| //===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LatencyPriorityQueue class, which is a |
| // SchedulingPriorityQueue that schedules using latency information to |
| // reduce the length of the critical path through the basic block. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "scheduler" |
| #include "llvm/CodeGen/LatencyPriorityQueue.h" |
| #include "llvm/Support/Debug.h" |
| using namespace llvm; |
| |
| bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { |
| unsigned LHSNum = LHS->NodeNum; |
| unsigned RHSNum = RHS->NodeNum; |
| |
| // The most important heuristic is scheduling the critical path. |
| unsigned LHSLatency = PQ->getLatency(LHSNum); |
| unsigned RHSLatency = PQ->getLatency(RHSNum); |
| if (LHSLatency < RHSLatency) return true; |
| if (LHSLatency > RHSLatency) return false; |
| |
| // After that, if two nodes have identical latencies, look to see if one will |
| // unblock more other nodes than the other. |
| unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum); |
| unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum); |
| if (LHSBlocked < RHSBlocked) return true; |
| if (LHSBlocked > RHSBlocked) return false; |
| |
| // Finally, just to provide a stable ordering, use the node number as a |
| // deciding factor. |
| return LHSNum < RHSNum; |
| } |
| |
| |
| /// CalcNodePriority - Calculate the maximal path from the node to the exit. |
| /// |
| int LatencyPriorityQueue::CalcLatency(const SUnit &SU) { |
| int &Latency = Latencies[SU.NodeNum]; |
| if (Latency != -1) |
| return Latency; |
| |
| std::vector<const SUnit*> WorkList; |
| WorkList.push_back(&SU); |
| while (!WorkList.empty()) { |
| const SUnit *Cur = WorkList.back(); |
| unsigned CurLatency = Cur->Latency; |
| bool AllDone = true; |
| unsigned MaxSuccLatency = 0; |
| for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end(); |
| I != E; ++I) { |
| int SuccLatency = Latencies[I->getSUnit()->NodeNum]; |
| if (SuccLatency == -1) { |
| AllDone = false; |
| WorkList.push_back(I->getSUnit()); |
| } else { |
| // This assumes that there's no delay for reusing registers. |
| unsigned NewLatency = SuccLatency + CurLatency; |
| MaxSuccLatency = std::max(MaxSuccLatency, NewLatency); |
| } |
| } |
| if (AllDone) { |
| Latencies[Cur->NodeNum] = MaxSuccLatency; |
| WorkList.pop_back(); |
| } |
| } |
| |
| return Latency; |
| } |
| |
| /// CalculatePriorities - Calculate priorities of all scheduling units. |
| void LatencyPriorityQueue::CalculatePriorities() { |
| Latencies.assign(SUnits->size(), -1); |
| NumNodesSolelyBlocking.assign(SUnits->size(), 0); |
| |
| // For each node, calculate the maximal path from the node to the exit. |
| std::vector<std::pair<const SUnit*, unsigned> > WorkList; |
| for (unsigned i = 0, e = SUnits->size(); i != e; ++i) { |
| const SUnit *SU = &(*SUnits)[i]; |
| if (SU->Succs.empty()) |
| WorkList.push_back(std::make_pair(SU, 0U)); |
| } |
| |
| while (!WorkList.empty()) { |
| const SUnit *SU = WorkList.back().first; |
| unsigned SuccLat = WorkList.back().second; |
| WorkList.pop_back(); |
| int &Latency = Latencies[SU->NodeNum]; |
| if (Latency == -1 || (SU->Latency + SuccLat) > (unsigned)Latency) { |
| Latency = SU->Latency + SuccLat; |
| for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end(); |
| I != E; ++I) |
| WorkList.push_back(std::make_pair(I->getSUnit(), Latency)); |
| } |
| } |
| } |
| |
| /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor |
| /// of SU, return it, otherwise return null. |
| SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) { |
| SUnit *OnlyAvailablePred = 0; |
| for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| SUnit &Pred = *I->getSUnit(); |
| if (!Pred.isScheduled) { |
| // We found an available, but not scheduled, predecessor. If it's the |
| // only one we have found, keep track of it... otherwise give up. |
| if (OnlyAvailablePred && OnlyAvailablePred != &Pred) |
| return 0; |
| OnlyAvailablePred = &Pred; |
| } |
| } |
| |
| return OnlyAvailablePred; |
| } |
| |
| void LatencyPriorityQueue::push_impl(SUnit *SU) { |
| // Look at all of the successors of this node. Count the number of nodes that |
| // this node is the sole unscheduled node for. |
| unsigned NumNodesBlocking = 0; |
| for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) |
| if (getSingleUnscheduledPred(I->getSUnit()) == SU) |
| ++NumNodesBlocking; |
| NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; |
| |
| Queue.push(SU); |
| } |
| |
| |
| // ScheduledNode - As nodes are scheduled, we look to see if there are any |
| // successor nodes that have a single unscheduled predecessor. If so, that |
| // single predecessor has a higher priority, since scheduling it will make |
| // the node available. |
| void LatencyPriorityQueue::ScheduledNode(SUnit *SU) { |
| for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) |
| AdjustPriorityOfUnscheduledPreds(I->getSUnit()); |
| } |
| |
| /// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just |
| /// scheduled. If SU is not itself available, then there is at least one |
| /// predecessor node that has not been scheduled yet. If SU has exactly ONE |
| /// unscheduled predecessor, we want to increase its priority: it getting |
| /// scheduled will make this node available, so it is better than some other |
| /// node of the same priority that will not make a node available. |
| void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) { |
| if (SU->isAvailable) return; // All preds scheduled. |
| |
| SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); |
| if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return; |
| |
| // Okay, we found a single predecessor that is available, but not scheduled. |
| // Since it is available, it must be in the priority queue. First remove it. |
| remove(OnlyAvailablePred); |
| |
| // Reinsert the node into the priority queue, which recomputes its |
| // NumNodesSolelyBlocking value. |
| push(OnlyAvailablePred); |
| } |