumOperands()) | 
 |       NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI); | 
 |  | 
 |     // For now, only allow the register to be changed if its register | 
 |     // class is consistent across all uses. | 
 |     if (!Classes[Reg] && NewRC) | 
 |       Classes[Reg] = NewRC; | 
 |     else if (!NewRC || Classes[Reg] != NewRC) | 
 |       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); | 
 |  | 
 |     RegRefs.insert(std::make_pair(Reg, &MO)); | 
 |  | 
 |     // It wasn't previously live but now it is, this is a kill. | 
 |     if (KillIndices[Reg] == ~0u) { | 
 |       KillIndices[Reg] = Count; | 
 |       DefIndices[Reg] = ~0u; | 
 |           assert(((KillIndices[Reg] == ~0u) != | 
 |                   (DefIndices[Reg] == ~0u)) && | 
 |                "Kill and Def maps aren't consistent for Reg!"); | 
 |     } | 
 |     // Repeat, for all aliases. | 
 |     for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { | 
 |       unsigned AliasReg = *Alias; | 
 |       if (KillIndices[AliasReg] == ~0u) { | 
 |         KillIndices[AliasReg] = Count; | 
 |         DefIndices[AliasReg] = ~0u; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | unsigned | 
 | CriticalAntiDepBreaker::findSuitableFreeRegister(MachineInstr *MI, | 
 |                                                  unsigned AntiDepReg, | 
 |                                                  unsigned LastNewReg, | 
 |                                                  const TargetRegisterClass *RC) | 
 | { | 
 |   for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF), | 
 |        RE = RC->allocation_order_end(MF); R != RE; ++R) { | 
 |     unsigned NewReg = *R; | 
 |     // Don't replace a register with itself. | 
 |     if (NewReg == AntiDepReg) continue; | 
 |     // Don't replace a register with one that was recently used to repair | 
 |     // an anti-dependence with this AntiDepReg, because that would | 
 |     // re-introduce that anti-dependence. | 
 |     if (NewReg == LastNewReg) continue; | 
 |     // If the instruction already has a def of the NewReg, it's not suitable. | 
 |     // For example, Instruction with multiple definitions can result in this | 
 |     // condition. | 
 |     if (MI->modifiesRegister(NewReg, TRI)) continue; | 
 |     // If NewReg is dead and NewReg's most recent def is not before | 
 |     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. | 
 |     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) | 
 |            && "Kill and Def maps aren't consistent for AntiDepReg!"); | 
 |     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) | 
 |            && "Kill and Def maps aren't consistent for NewReg!"); | 
 |     if (KillIndices[NewReg] != ~0u || | 
 |         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || | 
 |         KillIndices[AntiDepReg] > DefIndices[NewReg]) | 
 |       continue; | 
 |     return NewReg; | 
 |   } | 
 |  | 
 |   // No registers are free and available! | 
 |   return 0; | 
 | } | 
 |  | 
 | unsigned CriticalAntiDepBreaker:: | 
 | BreakAntiDependencies(std::vector<SUnit>& SUnits, | 
 |                       MachineBasicBlock::iterator& Begin, | 
 |                       MachineBasicBlock::iterator& End, | 
 |                       unsigned InsertPosIndex) { | 
 |   // The code below assumes that there is at least one instruction, | 
 |   // so just duck out immediately if the block is empty. | 
 |   if (SUnits.empty()) return 0; | 
 |  | 
 |   // Find the node at the bottom of the critical path. | 
 |   SUnit *Max = 0; | 
 |   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { | 
 |     SUnit *SU = &SUnits[i]; | 
 |     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) | 
 |       Max = SU; | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   { | 
 |     DEBUG(dbgs() << "Critical path has total latency " | 
 |           << (Max->getDepth() + Max->Latency) << "\n"); | 
 |     DEBUG(dbgs() << "Available regs:"); | 
 |     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { | 
 |       if (KillIndices[Reg] == ~0u) | 
 |         DEBUG(dbgs() << " " << TRI->getName(Reg)); | 
 |     } | 
 |     DEBUG(dbgs() << '\n'); | 
 |   } | 
 | #endif | 
 |  | 
 |   // Track progress along the critical path through the SUnit graph as we walk | 
 |   // the instructions. | 
 |   SUnit *CriticalPathSU = Max; | 
 |   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); | 
 |  | 
 |   // Consider this pattern: | 
 |   //   A = ... | 
 |   //   ... = A | 
 |   //   A = ... | 
 |   //   ... = A | 
 |   //   A = ... | 
 |   //   ... = A | 
 |   //   A = ... | 
 |   //   ... = A | 
 |   // There are three anti-dependencies here, and without special care, | 
 |   // we'd break all of them using the same register: | 
 |   //   A = ... | 
 |   //   ... = A | 
 |   //   B = ... | 
 |   //   ... = B | 
 |   //   B = ... | 
 |   //   ... = B | 
 |   //   B = ... | 
 |   //   ... = B | 
 |   // because at each anti-dependence, B is the first register that | 
 |   // isn't A which is free.  This re-introduces anti-dependencies | 
 |   // at all but one of the original anti-dependencies that we were | 
 |   // trying to break.  To avoid this, keep track of the most recent | 
 |   // register that each register was replaced with, avoid | 
 |   // using it to repair an anti-dependence on the same register. | 
 |   // This lets us produce this: | 
 |   //   A = ... | 
 |   //   ... = A | 
 |   //   B = ... | 
 |   //   ... = B | 
 |   //   C = ... | 
 |   //   ... = C | 
 |   //   B = ... | 
 |   //   ... = B | 
 |   // This still has an anti-dependence on B, but at least it isn't on the | 
 |   // original critical path. | 
 |   // | 
 |   // TODO: If we tracked more than one register here, we could potentially | 
 |   // fix that remaining critical edge too. This is a little more involved, | 
 |   // because unlike the most recent register, less recent registers should | 
 |   // still be considered, though only if no other registers are available. | 
 |   unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {}; | 
 |  | 
 |   // Attempt to break anti-dependence edges on the critical path. Walk the | 
 |   // instructions from the bottom up, tracking information about liveness | 
 |   // as we go to help determine which registers are available. | 
 |   unsigned Broken = 0; | 
 |   unsigned Count = InsertPosIndex - 1; | 
 |   for (MachineBasicBlock::iterator I = End, E = Begin; | 
 |        I != E; --Count) { | 
 |     MachineInstr *MI = --I; | 
 |     if (MI->isDebugValue()) | 
 |       continue; | 
 |  | 
 |     // Check if this instruction has a dependence on the critical path that | 
 |     // is an anti-dependence that we may be able to break. If it is, set | 
 |     // AntiDepReg to the non-zero register associated with the anti-dependence. | 
 |     // | 
 |     // We limit our attention to the critical path as a heuristic to avoid | 
 |     // breaking anti-dependence edges that aren't going to significantly | 
 |     // impact the overall schedule. There are a limited number of registers | 
 |     // and we want to save them for the important edges. | 
 |     //  | 
 |     // TODO: Instructions with multiple defs could have multiple | 
 |     // anti-dependencies. The current code here only knows how to break one | 
 |     // edge per instruction. Note that we'd have to be able to break all of | 
 |     // the anti-dependencies in an instruction in order to be effective. | 
 |     unsigned AntiDepReg = 0; | 
 |     if (MI == CriticalPathMI) { | 
 |       if (SDep *Edge = CriticalPathStep(CriticalPathSU)) { | 
 |         SUnit *NextSU = Edge->getSUnit(); | 
 |  | 
 |         // Only consider anti-dependence edges. | 
 |         if (Edge->getKind() == SDep::Anti) { | 
 |           AntiDepReg = Edge->getReg(); | 
 |           assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); | 
 |           if (!AllocatableSet.test(AntiDepReg)) | 
 |             // Don't break anti-dependencies on non-allocatable registers. | 
 |             AntiDepReg = 0; | 
 |           else if (KeepRegs.count(AntiDepReg)) | 
 |             // Don't break anti-dependencies if an use down below requires | 
 |             // this exact register. | 
 |             AntiDepReg = 0; | 
 |           else { | 
 |             // If the SUnit has other dependencies on the SUnit that it | 
 |             // anti-depends on, don't bother breaking the anti-dependency | 
 |             // since those edges would prevent such units from being | 
 |             // scheduled past each other regardless. | 
 |             // | 
 |             // Also, if there are dependencies on other SUnits with the | 
 |             // same register as the anti-dependency, don't attempt to | 
 |             // break it. | 
 |             for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(), | 
 |                  PE = CriticalPathSU->Preds.end(); P != PE; ++P) | 
 |               if (P->getSUnit() == NextSU ? | 
 |                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : | 
 |                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { | 
 |                 AntiDepReg = 0; | 
 |                 break; | 
 |               } | 
 |           } | 
 |         } | 
 |         CriticalPathSU = NextSU; | 
 |         CriticalPathMI = CriticalPathSU->getInstr(); | 
 |       } else { | 
 |         // We've reached the end of the critical path. | 
 |         CriticalPathSU = 0; | 
 |         CriticalPathMI = 0; | 
 |       } | 
 |     } | 
 |  | 
 |     PrescanInstruction(MI); | 
 |  | 
 |     if (MI->getDesc().hasExtraDefRegAllocReq()) | 
 |       // If this instruction's defs have special allocation requirement, don't | 
 |       // break this anti-dependency. | 
 |       AntiDepReg = 0; | 
 |     else if (AntiDepReg) { | 
 |       // If this instruction has a use of AntiDepReg, breaking it | 
 |       // is invalid. | 
 |       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
 |         MachineOperand &MO = MI->getOperand(i); | 
 |         if (!MO.isReg()) continue; | 
 |         unsigned Reg = MO.getReg(); | 
 |         if (Reg == 0) continue; | 
 |         if (MO.isUse() && AntiDepReg == Reg) { | 
 |           AntiDepReg = 0; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // Determine AntiDepReg's register class, if it is live and is | 
 |     // consistently used within a single class. | 
 |     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0; | 
 |     assert((AntiDepReg == 0 || RC != NULL) && | 
 |            "Register should be live if it's causing an anti-dependence!"); | 
 |     if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) | 
 |       AntiDepReg = 0; | 
 |  | 
 |     // Look for a suitable register to use to break the anti-depenence. | 
 |     // | 
 |     // TODO: Instead of picking the first free register, consider which might | 
 |     // be the best. | 
 |     if (AntiDepReg != 0) { | 
 |       if (unsigned NewReg = findSuitableFreeRegister(MI, AntiDepReg, | 
 |                                                      LastNewReg[AntiDepReg], | 
 |                                                      RC)) { | 
 |         DEBUG(dbgs() << "Breaking anti-dependence edge on " | 
 |               << TRI->getName(AntiDepReg) | 
 |               << " with " << RegRefs.count(AntiDepReg) << " references" | 
 |               << " using " << TRI->getName(NewReg) << "!\n"); | 
 |  | 
 |         // Update the references to the old register to refer to the new | 
 |         // register. | 
 |         std::pair<std::multimap<unsigned, MachineOperand *>::iterator, | 
 |                   std::multimap<unsigned, MachineOperand *>::iterator> | 
 |            Range = RegRefs.equal_range(AntiDepReg); | 
 |         for (std::multimap<unsigned, MachineOperand *>::iterator | 
 |              Q = Range.first, QE = Range.second; Q != QE; ++Q) | 
 |           Q->second->setReg(NewReg); | 
 |  | 
 |         // We just went back in time and modified history; the | 
 |         // liveness information for the anti-depenence reg is now | 
 |         // inconsistent. Set the state as if it were dead. | 
 |         Classes[NewReg] = Classes[AntiDepReg]; | 
 |         DefIndices[NewReg] = DefIndices[AntiDepReg]; | 
 |         KillIndices[NewReg] = KillIndices[AntiDepReg]; | 
 |         assert(((KillIndices[NewReg] == ~0u) != | 
 |                 (DefIndices[NewReg] == ~0u)) && | 
 |              "Kill and Def maps aren't consistent for NewReg!"); | 
 |  | 
 |         Classes[AntiDepReg] = 0; | 
 |         DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; | 
 |         KillIndices[AntiDepReg] = ~0u; | 
 |         assert(((KillIndices[AntiDepReg] == ~0u) != | 
 |                 (DefIndices[AntiDepReg] == ~0u)) && | 
 |              "Kill and Def maps aren't consistent for AntiDepReg!"); | 
 |  | 
 |         RegRefs.erase(AntiDepReg); | 
 |         LastNewReg[AntiDepReg] = NewReg; | 
 |         ++Broken; | 
 |       } | 
 |     } | 
 |  | 
 |     ScanInstruction(MI, Count); | 
 |   } | 
 |  | 
 |   return Broken; | 
 | } |