| //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the ScheduleDAG class, which is a base class used by |
| // scheduling implementation classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "pre-RA-sched" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include <climits> |
| using namespace llvm; |
| |
| ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb, |
| const TargetMachine &tm) |
| : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) { |
| TII = TM.getInstrInfo(); |
| MF = BB->getParent(); |
| TRI = TM.getRegisterInfo(); |
| TLI = TM.getTargetLowering(); |
| ConstPool = MF->getConstantPool(); |
| } |
| |
| ScheduleDAG::~ScheduleDAG() {} |
| |
| /// CalculateDepths - compute depths using algorithms for the longest |
| /// paths in the DAG |
| void ScheduleDAG::CalculateDepths() { |
| unsigned DAGSize = SUnits.size(); |
| std::vector<SUnit*> WorkList; |
| WorkList.reserve(DAGSize); |
| |
| // Initialize the data structures |
| for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| SUnit *SU = &SUnits[i]; |
| unsigned Degree = SU->Preds.size(); |
| // Temporarily use the Depth field as scratch space for the degree count. |
| SU->Depth = Degree; |
| |
| // Is it a node without dependencies? |
| if (Degree == 0) { |
| assert(SU->Preds.empty() && "SUnit should have no predecessors"); |
| // Collect leaf nodes |
| WorkList.push_back(SU); |
| } |
| } |
| |
| // Process nodes in the topological order |
| while (!WorkList.empty()) { |
| SUnit *SU = WorkList.back(); |
| WorkList.pop_back(); |
| unsigned SUDepth = 0; |
| |
| // Use dynamic programming: |
| // When current node is being processed, all of its dependencies |
| // are already processed. |
| // So, just iterate over all predecessors and take the longest path |
| for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| unsigned PredDepth = I->getSUnit()->Depth; |
| if (PredDepth+1 > SUDepth) { |
| SUDepth = PredDepth + 1; |
| } |
| } |
| |
| SU->Depth = SUDepth; |
| |
| // Update degrees of all nodes depending on current SUnit |
| for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| SUnit *SU = I->getSUnit(); |
| if (!--SU->Depth) |
| // If all dependencies of the node are processed already, |
| // then the longest path for the node can be computed now |
| WorkList.push_back(SU); |
| } |
| } |
| } |
| |
| /// CalculateHeights - compute heights using algorithms for the longest |
| /// paths in the DAG |
| void ScheduleDAG::CalculateHeights() { |
| unsigned DAGSize = SUnits.size(); |
| std::vector<SUnit*> WorkList; |
| WorkList.reserve(DAGSize); |
| |
| // Initialize the data structures |
| for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| SUnit *SU = &SUnits[i]; |
| unsigned Degree = SU->Succs.size(); |
| // Temporarily use the Height field as scratch space for the degree count. |
| SU->Height = Degree; |
| |
| // Is it a node without dependencies? |
| if (Degree == 0) { |
| assert(SU->Succs.empty() && "Something wrong"); |
| assert(WorkList.empty() && "Should be empty"); |
| // Collect leaf nodes |
| WorkList.push_back(SU); |
| } |
| } |
| |
| // Process nodes in the topological order |
| while (!WorkList.empty()) { |
| SUnit *SU = WorkList.back(); |
| WorkList.pop_back(); |
| unsigned SUHeight = 0; |
| |
| // Use dynamic programming: |
| // When current node is being processed, all of its dependencies |
| // are already processed. |
| // So, just iterate over all successors and take the longest path |
| for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| unsigned SuccHeight = I->getSUnit()->Height; |
| if (SuccHeight+1 > SUHeight) { |
| SUHeight = SuccHeight + 1; |
| } |
| } |
| |
| SU->Height = SUHeight; |
| |
| // Update degrees of all nodes depending on current SUnit |
| for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| SUnit *SU = I->getSUnit(); |
| if (!--SU->Height) |
| // If all dependencies of the node are processed already, |
| // then the longest path for the node can be computed now |
| WorkList.push_back(SU); |
| } |
| } |
| } |
| |
| /// dump - dump the schedule. |
| void ScheduleDAG::dumpSchedule() const { |
| for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| if (SUnit *SU = Sequence[i]) |
| SU->dump(this); |
| else |
| cerr << "**** NOOP ****\n"; |
| } |
| } |
| |
| |
| /// Run - perform scheduling. |
| /// |
| void ScheduleDAG::Run() { |
| Schedule(); |
| |
| DOUT << "*** Final schedule ***\n"; |
| DEBUG(dumpSchedule()); |
| DOUT << "\n"; |
| } |
| |
| /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or |
| /// a group of nodes flagged together. |
| void SUnit::dump(const ScheduleDAG *G) const { |
| cerr << "SU(" << NodeNum << "): "; |
| G->dumpNode(this); |
| } |
| |
| void SUnit::dumpAll(const ScheduleDAG *G) const { |
| dump(G); |
| |
| cerr << " # preds left : " << NumPredsLeft << "\n"; |
| cerr << " # succs left : " << NumSuccsLeft << "\n"; |
| cerr << " Latency : " << Latency << "\n"; |
| cerr << " Depth : " << Depth << "\n"; |
| cerr << " Height : " << Height << "\n"; |
| |
| if (Preds.size() != 0) { |
| cerr << " Predecessors:\n"; |
| for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); |
| I != E; ++I) { |
| cerr << " "; |
| switch (I->getKind()) { |
| case SDep::Data: cerr << "val "; break; |
| case SDep::Anti: cerr << "anti"; break; |
| case SDep::Output: cerr << "out "; break; |
| case SDep::Order: cerr << "ch "; break; |
| } |
| cerr << "#"; |
| cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")"; |
| if (I->isArtificial()) |
| cerr << " *"; |
| cerr << "\n"; |
| } |
| } |
| if (Succs.size() != 0) { |
| cerr << " Successors:\n"; |
| for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); |
| I != E; ++I) { |
| cerr << " "; |
| switch (I->getKind()) { |
| case SDep::Data: cerr << "val "; break; |
| case SDep::Anti: cerr << "anti"; break; |
| case SDep::Output: cerr << "out "; break; |
| case SDep::Order: cerr << "ch "; break; |
| } |
| cerr << "#"; |
| cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")"; |
| if (I->isArtificial()) |
| cerr << " *"; |
| cerr << "\n"; |
| } |
| } |
| cerr << "\n"; |
| } |
| |
| #ifndef NDEBUG |
| /// VerifySchedule - Verify that all SUnits were scheduled and that |
| /// their state is consistent. |
| /// |
| void ScheduleDAG::VerifySchedule(bool isBottomUp) { |
| bool AnyNotSched = false; |
| unsigned DeadNodes = 0; |
| unsigned Noops = 0; |
| for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { |
| if (!SUnits[i].isScheduled) { |
| if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) { |
| ++DeadNodes; |
| continue; |
| } |
| if (!AnyNotSched) |
| cerr << "*** Scheduling failed! ***\n"; |
| SUnits[i].dump(this); |
| cerr << "has not been scheduled!\n"; |
| AnyNotSched = true; |
| } |
| if (SUnits[i].isScheduled && SUnits[i].Cycle > (unsigned)INT_MAX) { |
| if (!AnyNotSched) |
| cerr << "*** Scheduling failed! ***\n"; |
| SUnits[i].dump(this); |
| cerr << "has an unexpected Cycle value!\n"; |
| AnyNotSched = true; |
| } |
| if (isBottomUp) { |
| if (SUnits[i].NumSuccsLeft != 0) { |
| if (!AnyNotSched) |
| cerr << "*** Scheduling failed! ***\n"; |
| SUnits[i].dump(this); |
| cerr << "has successors left!\n"; |
| AnyNotSched = true; |
| } |
| } else { |
| if (SUnits[i].NumPredsLeft != 0) { |
| if (!AnyNotSched) |
| cerr << "*** Scheduling failed! ***\n"; |
| SUnits[i].dump(this); |
| cerr << "has predecessors left!\n"; |
| AnyNotSched = true; |
| } |
| } |
| } |
| for (unsigned i = 0, e = Sequence.size(); i != e; ++i) |
| if (!Sequence[i]) |
| ++Noops; |
| assert(!AnyNotSched); |
| assert(Sequence.size() + DeadNodes - Noops == SUnits.size() && |
| "The number of nodes scheduled doesn't match the expected number!"); |
| } |
| #endif |
| |
| /// InitDAGTopologicalSorting - create the initial topological |
| /// ordering from the DAG to be scheduled. |
| /// |
| /// The idea of the algorithm is taken from |
| /// "Online algorithms for managing the topological order of |
| /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly |
| /// This is the MNR algorithm, which was first introduced by |
| /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in |
| /// "Maintaining a topological order under edge insertions". |
| /// |
| /// Short description of the algorithm: |
| /// |
| /// Topological ordering, ord, of a DAG maps each node to a topological |
| /// index so that for all edges X->Y it is the case that ord(X) < ord(Y). |
| /// |
| /// This means that if there is a path from the node X to the node Z, |
| /// then ord(X) < ord(Z). |
| /// |
| /// This property can be used to check for reachability of nodes: |
| /// if Z is reachable from X, then an insertion of the edge Z->X would |
| /// create a cycle. |
| /// |
| /// The algorithm first computes a topological ordering for the DAG by |
| /// initializing the Index2Node and Node2Index arrays and then tries to keep |
| /// the ordering up-to-date after edge insertions by reordering the DAG. |
| /// |
| /// On insertion of the edge X->Y, the algorithm first marks by calling DFS |
| /// the nodes reachable from Y, and then shifts them using Shift to lie |
| /// immediately after X in Index2Node. |
| void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { |
| unsigned DAGSize = SUnits.size(); |
| std::vector<SUnit*> WorkList; |
| WorkList.reserve(DAGSize); |
| |
| Index2Node.resize(DAGSize); |
| Node2Index.resize(DAGSize); |
| |
| // Initialize the data structures. |
| for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| SUnit *SU = &SUnits[i]; |
| int NodeNum = SU->NodeNum; |
| unsigned Degree = SU->Succs.size(); |
| // Temporarily use the Node2Index array as scratch space for degree counts. |
| Node2Index[NodeNum] = Degree; |
| |
| // Is it a node without dependencies? |
| if (Degree == 0) { |
| assert(SU->Succs.empty() && "SUnit should have no successors"); |
| // Collect leaf nodes. |
| WorkList.push_back(SU); |
| } |
| } |
| |
| int Id = DAGSize; |
| while (!WorkList.empty()) { |
| SUnit *SU = WorkList.back(); |
| WorkList.pop_back(); |
| Allocate(SU->NodeNum, --Id); |
| for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| SUnit *SU = I->getSUnit(); |
| if (!--Node2Index[SU->NodeNum]) |
| // If all dependencies of the node are processed already, |
| // then the node can be computed now. |
| WorkList.push_back(SU); |
| } |
| } |
| |
| Visited.resize(DAGSize); |
| |
| #ifndef NDEBUG |
| // Check correctness of the ordering |
| for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| SUnit *SU = &SUnits[i]; |
| for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] && |
| "Wrong topological sorting"); |
| } |
| } |
| #endif |
| } |
| |
| /// AddPred - Updates the topological ordering to accomodate an edge |
| /// to be added from SUnit X to SUnit Y. |
| void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { |
| int UpperBound, LowerBound; |
| LowerBound = Node2Index[Y->NodeNum]; |
| UpperBound = Node2Index[X->NodeNum]; |
| bool HasLoop = false; |
| // Is Ord(X) < Ord(Y) ? |
| if (LowerBound < UpperBound) { |
| // Update the topological order. |
| Visited.reset(); |
| DFS(Y, UpperBound, HasLoop); |
| assert(!HasLoop && "Inserted edge creates a loop!"); |
| // Recompute topological indexes. |
| Shift(Visited, LowerBound, UpperBound); |
| } |
| } |
| |
| /// RemovePred - Updates the topological ordering to accomodate an |
| /// an edge to be removed from the specified node N from the predecessors |
| /// of the current node M. |
| void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { |
| // InitDAGTopologicalSorting(); |
| } |
| |
| /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark |
| /// all nodes affected by the edge insertion. These nodes will later get new |
| /// topological indexes by means of the Shift method. |
| void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, |
| bool& HasLoop) { |
| std::vector<const SUnit*> WorkList; |
| WorkList.reserve(SUnits.size()); |
| |
| WorkList.push_back(SU); |
| while (!WorkList.empty()) { |
| SU = WorkList.back(); |
| WorkList.pop_back(); |
| Visited.set(SU->NodeNum); |
| for (int I = SU->Succs.size()-1; I >= 0; --I) { |
| int s = SU->Succs[I].getSUnit()->NodeNum; |
| if (Node2Index[s] == UpperBound) { |
| HasLoop = true; |
| return; |
| } |
| // Visit successors if not already and in affected region. |
| if (!Visited.test(s) && Node2Index[s] < UpperBound) { |
| WorkList.push_back(SU->Succs[I].getSUnit()); |
| } |
| } |
| } |
| } |
| |
| /// Shift - Renumber the nodes so that the topological ordering is |
| /// preserved. |
| void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, |
| int UpperBound) { |
| std::vector<int> L; |
| int shift = 0; |
| int i; |
| |
| for (i = LowerBound; i <= UpperBound; ++i) { |
| // w is node at topological index i. |
| int w = Index2Node[i]; |
| if (Visited.test(w)) { |
| // Unmark. |
| Visited.reset(w); |
| L.push_back(w); |
| shift = shift + 1; |
| } else { |
| Allocate(w, i - shift); |
| } |
| } |
| |
| for (unsigned j = 0; j < L.size(); ++j) { |
| Allocate(L[j], i - shift); |
| i = i + 1; |
| } |
| } |
| |
| |
| /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will |
| /// create a cycle. |
| bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) { |
| if (IsReachable(TargetSU, SU)) |
| return true; |
| for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) |
| if (I->isAssignedRegDep() && |
| IsReachable(TargetSU, I->getSUnit())) |
| return true; |
| return false; |
| } |
| |
| /// IsReachable - Checks if SU is reachable from TargetSU. |
| bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, |
| const SUnit *TargetSU) { |
| // If insertion of the edge SU->TargetSU would create a cycle |
| // then there is a path from TargetSU to SU. |
| int UpperBound, LowerBound; |
| LowerBound = Node2Index[TargetSU->NodeNum]; |
| UpperBound = Node2Index[SU->NodeNum]; |
| bool HasLoop = false; |
| // Is Ord(TargetSU) < Ord(SU) ? |
| if (LowerBound < UpperBound) { |
| Visited.reset(); |
| // There may be a path from TargetSU to SU. Check for it. |
| DFS(TargetSU, UpperBound, HasLoop); |
| } |
| return HasLoop; |
| } |
| |
| /// Allocate - assign the topological index to the node n. |
| void ScheduleDAGTopologicalSort::Allocate(int n, int index) { |
| Node2Index[n] = index; |
| Index2Node[index] = n; |
| } |
| |
| ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort( |
| std::vector<SUnit> &sunits) |
| : SUnits(sunits) {} |