| //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares the CodeGenDAGPatterns class, which is used to read and |
| // represent the patterns present in a .td file for instructions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef CODEGEN_DAGPATTERNS_H |
| #define CODEGEN_DAGPATTERNS_H |
| |
| #include "CodeGenIntrinsics.h" |
| #include "CodeGenTarget.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include <algorithm> |
| #include <map> |
| #include <set> |
| #include <vector> |
| |
| namespace llvm { |
| class Record; |
| class Init; |
| class ListInit; |
| class DagInit; |
| class SDNodeInfo; |
| class TreePattern; |
| class TreePatternNode; |
| class CodeGenDAGPatterns; |
| class ComplexPattern; |
| |
| /// EEVT::DAGISelGenValueType - These are some extended forms of |
| /// MVT::SimpleValueType that we use as lattice values during type inference. |
| /// The existing MVT iAny, fAny and vAny types suffice to represent |
| /// arbitrary integer, floating-point, and vector types, so only an unknown |
| /// value is needed. |
| namespace EEVT { |
| /// TypeSet - This is either empty if it's completely unknown, or holds a set |
| /// of types. It is used during type inference because register classes can |
| /// have multiple possible types and we don't know which one they get until |
| /// type inference is complete. |
| /// |
| /// TypeSet can have three states: |
| /// Vector is empty: The type is completely unknown, it can be any valid |
| /// target type. |
| /// Vector has multiple constrained types: (e.g. v4i32 + v4f32) it is one |
| /// of those types only. |
| /// Vector has one concrete type: The type is completely known. |
| /// |
| class TypeSet { |
| SmallVector<MVT::SimpleValueType, 4> TypeVec; |
| public: |
| TypeSet() {} |
| TypeSet(MVT::SimpleValueType VT, TreePattern &TP); |
| TypeSet(const std::vector<MVT::SimpleValueType> &VTList); |
| |
| bool isCompletelyUnknown() const { return TypeVec.empty(); } |
| |
| bool isConcrete() const { |
| if (TypeVec.size() != 1) return false; |
| unsigned char T = TypeVec[0]; (void)T; |
| assert(T < MVT::LAST_VALUETYPE || T == MVT::iPTR || T == MVT::iPTRAny); |
| return true; |
| } |
| |
| MVT::SimpleValueType getConcrete() const { |
| assert(isConcrete() && "Type isn't concrete yet"); |
| return (MVT::SimpleValueType)TypeVec[0]; |
| } |
| |
| bool isDynamicallyResolved() const { |
| return getConcrete() == MVT::iPTR || getConcrete() == MVT::iPTRAny; |
| } |
| |
| const SmallVectorImpl<MVT::SimpleValueType> &getTypeList() const { |
| assert(!TypeVec.empty() && "Not a type list!"); |
| return TypeVec; |
| } |
| |
| bool isVoid() const { |
| return TypeVec.size() == 1 && TypeVec[0] == MVT::isVoid; |
| } |
| |
| /// hasIntegerTypes - Return true if this TypeSet contains any integer value |
| /// types. |
| bool hasIntegerTypes() const; |
| |
| /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or |
| /// a floating point value type. |
| bool hasFloatingPointTypes() const; |
| |
| /// hasVectorTypes - Return true if this TypeSet contains a vector value |
| /// type. |
| bool hasVectorTypes() const; |
| |
| /// getName() - Return this TypeSet as a string. |
| std::string getName() const; |
| |
| /// MergeInTypeInfo - This merges in type information from the specified |
| /// argument. If 'this' changes, it returns true. If the two types are |
| /// contradictory (e.g. merge f32 into i32) then this flags an error. |
| bool MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP); |
| |
| bool MergeInTypeInfo(MVT::SimpleValueType InVT, TreePattern &TP) { |
| return MergeInTypeInfo(EEVT::TypeSet(InVT, TP), TP); |
| } |
| |
| /// Force this type list to only contain integer types. |
| bool EnforceInteger(TreePattern &TP); |
| |
| /// Force this type list to only contain floating point types. |
| bool EnforceFloatingPoint(TreePattern &TP); |
| |
| /// EnforceScalar - Remove all vector types from this type list. |
| bool EnforceScalar(TreePattern &TP); |
| |
| /// EnforceVector - Remove all non-vector types from this type list. |
| bool EnforceVector(TreePattern &TP); |
| |
| /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update |
| /// this an other based on this information. |
| bool EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP); |
| |
| /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type |
| /// whose element is VT. |
| bool EnforceVectorEltTypeIs(EEVT::TypeSet &VT, TreePattern &TP); |
| |
| /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to |
| /// be a vector type VT. |
| bool EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VT, TreePattern &TP); |
| |
| bool operator!=(const TypeSet &RHS) const { return TypeVec != RHS.TypeVec; } |
| bool operator==(const TypeSet &RHS) const { return TypeVec == RHS.TypeVec; } |
| |
| private: |
| /// FillWithPossibleTypes - Set to all legal types and return true, only |
| /// valid on completely unknown type sets. If Pred is non-null, only MVTs |
| /// that pass the predicate are added. |
| bool FillWithPossibleTypes(TreePattern &TP, |
| bool (*Pred)(MVT::SimpleValueType) = 0, |
| const char *PredicateName = 0); |
| }; |
| } |
| |
| /// Set type used to track multiply used variables in patterns |
| typedef std::set<std::string> MultipleUseVarSet; |
| |
| /// SDTypeConstraint - This is a discriminated union of constraints, |
| /// corresponding to the SDTypeConstraint tablegen class in Target.td. |
| struct SDTypeConstraint { |
| SDTypeConstraint(Record *R); |
| |
| unsigned OperandNo; // The operand # this constraint applies to. |
| enum { |
| SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, |
| SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, |
| SDTCisSubVecOfVec |
| } ConstraintType; |
| |
| union { // The discriminated union. |
| struct { |
| MVT::SimpleValueType VT; |
| } SDTCisVT_Info; |
| struct { |
| unsigned OtherOperandNum; |
| } SDTCisSameAs_Info; |
| struct { |
| unsigned OtherOperandNum; |
| } SDTCisVTSmallerThanOp_Info; |
| struct { |
| unsigned BigOperandNum; |
| } SDTCisOpSmallerThanOp_Info; |
| struct { |
| unsigned OtherOperandNum; |
| } SDTCisEltOfVec_Info; |
| struct { |
| unsigned OtherOperandNum; |
| } SDTCisSubVecOfVec_Info; |
| } x; |
| |
| /// ApplyTypeConstraint - Given a node in a pattern, apply this type |
| /// constraint to the nodes operands. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, an error |
| /// is flagged. |
| bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, |
| TreePattern &TP) const; |
| }; |
| |
| /// SDNodeInfo - One of these records is created for each SDNode instance in |
| /// the target .td file. This represents the various dag nodes we will be |
| /// processing. |
| class SDNodeInfo { |
| Record *Def; |
| std::string EnumName; |
| std::string SDClassName; |
| unsigned Properties; |
| unsigned NumResults; |
| int NumOperands; |
| std::vector<SDTypeConstraint> TypeConstraints; |
| public: |
| SDNodeInfo(Record *R); // Parse the specified record. |
| |
| unsigned getNumResults() const { return NumResults; } |
| |
| /// getNumOperands - This is the number of operands required or -1 if |
| /// variadic. |
| int getNumOperands() const { return NumOperands; } |
| Record *getRecord() const { return Def; } |
| const std::string &getEnumName() const { return EnumName; } |
| const std::string &getSDClassName() const { return SDClassName; } |
| |
| const std::vector<SDTypeConstraint> &getTypeConstraints() const { |
| return TypeConstraints; |
| } |
| |
| /// getKnownType - If the type constraints on this node imply a fixed type |
| /// (e.g. all stores return void, etc), then return it as an |
| /// MVT::SimpleValueType. Otherwise, return MVT::Other. |
| MVT::SimpleValueType getKnownType(unsigned ResNo) const; |
| |
| /// hasProperty - Return true if this node has the specified property. |
| /// |
| bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } |
| |
| /// ApplyTypeConstraints - Given a node in a pattern, apply the type |
| /// constraints for this node to the operands of the node. This returns |
| /// true if it makes a change, false otherwise. If a type contradiction is |
| /// found, an error is flagged. |
| bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const { |
| bool MadeChange = false; |
| for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) |
| MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); |
| return MadeChange; |
| } |
| }; |
| |
| /// TreePredicateFn - This is an abstraction that represents the predicates on |
| /// a PatFrag node. This is a simple one-word wrapper around a pointer to |
| /// provide nice accessors. |
| class TreePredicateFn { |
| /// PatFragRec - This is the TreePattern for the PatFrag that we |
| /// originally came from. |
| TreePattern *PatFragRec; |
| public: |
| /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. |
| TreePredicateFn(TreePattern *N); |
| |
| |
| TreePattern *getOrigPatFragRecord() const { return PatFragRec; } |
| |
| /// isAlwaysTrue - Return true if this is a noop predicate. |
| bool isAlwaysTrue() const; |
| |
| bool isImmediatePattern() const { return !getImmCode().empty(); } |
| |
| /// getImmediatePredicateCode - Return the code that evaluates this pattern if |
| /// this is an immediate predicate. It is an error to call this on a |
| /// non-immediate pattern. |
| std::string getImmediatePredicateCode() const { |
| std::string Result = getImmCode(); |
| assert(!Result.empty() && "Isn't an immediate pattern!"); |
| return Result; |
| } |
| |
| |
| bool operator==(const TreePredicateFn &RHS) const { |
| return PatFragRec == RHS.PatFragRec; |
| } |
| |
| bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } |
| |
| /// Return the name to use in the generated code to reference this, this is |
| /// "Predicate_foo" if from a pattern fragment "foo". |
| std::string getFnName() const; |
| |
| /// getCodeToRunOnSDNode - Return the code for the function body that |
| /// evaluates this predicate. The argument is expected to be in "Node", |
| /// not N. This handles casting and conversion to a concrete node type as |
| /// appropriate. |
| std::string getCodeToRunOnSDNode() const; |
| |
| private: |
| std::string getPredCode() const; |
| std::string getImmCode() const; |
| }; |
| |
| |
| /// FIXME: TreePatternNode's can be shared in some cases (due to dag-shaped |
| /// patterns), and as such should be ref counted. We currently just leak all |
| /// TreePatternNode objects! |
| class TreePatternNode { |
| /// The type of each node result. Before and during type inference, each |
| /// result may be a set of possible types. After (successful) type inference, |
| /// each is a single concrete type. |
| SmallVector<EEVT::TypeSet, 1> Types; |
| |
| /// Operator - The Record for the operator if this is an interior node (not |
| /// a leaf). |
| Record *Operator; |
| |
| /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. |
| /// |
| Init *Val; |
| |
| /// Name - The name given to this node with the :$foo notation. |
| /// |
| std::string Name; |
| |
| /// PredicateFns - The predicate functions to execute on this node to check |
| /// for a match. If this list is empty, no predicate is involved. |
| std::vector<TreePredicateFn> PredicateFns; |
| |
| /// TransformFn - The transformation function to execute on this node before |
| /// it can be substituted into the resulting instruction on a pattern match. |
| Record *TransformFn; |
| |
| std::vector<TreePatternNode*> Children; |
| public: |
| TreePatternNode(Record *Op, const std::vector<TreePatternNode*> &Ch, |
| unsigned NumResults) |
| : Operator(Op), Val(0), TransformFn(0), Children(Ch) { |
| Types.resize(NumResults); |
| } |
| TreePatternNode(Init *val, unsigned NumResults) // leaf ctor |
| : Operator(0), Val(val), TransformFn(0) { |
| Types.resize(NumResults); |
| } |
| ~TreePatternNode(); |
| |
| const std::string &getName() const { return Name; } |
| void setName(StringRef N) { Name.assign(N.begin(), N.end()); } |
| |
| bool isLeaf() const { return Val != 0; } |
| |
| // Type accessors. |
| unsigned getNumTypes() const { return Types.size(); } |
| MVT::SimpleValueType getType(unsigned ResNo) const { |
| return Types[ResNo].getConcrete(); |
| } |
| const SmallVectorImpl<EEVT::TypeSet> &getExtTypes() const { return Types; } |
| const EEVT::TypeSet &getExtType(unsigned ResNo) const { return Types[ResNo]; } |
| EEVT::TypeSet &getExtType(unsigned ResNo) { return Types[ResNo]; } |
| void setType(unsigned ResNo, const EEVT::TypeSet &T) { Types[ResNo] = T; } |
| |
| bool hasTypeSet(unsigned ResNo) const { |
| return Types[ResNo].isConcrete(); |
| } |
| bool isTypeCompletelyUnknown(unsigned ResNo) const { |
| return Types[ResNo].isCompletelyUnknown(); |
| } |
| bool isTypeDynamicallyResolved(unsigned ResNo) const { |
| return Types[ResNo].isDynamicallyResolved(); |
| } |
| |
| Init *getLeafValue() const { assert(isLeaf()); return Val; } |
| Record *getOperator() const { assert(!isLeaf()); return Operator; } |
| |
| unsigned getNumChildren() const { return Children.size(); } |
| TreePatternNode *getChild(unsigned N) const { return Children[N]; } |
| void setChild(unsigned i, TreePatternNode *N) { |
| Children[i] = N; |
| } |
| |
| /// hasChild - Return true if N is any of our children. |
| bool hasChild(const TreePatternNode *N) const { |
| for (unsigned i = 0, e = Children.size(); i != e; ++i) |
| if (Children[i] == N) return true; |
| return false; |
| } |
| |
| bool hasAnyPredicate() const { return !PredicateFns.empty(); } |
| |
| const std::vector<TreePredicateFn> &getPredicateFns() const { |
| return PredicateFns; |
| } |
| void clearPredicateFns() { PredicateFns.clear(); } |
| void setPredicateFns(const std::vector<TreePredicateFn> &Fns) { |
| assert(PredicateFns.empty() && "Overwriting non-empty predicate list!"); |
| PredicateFns = Fns; |
| } |
| void addPredicateFn(const TreePredicateFn &Fn) { |
| assert(!Fn.isAlwaysTrue() && "Empty predicate string!"); |
| if (std::find(PredicateFns.begin(), PredicateFns.end(), Fn) == |
| PredicateFns.end()) |
| PredicateFns.push_back(Fn); |
| } |
| |
| Record *getTransformFn() const { return TransformFn; } |
| void setTransformFn(Record *Fn) { TransformFn = Fn; } |
| |
| /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the |
| /// CodeGenIntrinsic information for it, otherwise return a null pointer. |
| const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; |
| |
| /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, |
| /// return the ComplexPattern information, otherwise return null. |
| const ComplexPattern * |
| getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; |
| |
| /// NodeHasProperty - Return true if this node has the specified property. |
| bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; |
| |
| /// TreeHasProperty - Return true if any node in this tree has the specified |
| /// property. |
| bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; |
| |
| /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is |
| /// marked isCommutative. |
| bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| |
| public: // Higher level manipulation routines. |
| |
| /// clone - Return a new copy of this tree. |
| /// |
| TreePatternNode *clone() const; |
| |
| /// RemoveAllTypes - Recursively strip all the types of this tree. |
| void RemoveAllTypes(); |
| |
| /// isIsomorphicTo - Return true if this node is recursively isomorphic to |
| /// the specified node. For this comparison, all of the state of the node |
| /// is considered, except for the assigned name. Nodes with differing names |
| /// that are otherwise identical are considered isomorphic. |
| bool isIsomorphicTo(const TreePatternNode *N, |
| const MultipleUseVarSet &DepVars) const; |
| |
| /// SubstituteFormalArguments - Replace the formal arguments in this tree |
| /// with actual values specified by ArgMap. |
| void SubstituteFormalArguments(std::map<std::string, |
| TreePatternNode*> &ArgMap); |
| |
| /// InlinePatternFragments - If this pattern refers to any pattern |
| /// fragments, inline them into place, giving us a pattern without any |
| /// PatFrag references. |
| TreePatternNode *InlinePatternFragments(TreePattern &TP); |
| |
| /// ApplyTypeConstraints - Apply all of the type constraints relevant to |
| /// this node and its children in the tree. This returns true if it makes a |
| /// change, false otherwise. If a type contradiction is found, flag an error. |
| bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); |
| |
| /// UpdateNodeType - Set the node type of N to VT if VT contains |
| /// information. If N already contains a conflicting type, then flag an |
| /// error. This returns true if any information was updated. |
| /// |
| bool UpdateNodeType(unsigned ResNo, const EEVT::TypeSet &InTy, |
| TreePattern &TP) { |
| return Types[ResNo].MergeInTypeInfo(InTy, TP); |
| } |
| |
| bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, |
| TreePattern &TP) { |
| return Types[ResNo].MergeInTypeInfo(EEVT::TypeSet(InTy, TP), TP); |
| } |
| |
| /// ContainsUnresolvedType - Return true if this tree contains any |
| /// unresolved types. |
| bool ContainsUnresolvedType() const { |
| for (unsigned i = 0, e = Types.size(); i != e; ++i) |
| if (!Types[i].isConcrete()) return true; |
| |
| for (unsigned i = 0, e = getNumChildren(); i != e; ++i) |
| if (getChild(i)->ContainsUnresolvedType()) return true; |
| return false; |
| } |
| |
| /// canPatternMatch - If it is impossible for this pattern to match on this |
| /// target, fill in Reason and return false. Otherwise, return true. |
| bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); |
| }; |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { |
| TPN.print(OS); |
| return OS; |
| } |
| |
| |
| /// TreePattern - Represent a pattern, used for instructions, pattern |
| /// fragments, etc. |
| /// |
| class TreePattern { |
| /// Trees - The list of pattern trees which corresponds to this pattern. |
| /// Note that PatFrag's only have a single tree. |
| /// |
| std::vector<TreePatternNode*> Trees; |
| |
| /// NamedNodes - This is all of the nodes that have names in the trees in this |
| /// pattern. |
| StringMap<SmallVector<TreePatternNode*,1> > NamedNodes; |
| |
| /// TheRecord - The actual TableGen record corresponding to this pattern. |
| /// |
| Record *TheRecord; |
| |
| /// Args - This is a list of all of the arguments to this pattern (for |
| /// PatFrag patterns), which are the 'node' markers in this pattern. |
| std::vector<std::string> Args; |
| |
| /// CDP - the top-level object coordinating this madness. |
| /// |
| CodeGenDAGPatterns &CDP; |
| |
| /// isInputPattern - True if this is an input pattern, something to match. |
| /// False if this is an output pattern, something to emit. |
| bool isInputPattern; |
| |
| /// hasError - True if the currently processed nodes have unresolvable types |
| /// or other non-fatal errors |
| bool HasError; |
| public: |
| |
| /// TreePattern constructor - Parse the specified DagInits into the |
| /// current record. |
| TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, |
| CodeGenDAGPatterns &ise); |
| TreePattern(Record *TheRec, DagInit *Pat, bool isInput, |
| CodeGenDAGPatterns &ise); |
| TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, |
| CodeGenDAGPatterns &ise); |
| |
| /// getTrees - Return the tree patterns which corresponds to this pattern. |
| /// |
| const std::vector<TreePatternNode*> &getTrees() const { return Trees; } |
| unsigned getNumTrees() const { return Trees.size(); } |
| TreePatternNode *getTree(unsigned i) const { return Trees[i]; } |
| TreePatternNode *getOnlyTree() const { |
| assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); |
| return Trees[0]; |
| } |
| |
| const StringMap<SmallVector<TreePatternNode*,1> > &getNamedNodesMap() { |
| if (NamedNodes.empty()) |
| ComputeNamedNodes(); |
| return NamedNodes; |
| } |
| |
| /// getRecord - Return the actual TableGen record corresponding to this |
| /// pattern. |
| /// |
| Record *getRecord() const { return TheRecord; } |
| |
| unsigned getNumArgs() const { return Args.size(); } |
| const std::string &getArgName(unsigned i) const { |
| assert(i < Args.size() && "Argument reference out of range!"); |
| return Args[i]; |
| } |
| std::vector<std::string> &getArgList() { return Args; } |
| |
| CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } |
| |
| /// InlinePatternFragments - If this pattern refers to any pattern |
| /// fragments, inline them into place, giving us a pattern without any |
| /// PatFrag references. |
| void InlinePatternFragments() { |
| for (unsigned i = 0, e = Trees.size(); i != e; ++i) |
| Trees[i] = Trees[i]->InlinePatternFragments(*this); |
| } |
| |
| /// InferAllTypes - Infer/propagate as many types throughout the expression |
| /// patterns as possible. Return true if all types are inferred, false |
| /// otherwise. Bail out if a type contradiction is found. |
| bool InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > |
| *NamedTypes=0); |
| |
| /// error - If this is the first error in the current resolution step, |
| /// print it and set the error flag. Otherwise, continue silently. |
| void error(const std::string &Msg); |
| bool hasError() const { |
| return HasError; |
| } |
| void resetError() { |
| HasError = false; |
| } |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| |
| private: |
| TreePatternNode *ParseTreePattern(Init *DI, StringRef OpName); |
| void ComputeNamedNodes(); |
| void ComputeNamedNodes(TreePatternNode *N); |
| }; |
| |
| /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps |
| /// that has a set ExecuteAlways / DefaultOps field. |
| struct DAGDefaultOperand { |
| std::vector<TreePatternNode*> DefaultOps; |
| }; |
| |
| class DAGInstruction { |
| TreePattern *Pattern; |
| std::vector<Record*> Results; |
| std::vector<Record*> Operands; |
| std::vector<Record*> ImpResults; |
| TreePatternNode *ResultPattern; |
| public: |
| DAGInstruction(TreePattern *TP, |
| const std::vector<Record*> &results, |
| const std::vector<Record*> &operands, |
| const std::vector<Record*> &impresults) |
| : Pattern(TP), Results(results), Operands(operands), |
| ImpResults(impresults), ResultPattern(0) {} |
| |
| TreePattern *getPattern() const { return Pattern; } |
| unsigned getNumResults() const { return Results.size(); } |
| unsigned getNumOperands() const { return Operands.size(); } |
| unsigned getNumImpResults() const { return ImpResults.size(); } |
| const std::vector<Record*>& getImpResults() const { return ImpResults; } |
| |
| void setResultPattern(TreePatternNode *R) { ResultPattern = R; } |
| |
| Record *getResult(unsigned RN) const { |
| assert(RN < Results.size()); |
| return Results[RN]; |
| } |
| |
| Record *getOperand(unsigned ON) const { |
| assert(ON < Operands.size()); |
| return Operands[ON]; |
| } |
| |
| Record *getImpResult(unsigned RN) const { |
| assert(RN < ImpResults.size()); |
| return ImpResults[RN]; |
| } |
| |
| TreePatternNode *getResultPattern() const { return ResultPattern; } |
| }; |
| |
| /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns |
| /// processed to produce isel. |
| class PatternToMatch { |
| public: |
| PatternToMatch(Record *srcrecord, ListInit *preds, |
| TreePatternNode *src, TreePatternNode *dst, |
| const std::vector<Record*> &dstregs, |
| unsigned complexity, unsigned uid) |
| : SrcRecord(srcrecord), Predicates(preds), SrcPattern(src), DstPattern(dst), |
| Dstregs(dstregs), AddedComplexity(complexity), ID(uid) {} |
| |
| Record *SrcRecord; // Originating Record for the pattern. |
| ListInit *Predicates; // Top level predicate conditions to match. |
| TreePatternNode *SrcPattern; // Source pattern to match. |
| TreePatternNode *DstPattern; // Resulting pattern. |
| std::vector<Record*> Dstregs; // Physical register defs being matched. |
| unsigned AddedComplexity; // Add to matching pattern complexity. |
| unsigned ID; // Unique ID for the record. |
| |
| Record *getSrcRecord() const { return SrcRecord; } |
| ListInit *getPredicates() const { return Predicates; } |
| TreePatternNode *getSrcPattern() const { return SrcPattern; } |
| TreePatternNode *getDstPattern() const { return DstPattern; } |
| const std::vector<Record*> &getDstRegs() const { return Dstregs; } |
| unsigned getAddedComplexity() const { return AddedComplexity; } |
| |
| std::string getPredicateCheck() const; |
| |
| /// Compute the complexity metric for the input pattern. This roughly |
| /// corresponds to the number of nodes that are covered. |
| unsigned getPatternComplexity(const CodeGenDAGPatterns &CGP) const; |
| }; |
| |
| class CodeGenDAGPatterns { |
| RecordKeeper &Records; |
| CodeGenTarget Target; |
| std::vector<CodeGenIntrinsic> Intrinsics; |
| std::vector<CodeGenIntrinsic> TgtIntrinsics; |
| |
| std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; |
| std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> SDNodeXForms; |
| std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; |
| std::map<Record*, TreePattern*, LessRecordByID> PatternFragments; |
| std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; |
| std::map<Record*, DAGInstruction, LessRecordByID> Instructions; |
| |
| // Specific SDNode definitions: |
| Record *intrinsic_void_sdnode; |
| Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; |
| |
| /// PatternsToMatch - All of the things we are matching on the DAG. The first |
| /// value is the pattern to match, the second pattern is the result to |
| /// emit. |
| std::vector<PatternToMatch> PatternsToMatch; |
| public: |
| CodeGenDAGPatterns(RecordKeeper &R); |
| ~CodeGenDAGPatterns(); |
| |
| CodeGenTarget &getTargetInfo() { return Target; } |
| const CodeGenTarget &getTargetInfo() const { return Target; } |
| |
| Record *getSDNodeNamed(const std::string &Name) const; |
| |
| const SDNodeInfo &getSDNodeInfo(Record *R) const { |
| assert(SDNodes.count(R) && "Unknown node!"); |
| return SDNodes.find(R)->second; |
| } |
| |
| // Node transformation lookups. |
| typedef std::pair<Record*, std::string> NodeXForm; |
| const NodeXForm &getSDNodeTransform(Record *R) const { |
| assert(SDNodeXForms.count(R) && "Invalid transform!"); |
| return SDNodeXForms.find(R)->second; |
| } |
| |
| typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator |
| nx_iterator; |
| nx_iterator nx_begin() const { return SDNodeXForms.begin(); } |
| nx_iterator nx_end() const { return SDNodeXForms.end(); } |
| |
| |
| const ComplexPattern &getComplexPattern(Record *R) const { |
| assert(ComplexPatterns.count(R) && "Unknown addressing mode!"); |
| return ComplexPatterns.find(R)->second; |
| } |
| |
| const CodeGenIntrinsic &getIntrinsic(Record *R) const { |
| for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) |
| if (Intrinsics[i].TheDef == R) return Intrinsics[i]; |
| for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) |
| if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i]; |
| llvm_unreachable("Unknown intrinsic!"); |
| } |
| |
| const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { |
| if (IID-1 < Intrinsics.size()) |
| return Intrinsics[IID-1]; |
| if (IID-Intrinsics.size()-1 < TgtIntrinsics.size()) |
| return TgtIntrinsics[IID-Intrinsics.size()-1]; |
| llvm_unreachable("Bad intrinsic ID!"); |
| } |
| |
| unsigned getIntrinsicID(Record *R) const { |
| for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) |
| if (Intrinsics[i].TheDef == R) return i; |
| for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) |
| if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size(); |
| llvm_unreachable("Unknown intrinsic!"); |
| } |
| |
| const DAGDefaultOperand &getDefaultOperand(Record *R) const { |
| assert(DefaultOperands.count(R) &&"Isn't an analyzed default operand!"); |
| return DefaultOperands.find(R)->second; |
| } |
| |
| // Pattern Fragment information. |
| TreePattern *getPatternFragment(Record *R) const { |
| assert(PatternFragments.count(R) && "Invalid pattern fragment request!"); |
| return PatternFragments.find(R)->second; |
| } |
| TreePattern *getPatternFragmentIfRead(Record *R) const { |
| if (!PatternFragments.count(R)) return 0; |
| return PatternFragments.find(R)->second; |
| } |
| |
| typedef std::map<Record*, TreePattern*, LessRecordByID>::const_iterator |
| pf_iterator; |
| pf_iterator pf_begin() const { return PatternFragments.begin(); } |
| pf_iterator pf_end() const { return PatternFragments.end(); } |
| |
| // Patterns to match information. |
| typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; |
| ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } |
| ptm_iterator ptm_end() const { return PatternsToMatch.end(); } |
| |
| |
| |
| const DAGInstruction &getInstruction(Record *R) const { |
| assert(Instructions.count(R) && "Unknown instruction!"); |
| return Instructions.find(R)->second; |
| } |
| |
| Record *get_intrinsic_void_sdnode() const { |
| return intrinsic_void_sdnode; |
| } |
| Record *get_intrinsic_w_chain_sdnode() const { |
| return intrinsic_w_chain_sdnode; |
| } |
| Record *get_intrinsic_wo_chain_sdnode() const { |
| return intrinsic_wo_chain_sdnode; |
| } |
| |
| bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); } |
| |
| private: |
| void ParseNodeInfo(); |
| void ParseNodeTransforms(); |
| void ParseComplexPatterns(); |
| void ParsePatternFragments(); |
| void ParseDefaultOperands(); |
| void ParseInstructions(); |
| void ParsePatterns(); |
| void InferInstructionFlags(); |
| void GenerateVariants(); |
| void VerifyInstructionFlags(); |
| |
| void AddPatternToMatch(TreePattern *Pattern, const PatternToMatch &PTM); |
| void FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, |
| std::map<std::string, |
| TreePatternNode*> &InstInputs, |
| std::map<std::string, |
| TreePatternNode*> &InstResults, |
| std::vector<Record*> &InstImpResults); |
| }; |
| } // end namespace llvm |
| |
| #endif |