| //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements the ScheduleDAG class, which is a base class used by |
| // scheduling implementation classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "pre-RA-sched" |
| #include "llvm/CodeGen/ScheduleDAG.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Support/Debug.h" |
| using namespace llvm; |
| |
| ScheduleDAG::ScheduleDAG(SelectionDAG *dag, MachineBasicBlock *bb, |
| const TargetMachine &tm) |
| : DAG(dag), BB(bb), TM(tm), MRI(BB->getParent()->getRegInfo()) { |
| TII = TM.getInstrInfo(); |
| MF = BB->getParent(); |
| TRI = TM.getRegisterInfo(); |
| TLI = TM.getTargetLowering(); |
| ConstPool = MF->getConstantPool(); |
| } |
| |
| /// CheckForPhysRegDependency - Check if the dependency between def and use of |
| /// a specified operand is a physical register dependency. If so, returns the |
| /// register and the cost of copying the register. |
| static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, |
| const TargetRegisterInfo *TRI, |
| const TargetInstrInfo *TII, |
| unsigned &PhysReg, int &Cost) { |
| if (Op != 2 || User->getOpcode() != ISD::CopyToReg) |
| return; |
| |
| unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); |
| if (TargetRegisterInfo::isVirtualRegister(Reg)) |
| return; |
| |
| unsigned ResNo = User->getOperand(2).getResNo(); |
| if (Def->isMachineOpcode()) { |
| const TargetInstrDesc &II = TII->get(Def->getMachineOpcode()); |
| if (ResNo >= II.getNumDefs() && |
| II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) { |
| PhysReg = Reg; |
| const TargetRegisterClass *RC = |
| TRI->getPhysicalRegisterRegClass(Reg, Def->getValueType(ResNo)); |
| Cost = RC->getCopyCost(); |
| } |
| } |
| } |
| |
| SUnit *ScheduleDAG::Clone(SUnit *Old) { |
| SUnit *SU = NewSUnit(Old->getNode()); |
| SU->OrigNode = Old->OrigNode; |
| SU->FlaggedNodes = Old->FlaggedNodes; |
| SU->Latency = Old->Latency; |
| SU->isTwoAddress = Old->isTwoAddress; |
| SU->isCommutable = Old->isCommutable; |
| SU->hasPhysRegDefs = Old->hasPhysRegDefs; |
| return SU; |
| } |
| |
| |
| /// BuildSchedUnits - Build SUnits from the selection dag that we are input. |
| /// This SUnit graph is similar to the SelectionDAG, but represents flagged |
| /// together nodes with a single SUnit. |
| void ScheduleDAG::BuildSchedUnits() { |
| // Reserve entries in the vector for each of the SUnits we are creating. This |
| // ensure that reallocation of the vector won't happen, so SUnit*'s won't get |
| // invalidated. |
| SUnits.reserve(DAG->allnodes_size()); |
| |
| // During scheduling, the NodeId field of SDNode is used to map SDNodes |
| // to their associated SUnits by holding SUnits table indices. A value |
| // of -1 means the SDNode does not yet have an associated SUnit. |
| for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), |
| E = DAG->allnodes_end(); NI != E; ++NI) |
| NI->setNodeId(-1); |
| |
| for (SelectionDAG::allnodes_iterator NI = DAG->allnodes_begin(), |
| E = DAG->allnodes_end(); NI != E; ++NI) { |
| if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. |
| continue; |
| |
| // If this node has already been processed, stop now. |
| if (NI->getNodeId() != -1) continue; |
| |
| SUnit *NodeSUnit = NewSUnit(NI); |
| |
| // See if anything is flagged to this node, if so, add them to flagged |
| // nodes. Nodes can have at most one flag input and one flag output. Flags |
| // are required the be the last operand and result of a node. |
| |
| // Scan up, adding flagged preds to FlaggedNodes. |
| SDNode *N = NI; |
| if (N->getNumOperands() && |
| N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) { |
| do { |
| N = N->getOperand(N->getNumOperands()-1).getNode(); |
| NodeSUnit->FlaggedNodes.push_back(N); |
| assert(N->getNodeId() == -1 && "Node already inserted!"); |
| N->setNodeId(NodeSUnit->NodeNum); |
| } while (N->getNumOperands() && |
| N->getOperand(N->getNumOperands()-1).getValueType()== MVT::Flag); |
| std::reverse(NodeSUnit->FlaggedNodes.begin(), |
| NodeSUnit->FlaggedNodes.end()); |
| } |
| |
| // Scan down, adding this node and any flagged succs to FlaggedNodes if they |
| // have a user of the flag operand. |
| N = NI; |
| while (N->getValueType(N->getNumValues()-1) == MVT::Flag) { |
| SDValue FlagVal(N, N->getNumValues()-1); |
| |
| // There are either zero or one users of the Flag result. |
| bool HasFlagUse = false; |
| for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); |
| UI != E; ++UI) |
| if (FlagVal.isOperandOf(*UI)) { |
| HasFlagUse = true; |
| NodeSUnit->FlaggedNodes.push_back(N); |
| assert(N->getNodeId() == -1 && "Node already inserted!"); |
| N->setNodeId(NodeSUnit->NodeNum); |
| N = *UI; |
| break; |
| } |
| if (!HasFlagUse) break; |
| } |
| |
| // Now all flagged nodes are in FlaggedNodes and N is the bottom-most node. |
| // Update the SUnit |
| NodeSUnit->setNode(N); |
| assert(N->getNodeId() == -1 && "Node already inserted!"); |
| N->setNodeId(NodeSUnit->NodeNum); |
| |
| ComputeLatency(NodeSUnit); |
| } |
| |
| // Pass 2: add the preds, succs, etc. |
| for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { |
| SUnit *SU = &SUnits[su]; |
| SDNode *MainNode = SU->getNode(); |
| |
| if (MainNode->isMachineOpcode()) { |
| unsigned Opc = MainNode->getMachineOpcode(); |
| const TargetInstrDesc &TID = TII->get(Opc); |
| for (unsigned i = 0; i != TID.getNumOperands(); ++i) { |
| if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) { |
| SU->isTwoAddress = true; |
| break; |
| } |
| } |
| if (TID.isCommutable()) |
| SU->isCommutable = true; |
| } |
| |
| // Find all predecessors and successors of the group. |
| // Temporarily add N to make code simpler. |
| SU->FlaggedNodes.push_back(MainNode); |
| |
| for (unsigned n = 0, e = SU->FlaggedNodes.size(); n != e; ++n) { |
| SDNode *N = SU->FlaggedNodes[n]; |
| if (N->isMachineOpcode() && |
| TII->get(N->getMachineOpcode()).getImplicitDefs() && |
| CountResults(N) > TII->get(N->getMachineOpcode()).getNumDefs()) |
| SU->hasPhysRegDefs = true; |
| |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDNode *OpN = N->getOperand(i).getNode(); |
| if (isPassiveNode(OpN)) continue; // Not scheduled. |
| SUnit *OpSU = &SUnits[OpN->getNodeId()]; |
| assert(OpSU && "Node has no SUnit!"); |
| if (OpSU == SU) continue; // In the same group. |
| |
| MVT OpVT = N->getOperand(i).getValueType(); |
| assert(OpVT != MVT::Flag && "Flagged nodes should be in same sunit!"); |
| bool isChain = OpVT == MVT::Other; |
| |
| unsigned PhysReg = 0; |
| int Cost = 1; |
| // Determine if this is a physical register dependency. |
| CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); |
| SU->addPred(OpSU, isChain, false, PhysReg, Cost); |
| } |
| } |
| |
| // Remove MainNode from FlaggedNodes again. |
| SU->FlaggedNodes.pop_back(); |
| } |
| } |
| |
| void ScheduleDAG::ComputeLatency(SUnit *SU) { |
| const InstrItineraryData &InstrItins = TM.getInstrItineraryData(); |
| |
| // Compute the latency for the node. We use the sum of the latencies for |
| // all nodes flagged together into this SUnit. |
| if (InstrItins.isEmpty()) { |
| // No latency information. |
| SU->Latency = 1; |
| return; |
| } |
| |
| SU->Latency = 0; |
| if (SU->getNode()->isMachineOpcode()) { |
| unsigned SchedClass = TII->get(SU->getNode()->getMachineOpcode()).getSchedClass(); |
| const InstrStage *S = InstrItins.begin(SchedClass); |
| const InstrStage *E = InstrItins.end(SchedClass); |
| for (; S != E; ++S) |
| SU->Latency += S->Cycles; |
| } |
| for (unsigned i = 0, e = SU->FlaggedNodes.size(); i != e; ++i) { |
| SDNode *FNode = SU->FlaggedNodes[i]; |
| if (FNode->isMachineOpcode()) { |
| unsigned SchedClass = TII->get(FNode->getMachineOpcode()).getSchedClass(); |
| const InstrStage *S = InstrItins.begin(SchedClass); |
| const InstrStage *E = InstrItins.end(SchedClass); |
| for (; S != E; ++S) |
| SU->Latency += S->Cycles; |
| } |
| } |
| } |
| |
| /// CalculateDepths - compute depths using algorithms for the longest |
| /// paths in the DAG |
| void ScheduleDAG::CalculateDepths() { |
| unsigned DAGSize = SUnits.size(); |
| std::vector<SUnit*> WorkList; |
| WorkList.reserve(DAGSize); |
| |
| // Initialize the data structures |
| for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| SUnit *SU = &SUnits[i]; |
| unsigned Degree = SU->Preds.size(); |
| // Temporarily use the Depth field as scratch space for the degree count. |
| SU->Depth = Degree; |
| |
| // Is it a node without dependencies? |
| if (Degree == 0) { |
| assert(SU->Preds.empty() && "SUnit should have no predecessors"); |
| // Collect leaf nodes |
| WorkList.push_back(SU); |
| } |
| } |
| |
| // Process nodes in the topological order |
| while (!WorkList.empty()) { |
| SUnit *SU = WorkList.back(); |
| WorkList.pop_back(); |
| unsigned SUDepth = 0; |
| |
| // Use dynamic programming: |
| // When current node is being processed, all of its dependencies |
| // are already processed. |
| // So, just iterate over all predecessors and take the longest path |
| for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| unsigned PredDepth = I->Dep->Depth; |
| if (PredDepth+1 > SUDepth) { |
| SUDepth = PredDepth + 1; |
| } |
| } |
| |
| SU->Depth = SUDepth; |
| |
| // Update degrees of all nodes depending on current SUnit |
| for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| SUnit *SU = I->Dep; |
| if (!--SU->Depth) |
| // If all dependencies of the node are processed already, |
| // then the longest path for the node can be computed now |
| WorkList.push_back(SU); |
| } |
| } |
| } |
| |
| /// CalculateHeights - compute heights using algorithms for the longest |
| /// paths in the DAG |
| void ScheduleDAG::CalculateHeights() { |
| unsigned DAGSize = SUnits.size(); |
| std::vector<SUnit*> WorkList; |
| WorkList.reserve(DAGSize); |
| |
| // Initialize the data structures |
| for (unsigned i = 0, e = DAGSize; i != e; ++i) { |
| SUnit *SU = &SUnits[i]; |
| unsigned Degree = SU->Succs.size(); |
| // Temporarily use the Height field as scratch space for the degree count. |
| SU->Height = Degree; |
| |
| // Is it a node without dependencies? |
| if (Degree == 0) { |
| assert(SU->Succs.empty() && "Something wrong"); |
| assert(WorkList.empty() && "Should be empty"); |
| // Collect leaf nodes |
| WorkList.push_back(SU); |
| } |
| } |
| |
| // Process nodes in the topological order |
| while (!WorkList.empty()) { |
| SUnit *SU = WorkList.back(); |
| WorkList.pop_back(); |
| unsigned SUHeight = 0; |
| |
| // Use dynamic programming: |
| // When current node is being processed, all of its dependencies |
| // are already processed. |
| // So, just iterate over all successors and take the longest path |
| for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
| I != E; ++I) { |
| unsigned SuccHeight = I->Dep->Height; |
| if (SuccHeight+1 > SUHeight) { |
| SUHeight = SuccHeight + 1; |
| } |
| } |
| |
| SU->Height = SUHeight; |
| |
| // Update degrees of all nodes depending on current SUnit |
| for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); |
| I != E; ++I) { |
| SUnit *SU = I->Dep; |
| if (!--SU->Height) |
| // If all dependencies of the node are processed already, |
| // then the longest path for the node can be computed now |
| WorkList.push_back(SU); |
| } |
| } |
| } |
| |
| /// CountResults - The results of target nodes have register or immediate |
| /// operands first, then an optional chain, and optional flag operands (which do |
| /// not go into the resulting MachineInstr). |
| unsigned ScheduleDAG::CountResults(SDNode *Node) { |
| unsigned N = Node->getNumValues(); |
| while (N && Node->getValueType(N - 1) == MVT::Flag) |
| --N; |
| if (N && Node->getValueType(N - 1) == MVT::Other) |
| --N; // Skip over chain result. |
| return N; |
| } |
| |
| /// CountOperands - The inputs to target nodes have any actual inputs first, |
| /// followed by special operands that describe memory references, then an |
| /// optional chain operand, then an optional flag operand. Compute the number |
| /// of actual operands that will go into the resulting MachineInstr. |
| unsigned ScheduleDAG::CountOperands(SDNode *Node) { |
| unsigned N = ComputeMemOperandsEnd(Node); |
| while (N && isa<MemOperandSDNode>(Node->getOperand(N - 1).getNode())) |
| --N; // Ignore MEMOPERAND nodes |
| return N; |
| } |
| |
| /// ComputeMemOperandsEnd - Find the index one past the last MemOperandSDNode |
| /// operand |
| unsigned ScheduleDAG::ComputeMemOperandsEnd(SDNode *Node) { |
| unsigned N = Node->getNumOperands(); |
| while (N && Node->getOperand(N - 1).getValueType() == MVT::Flag) |
| --N; |
| if (N && Node->getOperand(N - 1).getValueType() == MVT::Other) |
| --N; // Ignore chain if it exists. |
| return N; |
| } |
| |
| |
| /// dump - dump the schedule. |
| void ScheduleDAG::dumpSchedule() const { |
| for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
| if (SUnit *SU = Sequence[i]) |
| SU->dump(DAG); |
| else |
| cerr << "**** NOOP ****\n"; |
| } |
| } |
| |
| |
| /// Run - perform scheduling. |
| /// |
| void ScheduleDAG::Run() { |
| Schedule(); |
| |
| DOUT << "*** Final schedule ***\n"; |
| DEBUG(dumpSchedule()); |
| DOUT << "\n"; |
| } |
| |
| /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or |
| /// a group of nodes flagged together. |
| void SUnit::dump(const SelectionDAG *G) const { |
| cerr << "SU(" << NodeNum << "): "; |
| if (Node) |
| Node->dump(G); |
| else |
| cerr << "CROSS RC COPY "; |
| cerr << "\n"; |
| if (FlaggedNodes.size() != 0) { |
| for (unsigned i = 0, e = FlaggedNodes.size(); i != e; i++) { |
| cerr << " "; |
| FlaggedNodes[i]->dump(G); |
| cerr << "\n"; |
| } |
| } |
| } |
| |
| void SUnit::dumpAll(const SelectionDAG *G) const { |
| dump(G); |
| |
| cerr << " # preds left : " << NumPredsLeft << "\n"; |
| cerr << " # succs left : " << NumSuccsLeft << "\n"; |
| cerr << " Latency : " << Latency << "\n"; |
| cerr << " Depth : " << Depth << "\n"; |
| cerr << " Height : " << Height << "\n"; |
| |
| if (Preds.size() != 0) { |
| cerr << " Predecessors:\n"; |
| for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); |
| I != E; ++I) { |
| if (I->isCtrl) |
| cerr << " ch #"; |
| else |
| cerr << " val #"; |
| cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")"; |
| if (I->isSpecial) |
| cerr << " *"; |
| cerr << "\n"; |
| } |
| } |
| if (Succs.size() != 0) { |
| cerr << " Successors:\n"; |
| for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); |
| I != E; ++I) { |
| if (I->isCtrl) |
| cerr << " ch #"; |
| else |
| cerr << " val #"; |
| cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")"; |
| if (I->isSpecial) |
| cerr << " *"; |
| cerr << "\n"; |
| } |
| } |
| cerr << "\n"; |
| } |