| //===-- DAGCombiner.cpp - Implement a DAG node combiner -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Nate Begeman and is distributed under the |
| // University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run |
| // both before and after the DAG is legalized. |
| // |
| // FIXME: Missing folds |
| // sdiv, udiv, srem, urem (X, const) where X is an integer can be expanded into |
| // a sequence of multiplies, shifts, and adds. This should be controlled by |
| // some kind of hint from the target that int div is expensive. |
| // various folds of mulh[s,u] by constants such as -1, powers of 2, etc. |
| // |
| // FIXME: Should add a corresponding version of fold AND with |
| // ZERO_EXTEND/SIGN_EXTEND by converting them to an ANY_EXTEND node which |
| // we don't have yet. |
| // |
| // FIXME: select C, pow2, pow2 -> something smart |
| // FIXME: trunc(select X, Y, Z) -> select X, trunc(Y), trunc(Z) |
| // FIXME: Dead stores -> nuke |
| // FIXME: shr X, (and Y,31) -> shr X, Y (TRICKY!) |
| // FIXME: mul (x, const) -> shifts + adds |
| // FIXME: undef values |
| // FIXME: make truncate see through SIGN_EXTEND and AND |
| // FIXME: (sra (sra x, c1), c2) -> (sra x, c1+c2) |
| // FIXME: verify that getNode can't return extends with an operand whose type |
| // is >= to that of the extend. |
| // FIXME: divide by zero is currently left unfolded. do we want to turn this |
| // into an undef? |
| // FIXME: select ne (select cc, 1, 0), 0, true, false -> select cc, true, false |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "dagcombine" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include <algorithm> |
| #include <cmath> |
| #include <iostream> |
| using namespace llvm; |
| |
| namespace { |
| Statistic<> NodesCombined ("dagcombiner", "Number of dag nodes combined"); |
| |
| class DAGCombiner { |
| SelectionDAG &DAG; |
| TargetLowering &TLI; |
| bool AfterLegalize; |
| |
| // Worklist of all of the nodes that need to be simplified. |
| std::vector<SDNode*> WorkList; |
| |
| /// AddUsersToWorkList - When an instruction is simplified, add all users of |
| /// the instruction to the work lists because they might get more simplified |
| /// now. |
| /// |
| void AddUsersToWorkList(SDNode *N) { |
| for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); |
| UI != UE; ++UI) |
| WorkList.push_back(*UI); |
| } |
| |
| /// removeFromWorkList - remove all instances of N from the worklist. |
| void removeFromWorkList(SDNode *N) { |
| WorkList.erase(std::remove(WorkList.begin(), WorkList.end(), N), |
| WorkList.end()); |
| } |
| |
| SDOperand CombineTo(SDNode *N, const std::vector<SDOperand> &To) { |
| ++NodesCombined; |
| DEBUG(std::cerr << "\nReplacing "; N->dump(); |
| std::cerr << "\nWith: "; To[0].Val->dump(); |
| std::cerr << " and " << To.size()-1 << " other values\n"); |
| std::vector<SDNode*> NowDead; |
| DAG.ReplaceAllUsesWith(N, To, &NowDead); |
| |
| // Push the new nodes and any users onto the worklist |
| for (unsigned i = 0, e = To.size(); i != e; ++i) { |
| WorkList.push_back(To[i].Val); |
| AddUsersToWorkList(To[i].Val); |
| } |
| |
| // Nodes can end up on the worklist more than once. Make sure we do |
| // not process a node that has been replaced. |
| removeFromWorkList(N); |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| |
| // Finally, since the node is now dead, remove it from the graph. |
| DAG.DeleteNode(N); |
| return SDOperand(N, 0); |
| } |
| |
| bool DemandedBitsAreZero(SDOperand Op, uint64_t DemandedMask, |
| SDOperand &Old, SDOperand &New) const { |
| TargetLowering::TargetLoweringOpt TLO(DAG); |
| uint64_t KnownZero, KnownOne; |
| if (TLI.SimplifyDemandedBits(Op, DemandedMask, KnownZero, KnownOne, TLO)){ |
| Old = TLO.Old; |
| New = TLO.New; |
| return true; |
| } |
| return false; |
| } |
| |
| SDOperand CombineTo(SDNode *N, SDOperand Res) { |
| std::vector<SDOperand> To; |
| To.push_back(Res); |
| return CombineTo(N, To); |
| } |
| |
| SDOperand CombineTo(SDNode *N, SDOperand Res0, SDOperand Res1) { |
| std::vector<SDOperand> To; |
| To.push_back(Res0); |
| To.push_back(Res1); |
| return CombineTo(N, To); |
| } |
| |
| /// visit - call the node-specific routine that knows how to fold each |
| /// particular type of node. |
| SDOperand visit(SDNode *N); |
| |
| // Visitation implementation - Implement dag node combining for different |
| // node types. The semantics are as follows: |
| // Return Value: |
| // SDOperand.Val == 0 - No change was made |
| // SDOperand.Val == N - N was replaced, is dead, and is already handled. |
| // otherwise - N should be replaced by the returned Operand. |
| // |
| SDOperand visitTokenFactor(SDNode *N); |
| SDOperand visitADD(SDNode *N); |
| SDOperand visitSUB(SDNode *N); |
| SDOperand visitMUL(SDNode *N); |
| SDOperand visitSDIV(SDNode *N); |
| SDOperand visitUDIV(SDNode *N); |
| SDOperand visitSREM(SDNode *N); |
| SDOperand visitUREM(SDNode *N); |
| SDOperand visitMULHU(SDNode *N); |
| SDOperand visitMULHS(SDNode *N); |
| SDOperand visitAND(SDNode *N); |
| SDOperand visitOR(SDNode *N); |
| SDOperand visitXOR(SDNode *N); |
| SDOperand visitSHL(SDNode *N); |
| SDOperand visitSRA(SDNode *N); |
| SDOperand visitSRL(SDNode *N); |
| SDOperand visitCTLZ(SDNode *N); |
| SDOperand visitCTTZ(SDNode *N); |
| SDOperand visitCTPOP(SDNode *N); |
| SDOperand visitSELECT(SDNode *N); |
| SDOperand visitSELECT_CC(SDNode *N); |
| SDOperand visitSETCC(SDNode *N); |
| SDOperand visitSIGN_EXTEND(SDNode *N); |
| SDOperand visitZERO_EXTEND(SDNode *N); |
| SDOperand visitSIGN_EXTEND_INREG(SDNode *N); |
| SDOperand visitTRUNCATE(SDNode *N); |
| SDOperand visitBIT_CONVERT(SDNode *N); |
| SDOperand visitFADD(SDNode *N); |
| SDOperand visitFSUB(SDNode *N); |
| SDOperand visitFMUL(SDNode *N); |
| SDOperand visitFDIV(SDNode *N); |
| SDOperand visitFREM(SDNode *N); |
| SDOperand visitSINT_TO_FP(SDNode *N); |
| SDOperand visitUINT_TO_FP(SDNode *N); |
| SDOperand visitFP_TO_SINT(SDNode *N); |
| SDOperand visitFP_TO_UINT(SDNode *N); |
| SDOperand visitFP_ROUND(SDNode *N); |
| SDOperand visitFP_ROUND_INREG(SDNode *N); |
| SDOperand visitFP_EXTEND(SDNode *N); |
| SDOperand visitFNEG(SDNode *N); |
| SDOperand visitFABS(SDNode *N); |
| SDOperand visitBRCOND(SDNode *N); |
| SDOperand visitBRCONDTWOWAY(SDNode *N); |
| SDOperand visitBR_CC(SDNode *N); |
| SDOperand visitBRTWOWAY_CC(SDNode *N); |
| SDOperand visitLOAD(SDNode *N); |
| SDOperand visitSTORE(SDNode *N); |
| |
| SDOperand ReassociateOps(unsigned Opc, SDOperand LHS, SDOperand RHS); |
| |
| bool SimplifySelectOps(SDNode *SELECT, SDOperand LHS, SDOperand RHS); |
| SDOperand SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2); |
| SDOperand SimplifySelectCC(SDOperand N0, SDOperand N1, SDOperand N2, |
| SDOperand N3, ISD::CondCode CC); |
| SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, |
| ISD::CondCode Cond, bool foldBooleans = true); |
| |
| SDOperand BuildSDIV(SDNode *N); |
| SDOperand BuildUDIV(SDNode *N); |
| public: |
| DAGCombiner(SelectionDAG &D) |
| : DAG(D), TLI(D.getTargetLoweringInfo()), AfterLegalize(false) {} |
| |
| /// Run - runs the dag combiner on all nodes in the work list |
| void Run(bool RunningAfterLegalize); |
| }; |
| } |
| |
| struct ms { |
| int64_t m; // magic number |
| int64_t s; // shift amount |
| }; |
| |
| struct mu { |
| uint64_t m; // magic number |
| int64_t a; // add indicator |
| int64_t s; // shift amount |
| }; |
| |
| /// magic - calculate the magic numbers required to codegen an integer sdiv as |
| /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, |
| /// or -1. |
| static ms magic32(int32_t d) { |
| int32_t p; |
| uint32_t ad, anc, delta, q1, r1, q2, r2, t; |
| const uint32_t two31 = 0x80000000U; |
| struct ms mag; |
| |
| ad = abs(d); |
| t = two31 + ((uint32_t)d >> 31); |
| anc = t - 1 - t%ad; // absolute value of nc |
| p = 31; // initialize p |
| q1 = two31/anc; // initialize q1 = 2p/abs(nc) |
| r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
| q2 = two31/ad; // initialize q2 = 2p/abs(d) |
| r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d)) |
| do { |
| p = p + 1; |
| q1 = 2*q1; // update q1 = 2p/abs(nc) |
| r1 = 2*r1; // update r1 = rem(2p/abs(nc)) |
| if (r1 >= anc) { // must be unsigned comparison |
| q1 = q1 + 1; |
| r1 = r1 - anc; |
| } |
| q2 = 2*q2; // update q2 = 2p/abs(d) |
| r2 = 2*r2; // update r2 = rem(2p/abs(d)) |
| if (r2 >= ad) { // must be unsigned comparison |
| q2 = q2 + 1; |
| r2 = r2 - ad; |
| } |
| delta = ad - r2; |
| } while (q1 < delta || (q1 == delta && r1 == 0)); |
| |
| mag.m = (int32_t)(q2 + 1); // make sure to sign extend |
| if (d < 0) mag.m = -mag.m; // resulting magic number |
| mag.s = p - 32; // resulting shift |
| return mag; |
| } |
| |
| /// magicu - calculate the magic numbers required to codegen an integer udiv as |
| /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. |
| static mu magicu32(uint32_t d) { |
| int32_t p; |
| uint32_t nc, delta, q1, r1, q2, r2; |
| struct mu magu; |
| magu.a = 0; // initialize "add" indicator |
| nc = - 1 - (-d)%d; |
| p = 31; // initialize p |
| q1 = 0x80000000/nc; // initialize q1 = 2p/nc |
| r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc) |
| q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d |
| r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d) |
| do { |
| p = p + 1; |
| if (r1 >= nc - r1 ) { |
| q1 = 2*q1 + 1; // update q1 |
| r1 = 2*r1 - nc; // update r1 |
| } |
| else { |
| q1 = 2*q1; // update q1 |
| r1 = 2*r1; // update r1 |
| } |
| if (r2 + 1 >= d - r2) { |
| if (q2 >= 0x7FFFFFFF) magu.a = 1; |
| q2 = 2*q2 + 1; // update q2 |
| r2 = 2*r2 + 1 - d; // update r2 |
| } |
| else { |
| if (q2 >= 0x80000000) magu.a = 1; |
| q2 = 2*q2; // update q2 |
| r2 = 2*r2 + 1; // update r2 |
| } |
| delta = d - 1 - r2; |
| } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); |
| magu.m = q2 + 1; // resulting magic number |
| magu.s = p - 32; // resulting shift |
| return magu; |
| } |
| |
| /// magic - calculate the magic numbers required to codegen an integer sdiv as |
| /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1, |
| /// or -1. |
| static ms magic64(int64_t d) { |
| int64_t p; |
| uint64_t ad, anc, delta, q1, r1, q2, r2, t; |
| const uint64_t two63 = 9223372036854775808ULL; // 2^63 |
| struct ms mag; |
| |
| ad = d >= 0 ? d : -d; |
| t = two63 + ((uint64_t)d >> 63); |
| anc = t - 1 - t%ad; // absolute value of nc |
| p = 63; // initialize p |
| q1 = two63/anc; // initialize q1 = 2p/abs(nc) |
| r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc)) |
| q2 = two63/ad; // initialize q2 = 2p/abs(d) |
| r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d)) |
| do { |
| p = p + 1; |
| q1 = 2*q1; // update q1 = 2p/abs(nc) |
| r1 = 2*r1; // update r1 = rem(2p/abs(nc)) |
| if (r1 >= anc) { // must be unsigned comparison |
| q1 = q1 + 1; |
| r1 = r1 - anc; |
| } |
| q2 = 2*q2; // update q2 = 2p/abs(d) |
| r2 = 2*r2; // update r2 = rem(2p/abs(d)) |
| if (r2 >= ad) { // must be unsigned comparison |
| q2 = q2 + 1; |
| r2 = r2 - ad; |
| } |
| delta = ad - r2; |
| } while (q1 < delta || (q1 == delta && r1 == 0)); |
| |
| mag.m = q2 + 1; |
| if (d < 0) mag.m = -mag.m; // resulting magic number |
| mag.s = p - 64; // resulting shift |
| return mag; |
| } |
| |
| /// magicu - calculate the magic numbers required to codegen an integer udiv as |
| /// a sequence of multiply, add and shifts. Requires that the divisor not be 0. |
| static mu magicu64(uint64_t d) |
| { |
| int64_t p; |
| uint64_t nc, delta, q1, r1, q2, r2; |
| struct mu magu; |
| magu.a = 0; // initialize "add" indicator |
| nc = - 1 - (-d)%d; |
| p = 63; // initialize p |
| q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc |
| r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc) |
| q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d |
| r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d) |
| do { |
| p = p + 1; |
| if (r1 >= nc - r1 ) { |
| q1 = 2*q1 + 1; // update q1 |
| r1 = 2*r1 - nc; // update r1 |
| } |
| else { |
| q1 = 2*q1; // update q1 |
| r1 = 2*r1; // update r1 |
| } |
| if (r2 + 1 >= d - r2) { |
| if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1; |
| q2 = 2*q2 + 1; // update q2 |
| r2 = 2*r2 + 1 - d; // update r2 |
| } |
| else { |
| if (q2 >= 0x8000000000000000ull) magu.a = 1; |
| q2 = 2*q2; // update q2 |
| r2 = 2*r2 + 1; // update r2 |
| } |
| delta = d - 1 - r2; |
| } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); |
| magu.m = q2 + 1; // resulting magic number |
| magu.s = p - 64; // resulting shift |
| return magu; |
| } |
| |
| // isSetCCEquivalent - Return true if this node is a setcc, or is a select_cc |
| // that selects between the values 1 and 0, making it equivalent to a setcc. |
| // Also, set the incoming LHS, RHS, and CC references to the appropriate |
| // nodes based on the type of node we are checking. This simplifies life a |
| // bit for the callers. |
| static bool isSetCCEquivalent(SDOperand N, SDOperand &LHS, SDOperand &RHS, |
| SDOperand &CC) { |
| if (N.getOpcode() == ISD::SETCC) { |
| LHS = N.getOperand(0); |
| RHS = N.getOperand(1); |
| CC = N.getOperand(2); |
| return true; |
| } |
| if (N.getOpcode() == ISD::SELECT_CC && |
| N.getOperand(2).getOpcode() == ISD::Constant && |
| N.getOperand(3).getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(N.getOperand(2))->getValue() == 1 && |
| cast<ConstantSDNode>(N.getOperand(3))->isNullValue()) { |
| LHS = N.getOperand(0); |
| RHS = N.getOperand(1); |
| CC = N.getOperand(4); |
| return true; |
| } |
| return false; |
| } |
| |
| // isOneUseSetCC - Return true if this is a SetCC-equivalent operation with only |
| // one use. If this is true, it allows the users to invert the operation for |
| // free when it is profitable to do so. |
| static bool isOneUseSetCC(SDOperand N) { |
| SDOperand N0, N1, N2; |
| if (isSetCCEquivalent(N, N0, N1, N2) && N.Val->hasOneUse()) |
| return true; |
| return false; |
| } |
| |
| // FIXME: This should probably go in the ISD class rather than being duplicated |
| // in several files. |
| static bool isCommutativeBinOp(unsigned Opcode) { |
| switch (Opcode) { |
| case ISD::ADD: |
| case ISD::MUL: |
| case ISD::AND: |
| case ISD::OR: |
| case ISD::XOR: return true; |
| default: return false; // FIXME: Need commutative info for user ops! |
| } |
| } |
| |
| SDOperand DAGCombiner::ReassociateOps(unsigned Opc, SDOperand N0, SDOperand N1){ |
| MVT::ValueType VT = N0.getValueType(); |
| // reassoc. (op (op x, c1), y) -> (op (op x, y), c1) iff x+c1 has one use |
| // reassoc. (op (op x, c1), c2) -> (op x, (op c1, c2)) |
| if (N0.getOpcode() == Opc && isa<ConstantSDNode>(N0.getOperand(1))) { |
| if (isa<ConstantSDNode>(N1)) { |
| SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(1), N1); |
| WorkList.push_back(OpNode.Val); |
| return DAG.getNode(Opc, VT, OpNode, N0.getOperand(0)); |
| } else if (N0.hasOneUse()) { |
| SDOperand OpNode = DAG.getNode(Opc, VT, N0.getOperand(0), N1); |
| WorkList.push_back(OpNode.Val); |
| return DAG.getNode(Opc, VT, OpNode, N0.getOperand(1)); |
| } |
| } |
| // reassoc. (op y, (op x, c1)) -> (op (op x, y), c1) iff x+c1 has one use |
| // reassoc. (op c2, (op x, c1)) -> (op x, (op c1, c2)) |
| if (N1.getOpcode() == Opc && isa<ConstantSDNode>(N1.getOperand(1))) { |
| if (isa<ConstantSDNode>(N0)) { |
| SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(1), N0); |
| WorkList.push_back(OpNode.Val); |
| return DAG.getNode(Opc, VT, OpNode, N1.getOperand(0)); |
| } else if (N1.hasOneUse()) { |
| SDOperand OpNode = DAG.getNode(Opc, VT, N1.getOperand(0), N0); |
| WorkList.push_back(OpNode.Val); |
| return DAG.getNode(Opc, VT, OpNode, N1.getOperand(1)); |
| } |
| } |
| return SDOperand(); |
| } |
| |
| void DAGCombiner::Run(bool RunningAfterLegalize) { |
| // set the instance variable, so that the various visit routines may use it. |
| AfterLegalize = RunningAfterLegalize; |
| |
| // Add all the dag nodes to the worklist. |
| for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(), |
| E = DAG.allnodes_end(); I != E; ++I) |
| WorkList.push_back(I); |
| |
| // Create a dummy node (which is not added to allnodes), that adds a reference |
| // to the root node, preventing it from being deleted, and tracking any |
| // changes of the root. |
| HandleSDNode Dummy(DAG.getRoot()); |
| |
| // while the worklist isn't empty, inspect the node on the end of it and |
| // try and combine it. |
| while (!WorkList.empty()) { |
| SDNode *N = WorkList.back(); |
| WorkList.pop_back(); |
| |
| // If N has no uses, it is dead. Make sure to revisit all N's operands once |
| // N is deleted from the DAG, since they too may now be dead or may have a |
| // reduced number of uses, allowing other xforms. |
| if (N->use_empty() && N != &Dummy) { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| WorkList.push_back(N->getOperand(i).Val); |
| |
| removeFromWorkList(N); |
| DAG.DeleteNode(N); |
| continue; |
| } |
| |
| SDOperand RV = visit(N); |
| if (RV.Val) { |
| ++NodesCombined; |
| // If we get back the same node we passed in, rather than a new node or |
| // zero, we know that the node must have defined multiple values and |
| // CombineTo was used. Since CombineTo takes care of the worklist |
| // mechanics for us, we have no work to do in this case. |
| if (RV.Val != N) { |
| DEBUG(std::cerr << "\nReplacing "; N->dump(); |
| std::cerr << "\nWith: "; RV.Val->dump(); |
| std::cerr << '\n'); |
| std::vector<SDNode*> NowDead; |
| DAG.ReplaceAllUsesWith(N, std::vector<SDOperand>(1, RV), &NowDead); |
| |
| // Push the new node and any users onto the worklist |
| WorkList.push_back(RV.Val); |
| AddUsersToWorkList(RV.Val); |
| |
| // Nodes can end up on the worklist more than once. Make sure we do |
| // not process a node that has been replaced. |
| removeFromWorkList(N); |
| for (unsigned i = 0, e = NowDead.size(); i != e; ++i) |
| removeFromWorkList(NowDead[i]); |
| |
| // Finally, since the node is now dead, remove it from the graph. |
| DAG.DeleteNode(N); |
| } |
| } |
| } |
| |
| // If the root changed (e.g. it was a dead load, update the root). |
| DAG.setRoot(Dummy.getValue()); |
| } |
| |
| SDOperand DAGCombiner::visit(SDNode *N) { |
| switch(N->getOpcode()) { |
| default: break; |
| case ISD::TokenFactor: return visitTokenFactor(N); |
| case ISD::ADD: return visitADD(N); |
| case ISD::SUB: return visitSUB(N); |
| case ISD::MUL: return visitMUL(N); |
| case ISD::SDIV: return visitSDIV(N); |
| case ISD::UDIV: return visitUDIV(N); |
| case ISD::SREM: return visitSREM(N); |
| case ISD::UREM: return visitUREM(N); |
| case ISD::MULHU: return visitMULHU(N); |
| case ISD::MULHS: return visitMULHS(N); |
| case ISD::AND: return visitAND(N); |
| case ISD::OR: return visitOR(N); |
| case ISD::XOR: return visitXOR(N); |
| case ISD::SHL: return visitSHL(N); |
| case ISD::SRA: return visitSRA(N); |
| case ISD::SRL: return visitSRL(N); |
| case ISD::CTLZ: return visitCTLZ(N); |
| case ISD::CTTZ: return visitCTTZ(N); |
| case ISD::CTPOP: return visitCTPOP(N); |
| case ISD::SELECT: return visitSELECT(N); |
| case ISD::SELECT_CC: return visitSELECT_CC(N); |
| case ISD::SETCC: return visitSETCC(N); |
| case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N); |
| case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N); |
| case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N); |
| case ISD::TRUNCATE: return visitTRUNCATE(N); |
| case ISD::BIT_CONVERT: return visitBIT_CONVERT(N); |
| case ISD::FADD: return visitFADD(N); |
| case ISD::FSUB: return visitFSUB(N); |
| case ISD::FMUL: return visitFMUL(N); |
| case ISD::FDIV: return visitFDIV(N); |
| case ISD::FREM: return visitFREM(N); |
| case ISD::SINT_TO_FP: return visitSINT_TO_FP(N); |
| case ISD::UINT_TO_FP: return visitUINT_TO_FP(N); |
| case ISD::FP_TO_SINT: return visitFP_TO_SINT(N); |
| case ISD::FP_TO_UINT: return visitFP_TO_UINT(N); |
| case ISD::FP_ROUND: return visitFP_ROUND(N); |
| case ISD::FP_ROUND_INREG: return visitFP_ROUND_INREG(N); |
| case ISD::FP_EXTEND: return visitFP_EXTEND(N); |
| case ISD::FNEG: return visitFNEG(N); |
| case ISD::FABS: return visitFABS(N); |
| case ISD::BRCOND: return visitBRCOND(N); |
| case ISD::BRCONDTWOWAY: return visitBRCONDTWOWAY(N); |
| case ISD::BR_CC: return visitBR_CC(N); |
| case ISD::BRTWOWAY_CC: return visitBRTWOWAY_CC(N); |
| case ISD::LOAD: return visitLOAD(N); |
| case ISD::STORE: return visitSTORE(N); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitTokenFactor(SDNode *N) { |
| std::vector<SDOperand> Ops; |
| bool Changed = false; |
| |
| // If the token factor has two operands and one is the entry token, replace |
| // the token factor with the other operand. |
| if (N->getNumOperands() == 2) { |
| if (N->getOperand(0).getOpcode() == ISD::EntryToken) |
| return N->getOperand(1); |
| if (N->getOperand(1).getOpcode() == ISD::EntryToken) |
| return N->getOperand(0); |
| } |
| |
| // fold (tokenfactor (tokenfactor)) -> tokenfactor |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDOperand Op = N->getOperand(i); |
| if (Op.getOpcode() == ISD::TokenFactor && Op.hasOneUse()) { |
| Changed = true; |
| for (unsigned j = 0, e = Op.getNumOperands(); j != e; ++j) |
| Ops.push_back(Op.getOperand(j)); |
| } else { |
| Ops.push_back(Op); |
| } |
| } |
| if (Changed) |
| return DAG.getNode(ISD::TokenFactor, MVT::Other, Ops); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitADD(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold (add c1, c2) -> c1+c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::ADD, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::ADD, VT, N1, N0); |
| // fold (add x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // fold ((c1-A)+c2) -> (c1+c2)-A |
| if (N1C && N0.getOpcode() == ISD::SUB) |
| if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.getOperand(0))) |
| return DAG.getNode(ISD::SUB, VT, |
| DAG.getConstant(N1C->getValue()+N0C->getValue(), VT), |
| N0.getOperand(1)); |
| // reassociate add |
| SDOperand RADD = ReassociateOps(ISD::ADD, N0, N1); |
| if (RADD.Val != 0) |
| return RADD; |
| // fold ((0-A) + B) -> B-A |
| if (N0.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N0.getOperand(0)) && |
| cast<ConstantSDNode>(N0.getOperand(0))->isNullValue()) |
| return DAG.getNode(ISD::SUB, VT, N1, N0.getOperand(1)); |
| // fold (A + (0-B)) -> A-B |
| if (N1.getOpcode() == ISD::SUB && isa<ConstantSDNode>(N1.getOperand(0)) && |
| cast<ConstantSDNode>(N1.getOperand(0))->isNullValue()) |
| return DAG.getNode(ISD::SUB, VT, N0, N1.getOperand(1)); |
| // fold (A+(B-A)) -> B |
| if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1)) |
| return N1.getOperand(0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSUB(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold (sub x, x) -> 0 |
| if (N0 == N1) |
| return DAG.getConstant(0, N->getValueType(0)); |
| // fold (sub c1, c2) -> c1-c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::SUB, VT, N0, N1); |
| // fold (sub x, c) -> (add x, -c) |
| if (N1C) |
| return DAG.getNode(ISD::ADD, VT, N0, DAG.getConstant(-N1C->getValue(), VT)); |
| // fold (A+B)-A -> B |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1) |
| return N0.getOperand(1); |
| // fold (A+B)-B -> A |
| if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1) |
| return N0.getOperand(0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitMUL(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold (mul c1, c2) -> c1*c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::MUL, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::MUL, VT, N1, N0); |
| // fold (mul x, 0) -> 0 |
| if (N1C && N1C->isNullValue()) |
| return N1; |
| // fold (mul x, -1) -> 0-x |
| if (N1C && N1C->isAllOnesValue()) |
| return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0); |
| // fold (mul x, (1 << c)) -> x << c |
| if (N1C && isPowerOf2_64(N1C->getValue())) |
| return DAG.getNode(ISD::SHL, VT, N0, |
| DAG.getConstant(Log2_64(N1C->getValue()), |
| TLI.getShiftAmountTy())); |
| // fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c |
| if (N1C && isPowerOf2_64(-N1C->getSignExtended())) { |
| // FIXME: If the input is something that is easily negated (e.g. a |
| // single-use add), we should put the negate there. |
| return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), |
| DAG.getNode(ISD::SHL, VT, N0, |
| DAG.getConstant(Log2_64(-N1C->getSignExtended()), |
| TLI.getShiftAmountTy()))); |
| } |
| // reassociate mul |
| SDOperand RMUL = ReassociateOps(ISD::MUL, N0, N1); |
| if (RMUL.Val != 0) |
| return RMUL; |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSDIV(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (sdiv c1, c2) -> c1/c2 |
| if (N0C && N1C && !N1C->isNullValue()) |
| return DAG.getNode(ISD::SDIV, VT, N0, N1); |
| // fold (sdiv X, 1) -> X |
| if (N1C && N1C->getSignExtended() == 1LL) |
| return N0; |
| // fold (sdiv X, -1) -> 0-X |
| if (N1C && N1C->isAllOnesValue()) |
| return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), N0); |
| // If we know the sign bits of both operands are zero, strength reduce to a |
| // udiv instead. Handles (X&15) /s 4 -> X&15 >> 2 |
| uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1); |
| if (TLI.MaskedValueIsZero(N1, SignBit) && |
| TLI.MaskedValueIsZero(N0, SignBit)) |
| return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1); |
| // fold (sdiv X, pow2) -> simple ops. |
| if (N1C && N1C->getValue() && !TLI.isIntDivCheap() && |
| (isPowerOf2_64(N1C->getSignExtended()) || |
| isPowerOf2_64(-N1C->getSignExtended()))) { |
| // If dividing by powers of two is cheap, then don't perform the following |
| // fold. |
| if (TLI.isPow2DivCheap()) |
| return SDOperand(); |
| int64_t pow2 = N1C->getSignExtended(); |
| int64_t abs2 = pow2 > 0 ? pow2 : -pow2; |
| unsigned lg2 = Log2_64(abs2); |
| // Splat the sign bit into the register |
| SDOperand SGN = DAG.getNode(ISD::SRA, VT, N0, |
| DAG.getConstant(MVT::getSizeInBits(VT)-1, |
| TLI.getShiftAmountTy())); |
| WorkList.push_back(SGN.Val); |
| // Add (N0 < 0) ? abs2 - 1 : 0; |
| SDOperand SRL = DAG.getNode(ISD::SRL, VT, SGN, |
| DAG.getConstant(MVT::getSizeInBits(VT)-lg2, |
| TLI.getShiftAmountTy())); |
| SDOperand ADD = DAG.getNode(ISD::ADD, VT, N0, SRL); |
| WorkList.push_back(SRL.Val); |
| WorkList.push_back(ADD.Val); // Divide by pow2 |
| SDOperand SRA = DAG.getNode(ISD::SRA, VT, ADD, |
| DAG.getConstant(lg2, TLI.getShiftAmountTy())); |
| // If we're dividing by a positive value, we're done. Otherwise, we must |
| // negate the result. |
| if (pow2 > 0) |
| return SRA; |
| WorkList.push_back(SRA.Val); |
| return DAG.getNode(ISD::SUB, VT, DAG.getConstant(0, VT), SRA); |
| } |
| // if integer divide is expensive and we satisfy the requirements, emit an |
| // alternate sequence. |
| if (N1C && (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) && |
| !TLI.isIntDivCheap()) { |
| SDOperand Op = BuildSDIV(N); |
| if (Op.Val) return Op; |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitUDIV(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (udiv c1, c2) -> c1/c2 |
| if (N0C && N1C && !N1C->isNullValue()) |
| return DAG.getNode(ISD::UDIV, VT, N0, N1); |
| // fold (udiv x, (1 << c)) -> x >>u c |
| if (N1C && isPowerOf2_64(N1C->getValue())) |
| return DAG.getNode(ISD::SRL, VT, N0, |
| DAG.getConstant(Log2_64(N1C->getValue()), |
| TLI.getShiftAmountTy())); |
| // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2 |
| if (N1.getOpcode() == ISD::SHL) { |
| if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { |
| if (isPowerOf2_64(SHC->getValue())) { |
| MVT::ValueType ADDVT = N1.getOperand(1).getValueType(); |
| SDOperand Add = DAG.getNode(ISD::ADD, ADDVT, N1.getOperand(1), |
| DAG.getConstant(Log2_64(SHC->getValue()), |
| ADDVT)); |
| WorkList.push_back(Add.Val); |
| return DAG.getNode(ISD::SRL, VT, N0, Add); |
| } |
| } |
| } |
| // fold (udiv x, c) -> alternate |
| if (N1C && N1C->getValue() && !TLI.isIntDivCheap()) { |
| SDOperand Op = BuildUDIV(N); |
| if (Op.Val) return Op; |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSREM(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (srem c1, c2) -> c1%c2 |
| if (N0C && N1C && !N1C->isNullValue()) |
| return DAG.getNode(ISD::SREM, VT, N0, N1); |
| // If we know the sign bits of both operands are zero, strength reduce to a |
| // urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15 |
| uint64_t SignBit = 1ULL << (MVT::getSizeInBits(VT)-1); |
| if (TLI.MaskedValueIsZero(N1, SignBit) && |
| TLI.MaskedValueIsZero(N0, SignBit)) |
| return DAG.getNode(ISD::UREM, VT, N0, N1); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitUREM(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (urem c1, c2) -> c1%c2 |
| if (N0C && N1C && !N1C->isNullValue()) |
| return DAG.getNode(ISD::UREM, VT, N0, N1); |
| // fold (urem x, pow2) -> (and x, pow2-1) |
| if (N1C && !N1C->isNullValue() && isPowerOf2_64(N1C->getValue())) |
| return DAG.getNode(ISD::AND, VT, N0, DAG.getConstant(N1C->getValue()-1,VT)); |
| // fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1)) |
| if (N1.getOpcode() == ISD::SHL) { |
| if (ConstantSDNode *SHC = dyn_cast<ConstantSDNode>(N1.getOperand(0))) { |
| if (isPowerOf2_64(SHC->getValue())) { |
| SDOperand Add = DAG.getNode(ISD::ADD, VT, N1,DAG.getConstant(~0ULL,VT)); |
| WorkList.push_back(Add.Val); |
| return DAG.getNode(ISD::AND, VT, N0, Add); |
| } |
| } |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitMULHS(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| |
| // fold (mulhs x, 0) -> 0 |
| if (N1C && N1C->isNullValue()) |
| return N1; |
| // fold (mulhs x, 1) -> (sra x, size(x)-1) |
| if (N1C && N1C->getValue() == 1) |
| return DAG.getNode(ISD::SRA, N0.getValueType(), N0, |
| DAG.getConstant(MVT::getSizeInBits(N0.getValueType())-1, |
| TLI.getShiftAmountTy())); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitMULHU(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| |
| // fold (mulhu x, 0) -> 0 |
| if (N1C && N1C->isNullValue()) |
| return N1; |
| // fold (mulhu x, 1) -> 0 |
| if (N1C && N1C->getValue() == 1) |
| return DAG.getConstant(0, N0.getValueType()); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitAND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand LL, LR, RL, RR, CC0, CC1, Old, New; |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N1.getValueType(); |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| |
| // fold (and c1, c2) -> c1&c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::AND, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::AND, VT, N1, N0); |
| // fold (and x, -1) -> x |
| if (N1C && N1C->isAllOnesValue()) |
| return N0; |
| // if (and x, c) is known to be zero, return 0 |
| if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT))) |
| return DAG.getConstant(0, VT); |
| // reassociate and |
| SDOperand RAND = ReassociateOps(ISD::AND, N0, N1); |
| if (RAND.Val != 0) |
| return RAND; |
| // fold (and (or x, 0xFFFF), 0xFF) -> 0xFF |
| if (N1C && N0.getOpcode() == ISD::OR) |
| if (ConstantSDNode *ORI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) |
| if ((ORI->getValue() & N1C->getValue()) == N1C->getValue()) |
| return N1; |
| // fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits. |
| if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) { |
| unsigned InBits = MVT::getSizeInBits(N0.getOperand(0).getValueType()); |
| if (TLI.MaskedValueIsZero(N0.getOperand(0), |
| ~N1C->getValue() & ((1ULL << InBits)-1))) { |
| // We actually want to replace all uses of the any_extend with the |
| // zero_extend, to avoid duplicating things. This will later cause this |
| // AND to be folded. |
| CombineTo(N0.Val, DAG.getNode(ISD::ZERO_EXTEND, N0.getValueType(), |
| N0.getOperand(0))); |
| return SDOperand(); |
| } |
| } |
| // fold (and (setcc x), (setcc y)) -> (setcc (and x, y)) |
| if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ |
| ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); |
| ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); |
| |
| if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && |
| MVT::isInteger(LL.getValueType())) { |
| // fold (X == 0) & (Y == 0) -> (X|Y == 0) |
| if (cast<ConstantSDNode>(LR)->getValue() == 0 && Op1 == ISD::SETEQ) { |
| SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); |
| WorkList.push_back(ORNode.Val); |
| return DAG.getSetCC(VT, ORNode, LR, Op1); |
| } |
| // fold (X == -1) & (Y == -1) -> (X&Y == -1) |
| if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETEQ) { |
| SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL); |
| WorkList.push_back(ANDNode.Val); |
| return DAG.getSetCC(VT, ANDNode, LR, Op1); |
| } |
| // fold (X > -1) & (Y > -1) -> (X|Y > -1) |
| if (cast<ConstantSDNode>(LR)->isAllOnesValue() && Op1 == ISD::SETGT) { |
| SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); |
| WorkList.push_back(ORNode.Val); |
| return DAG.getSetCC(VT, ORNode, LR, Op1); |
| } |
| } |
| // canonicalize equivalent to ll == rl |
| if (LL == RR && LR == RL) { |
| Op1 = ISD::getSetCCSwappedOperands(Op1); |
| std::swap(RL, RR); |
| } |
| if (LL == RL && LR == RR) { |
| bool isInteger = MVT::isInteger(LL.getValueType()); |
| ISD::CondCode Result = ISD::getSetCCAndOperation(Op0, Op1, isInteger); |
| if (Result != ISD::SETCC_INVALID) |
| return DAG.getSetCC(N0.getValueType(), LL, LR, Result); |
| } |
| } |
| // fold (and (zext x), (zext y)) -> (zext (and x, y)) |
| if (N0.getOpcode() == ISD::ZERO_EXTEND && |
| N1.getOpcode() == ISD::ZERO_EXTEND && |
| N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) { |
| SDOperand ANDNode = DAG.getNode(ISD::AND, N0.getOperand(0).getValueType(), |
| N0.getOperand(0), N1.getOperand(0)); |
| WorkList.push_back(ANDNode.Val); |
| return DAG.getNode(ISD::ZERO_EXTEND, VT, ANDNode); |
| } |
| // fold (and (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (and x, y)) |
| if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) || |
| (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) || |
| (N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) && |
| N0.getOperand(1) == N1.getOperand(1)) { |
| SDOperand ANDNode = DAG.getNode(ISD::AND, N0.getOperand(0).getValueType(), |
| N0.getOperand(0), N1.getOperand(0)); |
| WorkList.push_back(ANDNode.Val); |
| return DAG.getNode(N0.getOpcode(), VT, ANDNode, N0.getOperand(1)); |
| } |
| // fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1) |
| // fold (and (sra)) -> (and (srl)) when possible. |
| if (DemandedBitsAreZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT), Old, |
| New)) { |
| WorkList.push_back(N); |
| CombineTo(Old.Val, New); |
| return SDOperand(); |
| } |
| // fold (zext_inreg (extload x)) -> (zextload x) |
| if (N0.getOpcode() == ISD::EXTLOAD) { |
| MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT(); |
| // If we zero all the possible extended bits, then we can turn this into |
| // a zextload if we are running before legalize or the operation is legal. |
| if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) && |
| (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| EVT); |
| WorkList.push_back(N); |
| CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); |
| return SDOperand(); |
| } |
| } |
| // fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use |
| if (N0.getOpcode() == ISD::SEXTLOAD && N0.hasOneUse()) { |
| MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT(); |
| // If we zero all the possible extended bits, then we can turn this into |
| // a zextload if we are running before legalize or the operation is legal. |
| if (TLI.MaskedValueIsZero(N1, ~0ULL << MVT::getSizeInBits(EVT)) && |
| (!AfterLegalize || TLI.isOperationLegal(ISD::ZEXTLOAD, EVT))) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| EVT); |
| WorkList.push_back(N); |
| CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); |
| return SDOperand(); |
| } |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitOR(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand LL, LR, RL, RR, CC0, CC1; |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N1.getValueType(); |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| |
| // fold (or c1, c2) -> c1|c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::OR, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::OR, VT, N1, N0); |
| // fold (or x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // fold (or x, -1) -> -1 |
| if (N1C && N1C->isAllOnesValue()) |
| return N1; |
| // fold (or x, c) -> c iff (x & ~c) == 0 |
| if (N1C && |
| TLI.MaskedValueIsZero(N0,~N1C->getValue() & (~0ULL>>(64-OpSizeInBits)))) |
| return N1; |
| // reassociate or |
| SDOperand ROR = ReassociateOps(ISD::OR, N0, N1); |
| if (ROR.Val != 0) |
| return ROR; |
| // Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2) |
| if (N1C && N0.getOpcode() == ISD::AND && N0.Val->hasOneUse() && |
| isa<ConstantSDNode>(N0.getOperand(1))) { |
| ConstantSDNode *C1 = cast<ConstantSDNode>(N0.getOperand(1)); |
| return DAG.getNode(ISD::AND, VT, DAG.getNode(ISD::OR, VT, N0.getOperand(0), |
| N1), |
| DAG.getConstant(N1C->getValue() | C1->getValue(), VT)); |
| } |
| // fold (or (setcc x), (setcc y)) -> (setcc (or x, y)) |
| if (isSetCCEquivalent(N0, LL, LR, CC0) && isSetCCEquivalent(N1, RL, RR, CC1)){ |
| ISD::CondCode Op0 = cast<CondCodeSDNode>(CC0)->get(); |
| ISD::CondCode Op1 = cast<CondCodeSDNode>(CC1)->get(); |
| |
| if (LR == RR && isa<ConstantSDNode>(LR) && Op0 == Op1 && |
| MVT::isInteger(LL.getValueType())) { |
| // fold (X != 0) | (Y != 0) -> (X|Y != 0) |
| // fold (X < 0) | (Y < 0) -> (X|Y < 0) |
| if (cast<ConstantSDNode>(LR)->getValue() == 0 && |
| (Op1 == ISD::SETNE || Op1 == ISD::SETLT)) { |
| SDOperand ORNode = DAG.getNode(ISD::OR, LR.getValueType(), LL, RL); |
| WorkList.push_back(ORNode.Val); |
| return DAG.getSetCC(VT, ORNode, LR, Op1); |
| } |
| // fold (X != -1) | (Y != -1) -> (X&Y != -1) |
| // fold (X > -1) | (Y > -1) -> (X&Y > -1) |
| if (cast<ConstantSDNode>(LR)->isAllOnesValue() && |
| (Op1 == ISD::SETNE || Op1 == ISD::SETGT)) { |
| SDOperand ANDNode = DAG.getNode(ISD::AND, LR.getValueType(), LL, RL); |
| WorkList.push_back(ANDNode.Val); |
| return DAG.getSetCC(VT, ANDNode, LR, Op1); |
| } |
| } |
| // canonicalize equivalent to ll == rl |
| if (LL == RR && LR == RL) { |
| Op1 = ISD::getSetCCSwappedOperands(Op1); |
| std::swap(RL, RR); |
| } |
| if (LL == RL && LR == RR) { |
| bool isInteger = MVT::isInteger(LL.getValueType()); |
| ISD::CondCode Result = ISD::getSetCCOrOperation(Op0, Op1, isInteger); |
| if (Result != ISD::SETCC_INVALID) |
| return DAG.getSetCC(N0.getValueType(), LL, LR, Result); |
| } |
| } |
| // fold (or (zext x), (zext y)) -> (zext (or x, y)) |
| if (N0.getOpcode() == ISD::ZERO_EXTEND && |
| N1.getOpcode() == ISD::ZERO_EXTEND && |
| N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) { |
| SDOperand ORNode = DAG.getNode(ISD::OR, N0.getOperand(0).getValueType(), |
| N0.getOperand(0), N1.getOperand(0)); |
| WorkList.push_back(ORNode.Val); |
| return DAG.getNode(ISD::ZERO_EXTEND, VT, ORNode); |
| } |
| // fold (or (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (or x, y)) |
| if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) || |
| (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) || |
| (N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) && |
| N0.getOperand(1) == N1.getOperand(1)) { |
| SDOperand ORNode = DAG.getNode(ISD::OR, N0.getOperand(0).getValueType(), |
| N0.getOperand(0), N1.getOperand(0)); |
| WorkList.push_back(ORNode.Val); |
| return DAG.getNode(N0.getOpcode(), VT, ORNode, N0.getOperand(1)); |
| } |
| // canonicalize shl to left side in a shl/srl pair, to match rotate |
| if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) |
| std::swap(N0, N1); |
| // check for rotl, rotr |
| if (N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SRL && |
| N0.getOperand(0) == N1.getOperand(0) && |
| TLI.isOperationLegal(ISD::ROTL, VT) && TLI.isTypeLegal(VT)) { |
| // fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1) |
| if (N0.getOperand(1).getOpcode() == ISD::Constant && |
| N1.getOperand(1).getOpcode() == ISD::Constant) { |
| uint64_t c1val = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| uint64_t c2val = cast<ConstantSDNode>(N1.getOperand(1))->getValue(); |
| if ((c1val + c2val) == OpSizeInBits) |
| return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1)); |
| } |
| // fold (or (shl x, y), (srl x, (sub 32, y))) -> (rotl x, y) |
| if (N1.getOperand(1).getOpcode() == ISD::SUB && |
| N0.getOperand(1) == N1.getOperand(1).getOperand(1)) |
| if (ConstantSDNode *SUBC = |
| dyn_cast<ConstantSDNode>(N1.getOperand(1).getOperand(0))) |
| if (SUBC->getValue() == OpSizeInBits) |
| return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), N0.getOperand(1)); |
| // fold (or (shl x, (sub 32, y)), (srl x, r)) -> (rotr x, y) |
| if (N0.getOperand(1).getOpcode() == ISD::SUB && |
| N1.getOperand(1) == N0.getOperand(1).getOperand(1)) |
| if (ConstantSDNode *SUBC = |
| dyn_cast<ConstantSDNode>(N0.getOperand(1).getOperand(0))) |
| if (SUBC->getValue() == OpSizeInBits) { |
| if (TLI.isOperationLegal(ISD::ROTR, VT) && TLI.isTypeLegal(VT)) |
| return DAG.getNode(ISD::ROTR, VT, N0.getOperand(0), |
| N1.getOperand(1)); |
| else |
| return DAG.getNode(ISD::ROTL, VT, N0.getOperand(0), |
| N0.getOperand(1)); |
| } |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitXOR(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand LHS, RHS, CC; |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| |
| // fold (xor c1, c2) -> c1^c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::XOR, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0C && !N1C) |
| return DAG.getNode(ISD::XOR, VT, N1, N0); |
| // fold (xor x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // reassociate xor |
| SDOperand RXOR = ReassociateOps(ISD::XOR, N0, N1); |
| if (RXOR.Val != 0) |
| return RXOR; |
| // fold !(x cc y) -> (x !cc y) |
| if (N1C && N1C->getValue() == 1 && isSetCCEquivalent(N0, LHS, RHS, CC)) { |
| bool isInt = MVT::isInteger(LHS.getValueType()); |
| ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), |
| isInt); |
| if (N0.getOpcode() == ISD::SETCC) |
| return DAG.getSetCC(VT, LHS, RHS, NotCC); |
| if (N0.getOpcode() == ISD::SELECT_CC) |
| return DAG.getSelectCC(LHS, RHS, N0.getOperand(2),N0.getOperand(3),NotCC); |
| assert(0 && "Unhandled SetCC Equivalent!"); |
| abort(); |
| } |
| // fold !(x or y) -> (!x and !y) iff x or y are setcc |
| if (N1C && N1C->getValue() == 1 && |
| (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { |
| SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); |
| if (isOneUseSetCC(RHS) || isOneUseSetCC(LHS)) { |
| unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; |
| LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS |
| RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS |
| WorkList.push_back(LHS.Val); WorkList.push_back(RHS.Val); |
| return DAG.getNode(NewOpcode, VT, LHS, RHS); |
| } |
| } |
| // fold !(x or y) -> (!x and !y) iff x or y are constants |
| if (N1C && N1C->isAllOnesValue() && |
| (N0.getOpcode() == ISD::OR || N0.getOpcode() == ISD::AND)) { |
| SDOperand LHS = N0.getOperand(0), RHS = N0.getOperand(1); |
| if (isa<ConstantSDNode>(RHS) || isa<ConstantSDNode>(LHS)) { |
| unsigned NewOpcode = N0.getOpcode() == ISD::AND ? ISD::OR : ISD::AND; |
| LHS = DAG.getNode(ISD::XOR, VT, LHS, N1); // RHS = ~LHS |
| RHS = DAG.getNode(ISD::XOR, VT, RHS, N1); // RHS = ~RHS |
| WorkList.push_back(LHS.Val); WorkList.push_back(RHS.Val); |
| return DAG.getNode(NewOpcode, VT, LHS, RHS); |
| } |
| } |
| // fold (xor (xor x, c1), c2) -> (xor x, c1^c2) |
| if (N1C && N0.getOpcode() == ISD::XOR) { |
| ConstantSDNode *N00C = dyn_cast<ConstantSDNode>(N0.getOperand(0)); |
| ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); |
| if (N00C) |
| return DAG.getNode(ISD::XOR, VT, N0.getOperand(1), |
| DAG.getConstant(N1C->getValue()^N00C->getValue(), VT)); |
| if (N01C) |
| return DAG.getNode(ISD::XOR, VT, N0.getOperand(0), |
| DAG.getConstant(N1C->getValue()^N01C->getValue(), VT)); |
| } |
| // fold (xor x, x) -> 0 |
| if (N0 == N1) |
| return DAG.getConstant(0, VT); |
| // fold (xor (zext x), (zext y)) -> (zext (xor x, y)) |
| if (N0.getOpcode() == ISD::ZERO_EXTEND && |
| N1.getOpcode() == ISD::ZERO_EXTEND && |
| N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()) { |
| SDOperand XORNode = DAG.getNode(ISD::XOR, N0.getOperand(0).getValueType(), |
| N0.getOperand(0), N1.getOperand(0)); |
| WorkList.push_back(XORNode.Val); |
| return DAG.getNode(ISD::ZERO_EXTEND, VT, XORNode); |
| } |
| // fold (xor (shl/srl/sra x), (shl/srl/sra y)) -> (shl/srl/sra (xor x, y)) |
| if (((N0.getOpcode() == ISD::SHL && N1.getOpcode() == ISD::SHL) || |
| (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SRL) || |
| (N0.getOpcode() == ISD::SRA && N1.getOpcode() == ISD::SRA)) && |
| N0.getOperand(1) == N1.getOperand(1)) { |
| SDOperand XORNode = DAG.getNode(ISD::XOR, N0.getOperand(0).getValueType(), |
| N0.getOperand(0), N1.getOperand(0)); |
| WorkList.push_back(XORNode.Val); |
| return DAG.getNode(N0.getOpcode(), VT, XORNode, N0.getOperand(1)); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSHL(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand Old = SDOperand(); |
| SDOperand New = SDOperand(); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| |
| // fold (shl c1, c2) -> c1<<c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::SHL, VT, N0, N1); |
| // fold (shl 0, x) -> 0 |
| if (N0C && N0C->isNullValue()) |
| return N0; |
| // fold (shl x, c >= size(x)) -> undef |
| if (N1C && N1C->getValue() >= OpSizeInBits) |
| return DAG.getNode(ISD::UNDEF, VT); |
| // fold (shl x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // if (shl x, c) is known to be zero, return 0 |
| if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits))) |
| return DAG.getConstant(0, VT); |
| if (N1C && DemandedBitsAreZero(SDOperand(N,0), ~0ULL >> (64-OpSizeInBits), |
| Old, New)) { |
| WorkList.push_back(N); |
| CombineTo(Old.Val, New); |
| return SDOperand(); |
| } |
| // fold (shl (shl x, c1), c2) -> 0 or (shl x, c1+c2) |
| if (N1C && N0.getOpcode() == ISD::SHL && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| uint64_t c2 = N1C->getValue(); |
| if (c1 + c2 > OpSizeInBits) |
| return DAG.getConstant(0, VT); |
| return DAG.getNode(ISD::SHL, VT, N0.getOperand(0), |
| DAG.getConstant(c1 + c2, N1.getValueType())); |
| } |
| // fold (shl (srl x, c1), c2) -> (shl (and x, -1 << c1), c2-c1) or |
| // (srl (and x, -1 << c1), c1-c2) |
| if (N1C && N0.getOpcode() == ISD::SRL && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| uint64_t c2 = N1C->getValue(); |
| SDOperand Mask = DAG.getNode(ISD::AND, VT, N0.getOperand(0), |
| DAG.getConstant(~0ULL << c1, VT)); |
| if (c2 > c1) |
| return DAG.getNode(ISD::SHL, VT, Mask, |
| DAG.getConstant(c2-c1, N1.getValueType())); |
| else |
| return DAG.getNode(ISD::SRL, VT, Mask, |
| DAG.getConstant(c1-c2, N1.getValueType())); |
| } |
| // fold (shl (sra x, c1), c1) -> (and x, -1 << c1) |
| if (N1C && N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1)) |
| return DAG.getNode(ISD::AND, VT, N0.getOperand(0), |
| DAG.getConstant(~0ULL << N1C->getValue(), VT)); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSRA(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| |
| // fold (sra c1, c2) -> c1>>c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::SRA, VT, N0, N1); |
| // fold (sra 0, x) -> 0 |
| if (N0C && N0C->isNullValue()) |
| return N0; |
| // fold (sra -1, x) -> -1 |
| if (N0C && N0C->isAllOnesValue()) |
| return N0; |
| // fold (sra x, c >= size(x)) -> undef |
| if (N1C && N1C->getValue() >= OpSizeInBits) |
| return DAG.getNode(ISD::UNDEF, VT); |
| // fold (sra x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // If the sign bit is known to be zero, switch this to a SRL. |
| if (TLI.MaskedValueIsZero(N0, (1ULL << (OpSizeInBits-1)))) |
| return DAG.getNode(ISD::SRL, VT, N0, N1); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSRL(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| MVT::ValueType VT = N0.getValueType(); |
| unsigned OpSizeInBits = MVT::getSizeInBits(VT); |
| |
| // fold (srl c1, c2) -> c1 >>u c2 |
| if (N0C && N1C) |
| return DAG.getNode(ISD::SRL, VT, N0, N1); |
| // fold (srl 0, x) -> 0 |
| if (N0C && N0C->isNullValue()) |
| return N0; |
| // fold (srl x, c >= size(x)) -> undef |
| if (N1C && N1C->getValue() >= OpSizeInBits) |
| return DAG.getNode(ISD::UNDEF, VT); |
| // fold (srl x, 0) -> x |
| if (N1C && N1C->isNullValue()) |
| return N0; |
| // if (srl x, c) is known to be zero, return 0 |
| if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits))) |
| return DAG.getConstant(0, VT); |
| // fold (srl (srl x, c1), c2) -> 0 or (srl x, c1+c2) |
| if (N1C && N0.getOpcode() == ISD::SRL && |
| N0.getOperand(1).getOpcode() == ISD::Constant) { |
| uint64_t c1 = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); |
| uint64_t c2 = N1C->getValue(); |
| if (c1 + c2 > OpSizeInBits) |
| return DAG.getConstant(0, VT); |
| return DAG.getNode(ISD::SRL, VT, N0.getOperand(0), |
| DAG.getConstant(c1 + c2, N1.getValueType())); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitCTLZ(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (ctlz c1) -> c2 |
| if (N0C) |
| return DAG.getNode(ISD::CTLZ, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitCTTZ(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (cttz c1) -> c2 |
| if (N0C) |
| return DAG.getNode(ISD::CTTZ, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitCTPOP(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (ctpop c1) -> c2 |
| if (N0C) |
| return DAG.getNode(ISD::CTPOP, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSELECT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand N2 = N->getOperand(2); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold select C, X, X -> X |
| if (N1 == N2) |
| return N1; |
| // fold select true, X, Y -> X |
| if (N0C && !N0C->isNullValue()) |
| return N1; |
| // fold select false, X, Y -> Y |
| if (N0C && N0C->isNullValue()) |
| return N2; |
| // fold select C, 1, X -> C | X |
| if (MVT::i1 == VT && N1C && N1C->getValue() == 1) |
| return DAG.getNode(ISD::OR, VT, N0, N2); |
| // fold select C, 0, X -> ~C & X |
| // FIXME: this should check for C type == X type, not i1? |
| if (MVT::i1 == VT && N1C && N1C->isNullValue()) { |
| SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT)); |
| WorkList.push_back(XORNode.Val); |
| return DAG.getNode(ISD::AND, VT, XORNode, N2); |
| } |
| // fold select C, X, 1 -> ~C | X |
| if (MVT::i1 == VT && N2C && N2C->getValue() == 1) { |
| SDOperand XORNode = DAG.getNode(ISD::XOR, VT, N0, DAG.getConstant(1, VT)); |
| WorkList.push_back(XORNode.Val); |
| return DAG.getNode(ISD::OR, VT, XORNode, N1); |
| } |
| // fold select C, X, 0 -> C & X |
| // FIXME: this should check for C type == X type, not i1? |
| if (MVT::i1 == VT && N2C && N2C->isNullValue()) |
| return DAG.getNode(ISD::AND, VT, N0, N1); |
| // fold X ? X : Y --> X ? 1 : Y --> X | Y |
| if (MVT::i1 == VT && N0 == N1) |
| return DAG.getNode(ISD::OR, VT, N0, N2); |
| // fold X ? Y : X --> X ? Y : 0 --> X & Y |
| if (MVT::i1 == VT && N0 == N2) |
| return DAG.getNode(ISD::AND, VT, N0, N1); |
| // If we can fold this based on the true/false value, do so. |
| if (SimplifySelectOps(N, N1, N2)) |
| return SDOperand(); |
| // fold selects based on a setcc into other things, such as min/max/abs |
| if (N0.getOpcode() == ISD::SETCC) |
| // FIXME: |
| // Check against MVT::Other for SELECT_CC, which is a workaround for targets |
| // having to say they don't support SELECT_CC on every type the DAG knows |
| // about, since there is no way to mark an opcode illegal at all value types |
| if (TLI.isOperationLegal(ISD::SELECT_CC, MVT::Other)) |
| return DAG.getNode(ISD::SELECT_CC, VT, N0.getOperand(0), N0.getOperand(1), |
| N1, N2, N0.getOperand(2)); |
| else |
| return SimplifySelect(N0, N1, N2); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSELECT_CC(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand N2 = N->getOperand(2); |
| SDOperand N3 = N->getOperand(3); |
| SDOperand N4 = N->getOperand(4); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2); |
| ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get(); |
| |
| // Determine if the condition we're dealing with is constant |
| SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false); |
| ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val); |
| |
| // fold select_cc lhs, rhs, x, x, cc -> x |
| if (N2 == N3) |
| return N2; |
| |
| // If we can fold this based on the true/false value, do so. |
| if (SimplifySelectOps(N, N2, N3)) |
| return SDOperand(); |
| |
| // fold select_cc into other things, such as min/max/abs |
| return SimplifySelectCC(N0, N1, N2, N3, CC); |
| } |
| |
| SDOperand DAGCombiner::visitSETCC(SDNode *N) { |
| return SimplifySetCC(N->getValueType(0), N->getOperand(0), N->getOperand(1), |
| cast<CondCodeSDNode>(N->getOperand(2))->get()); |
| } |
| |
| SDOperand DAGCombiner::visitSIGN_EXTEND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (sext c1) -> c1 |
| if (N0C) |
| return DAG.getNode(ISD::SIGN_EXTEND, VT, N0); |
| // fold (sext (sext x)) -> (sext x) |
| if (N0.getOpcode() == ISD::SIGN_EXTEND) |
| return DAG.getNode(ISD::SIGN_EXTEND, VT, N0.getOperand(0)); |
| // fold (sext (truncate x)) -> (sextinreg x) iff x size == sext size. |
| if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&& |
| (!AfterLegalize || |
| TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, N0.getValueType()))) |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), |
| DAG.getValueType(N0.getValueType())); |
| // fold (sext (load x)) -> (sext (truncate (sextload x))) |
| if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() && |
| (!AfterLegalize||TLI.isOperationLegal(ISD::SEXTLOAD, N0.getValueType()))){ |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| N0.getValueType()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(); |
| } |
| |
| // fold (sext (sextload x)) -> (sext (truncate (sextload x))) |
| // fold (sext ( extload x)) -> (sext (truncate (sextload x))) |
| if ((N0.getOpcode() == ISD::SEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) && |
| N0.hasOneUse()) { |
| SDOperand ExtLoad = DAG.getNode(ISD::SEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| N0.getOperand(3)); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitZERO_EXTEND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (zext c1) -> c1 |
| if (N0C) |
| return DAG.getNode(ISD::ZERO_EXTEND, VT, N0); |
| // fold (zext (zext x)) -> (zext x) |
| if (N0.getOpcode() == ISD::ZERO_EXTEND) |
| return DAG.getNode(ISD::ZERO_EXTEND, VT, N0.getOperand(0)); |
| // fold (zext (truncate x)) -> (zextinreg x) iff x size == zext size. |
| if (N0.getOpcode() == ISD::TRUNCATE && N0.getOperand(0).getValueType() == VT&& |
| (!AfterLegalize || TLI.isOperationLegal(ISD::AND, N0.getValueType()))) |
| return DAG.getZeroExtendInReg(N0.getOperand(0), N0.getValueType()); |
| // fold (zext (load x)) -> (zext (truncate (zextload x))) |
| if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse() && |
| (!AfterLegalize||TLI.isOperationLegal(ISD::ZEXTLOAD, N0.getValueType()))){ |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| N0.getValueType()); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(); |
| } |
| |
| // fold (zext (zextload x)) -> (zext (truncate (zextload x))) |
| // fold (zext ( extload x)) -> (zext (truncate (zextload x))) |
| if ((N0.getOpcode() == ISD::ZEXTLOAD || N0.getOpcode() == ISD::EXTLOAD) && |
| N0.hasOneUse()) { |
| SDOperand ExtLoad = DAG.getNode(ISD::ZEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| N0.getOperand(3)); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, DAG.getNode(ISD::TRUNCATE, N0.getValueType(), ExtLoad), |
| ExtLoad.getValue(1)); |
| return SDOperand(); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| MVT::ValueType EVT = cast<VTSDNode>(N1)->getVT(); |
| unsigned EVTBits = MVT::getSizeInBits(EVT); |
| |
| // fold (sext_in_reg c1) -> c1 |
| if (N0C) { |
| SDOperand Truncate = DAG.getConstant(N0C->getValue(), EVT); |
| return DAG.getNode(ISD::SIGN_EXTEND, VT, Truncate); |
| } |
| // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt1 |
| if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| cast<VTSDNode>(N0.getOperand(1))->getVT() <= EVT) { |
| return N0; |
| } |
| // fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2 |
| if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| EVT < cast<VTSDNode>(N0.getOperand(1))->getVT()) { |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, VT, N0.getOperand(0), N1); |
| } |
| // fold (sext_in_reg (assert_sext x)) -> (assert_sext x) |
| if (N0.getOpcode() == ISD::AssertSext && |
| cast<VTSDNode>(N0.getOperand(1))->getVT() <= EVT) { |
| return N0; |
| } |
| // fold (sext_in_reg (sextload x)) -> (sextload x) |
| if (N0.getOpcode() == ISD::SEXTLOAD && |
| cast<VTSDNode>(N0.getOperand(3))->getVT() <= EVT) { |
| return N0; |
| } |
| // fold (sext_in_reg (setcc x)) -> setcc x iff (setcc x) == 0 or -1 |
| if (N0.getOpcode() == ISD::SETCC && |
| TLI.getSetCCResultContents() == |
| TargetLowering::ZeroOrNegativeOneSetCCResult) |
| return N0; |
| // fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is zero |
| if (TLI.MaskedValueIsZero(N0, 1ULL << (EVTBits-1))) |
| return DAG.getZeroExtendInReg(N0, EVT); |
| // fold (sext_in_reg (srl x)) -> sra x |
| if (N0.getOpcode() == ISD::SRL && |
| N0.getOperand(1).getOpcode() == ISD::Constant && |
| cast<ConstantSDNode>(N0.getOperand(1))->getValue() == EVTBits) { |
| return DAG.getNode(ISD::SRA, N0.getValueType(), N0.getOperand(0), |
| N0.getOperand(1)); |
| } |
| // fold (sext_inreg (extload x)) -> (sextload x) |
| if (N0.getOpcode() == ISD::EXTLOAD && |
| EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() && |
| (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| EVT); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); |
| return SDOperand(); |
| } |
| // fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use |
| if (N0.getOpcode() == ISD::ZEXTLOAD && N0.hasOneUse() && |
| EVT == cast<VTSDNode>(N0.getOperand(3))->getVT() && |
| (!AfterLegalize || TLI.isOperationLegal(ISD::SEXTLOAD, EVT))) { |
| SDOperand ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, VT, N0.getOperand(0), |
| N0.getOperand(1), N0.getOperand(2), |
| EVT); |
| CombineTo(N, ExtLoad); |
| CombineTo(N0.Val, ExtLoad, ExtLoad.getValue(1)); |
| return SDOperand(); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitTRUNCATE(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // noop truncate |
| if (N0.getValueType() == N->getValueType(0)) |
| return N0; |
| // fold (truncate c1) -> c1 |
| if (N0C) |
| return DAG.getNode(ISD::TRUNCATE, VT, N0); |
| // fold (truncate (truncate x)) -> (truncate x) |
| if (N0.getOpcode() == ISD::TRUNCATE) |
| return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); |
| // fold (truncate (ext x)) -> (ext x) or (truncate x) or x |
| if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::SIGN_EXTEND){ |
| if (N0.getValueType() < VT) |
| // if the source is smaller than the dest, we still need an extend |
| return DAG.getNode(N0.getOpcode(), VT, N0.getOperand(0)); |
| else if (N0.getValueType() > VT) |
| // if the source is larger than the dest, than we just need the truncate |
| return DAG.getNode(ISD::TRUNCATE, VT, N0.getOperand(0)); |
| else |
| // if the source and dest are the same type, we can drop both the extend |
| // and the truncate |
| return N0.getOperand(0); |
| } |
| // fold (truncate (load x)) -> (smaller load x) |
| if (N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) { |
| assert(MVT::getSizeInBits(N0.getValueType()) > MVT::getSizeInBits(VT) && |
| "Cannot truncate to larger type!"); |
| MVT::ValueType PtrType = N0.getOperand(1).getValueType(); |
| // For big endian targets, we need to add an offset to the pointer to load |
| // the correct bytes. For little endian systems, we merely need to read |
| // fewer bytes from the same pointer. |
| uint64_t PtrOff = |
| (MVT::getSizeInBits(N0.getValueType()) - MVT::getSizeInBits(VT)) / 8; |
| SDOperand NewPtr = TLI.isLittleEndian() ? N0.getOperand(1) : |
| DAG.getNode(ISD::ADD, PtrType, N0.getOperand(1), |
| DAG.getConstant(PtrOff, PtrType)); |
| WorkList.push_back(NewPtr.Val); |
| SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), NewPtr,N0.getOperand(2)); |
| WorkList.push_back(N); |
| CombineTo(N0.Val, Load, Load.getValue(1)); |
| return SDOperand(); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitBIT_CONVERT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // If the input is a constant, let getNode() fold it. |
| if (isa<ConstantSDNode>(N0) || isa<ConstantFPSDNode>(N0)) { |
| SDOperand Res = DAG.getNode(ISD::BIT_CONVERT, VT, N0); |
| if (Res.Val != N) return Res; |
| } |
| |
| if (N0.getOpcode() == ISD::BIT_CONVERT) // conv(conv(x,t1),t2) -> conv(x,t2) |
| return DAG.getNode(ISD::BIT_CONVERT, VT, N0.getOperand(0)); |
| |
| // fold (conv (load x)) -> (load (conv*)x) |
| // FIXME: These xforms need to know that the resultant load doesn't need a |
| // higher alignment than the original! |
| if (0 && N0.getOpcode() == ISD::LOAD && N0.hasOneUse()) { |
| SDOperand Load = DAG.getLoad(VT, N0.getOperand(0), N0.getOperand(1), |
| N0.getOperand(2)); |
| WorkList.push_back(N); |
| CombineTo(N0.Val, DAG.getNode(ISD::BIT_CONVERT, N0.getValueType(), Load), |
| Load.getValue(1)); |
| return Load; |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFADD(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fadd c1, c2) -> c1+c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FADD, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0CFP && !N1CFP) |
| return DAG.getNode(ISD::FADD, VT, N1, N0); |
| // fold (A + (-B)) -> A-B |
| if (N1.getOpcode() == ISD::FNEG) |
| return DAG.getNode(ISD::FSUB, VT, N0, N1.getOperand(0)); |
| // fold ((-A) + B) -> B-A |
| if (N0.getOpcode() == ISD::FNEG) |
| return DAG.getNode(ISD::FSUB, VT, N1, N0.getOperand(0)); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFSUB(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fsub c1, c2) -> c1-c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FSUB, VT, N0, N1); |
| // fold (A-(-B)) -> A+B |
| if (N1.getOpcode() == ISD::FNEG) |
| return DAG.getNode(ISD::FADD, VT, N0, N1.getOperand(0)); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFMUL(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fmul c1, c2) -> c1*c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FMUL, VT, N0, N1); |
| // canonicalize constant to RHS |
| if (N0CFP && !N1CFP) |
| return DAG.getNode(ISD::FMUL, VT, N1, N0); |
| // fold (fmul X, 2.0) -> (fadd X, X) |
| if (N1CFP && N1CFP->isExactlyValue(+2.0)) |
| return DAG.getNode(ISD::FADD, VT, N0, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFDIV(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fdiv c1, c2) -> c1/c2 |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FDIV, VT, N0, N1); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFREM(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (frem c1, c2) -> fmod(c1,c2) |
| if (N0CFP && N1CFP) |
| return DAG.getNode(ISD::FREM, VT, N0, N1); |
| return SDOperand(); |
| } |
| |
| |
| SDOperand DAGCombiner::visitSINT_TO_FP(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (sint_to_fp c1) -> c1fp |
| if (N0C) |
| return DAG.getNode(ISD::SINT_TO_FP, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitUINT_TO_FP(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (uint_to_fp c1) -> c1fp |
| if (N0C) |
| return DAG.getNode(ISD::UINT_TO_FP, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_TO_SINT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fp_to_sint c1fp) -> c1 |
| if (N0CFP) |
| return DAG.getNode(ISD::FP_TO_SINT, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_TO_UINT(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fp_to_uint c1fp) -> c1 |
| if (N0CFP) |
| return DAG.getNode(ISD::FP_TO_UINT, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_ROUND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fp_round c1fp) -> c1fp |
| if (N0CFP) |
| return DAG.getNode(ISD::FP_ROUND, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_ROUND_INREG(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| MVT::ValueType VT = N->getValueType(0); |
| MVT::ValueType EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| |
| // fold (fp_round_inreg c1fp) -> c1fp |
| if (N0CFP) { |
| SDOperand Round = DAG.getConstantFP(N0CFP->getValue(), EVT); |
| return DAG.getNode(ISD::FP_EXTEND, VT, Round); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFP_EXTEND(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fp_extend c1fp) -> c1fp |
| if (N0CFP) |
| return DAG.getNode(ISD::FP_EXTEND, VT, N0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFNEG(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fneg c1) -> -c1 |
| if (N0CFP) |
| return DAG.getNode(ISD::FNEG, VT, N0); |
| // fold (fneg (sub x, y)) -> (sub y, x) |
| if (N->getOperand(0).getOpcode() == ISD::SUB) |
| return DAG.getNode(ISD::SUB, VT, N->getOperand(1), N->getOperand(0)); |
| // fold (fneg (fneg x)) -> x |
| if (N->getOperand(0).getOpcode() == ISD::FNEG) |
| return N->getOperand(0).getOperand(0); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitFABS(SDNode *N) { |
| SDOperand N0 = N->getOperand(0); |
| ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0); |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // fold (fabs c1) -> fabs(c1) |
| if (N0CFP) |
| return DAG.getNode(ISD::FABS, VT, N0); |
| // fold (fabs (fabs x)) -> (fabs x) |
| if (N->getOperand(0).getOpcode() == ISD::FABS) |
| return N->getOperand(0); |
| // fold (fabs (fneg x)) -> (fabs x) |
| if (N->getOperand(0).getOpcode() == ISD::FNEG) |
| return DAG.getNode(ISD::FABS, VT, N->getOperand(0).getOperand(0)); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitBRCOND(SDNode *N) { |
| SDOperand Chain = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand N2 = N->getOperand(2); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| |
| // never taken branch, fold to chain |
| if (N1C && N1C->isNullValue()) |
| return Chain; |
| // unconditional branch |
| if (N1C && N1C->getValue() == 1) |
| return DAG.getNode(ISD::BR, MVT::Other, Chain, N2); |
| // fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal |
| // on the target. |
| if (N1.getOpcode() == ISD::SETCC && |
| TLI.isOperationLegal(ISD::BR_CC, MVT::Other)) { |
| return DAG.getNode(ISD::BR_CC, MVT::Other, Chain, N1.getOperand(2), |
| N1.getOperand(0), N1.getOperand(1), N2); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitBRCONDTWOWAY(SDNode *N) { |
| SDOperand Chain = N->getOperand(0); |
| SDOperand N1 = N->getOperand(1); |
| SDOperand N2 = N->getOperand(2); |
| SDOperand N3 = N->getOperand(3); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); |
| |
| // unconditional branch to true mbb |
| if (N1C && N1C->getValue() == 1) |
| return DAG.getNode(ISD::BR, MVT::Other, Chain, N2); |
| // unconditional branch to false mbb |
| if (N1C && N1C->isNullValue()) |
| return DAG.getNode(ISD::BR, MVT::Other, Chain, N3); |
| // fold a brcondtwoway with a setcc condition into a BRTWOWAY_CC node if |
| // BRTWOWAY_CC is legal on the target. |
| if (N1.getOpcode() == ISD::SETCC && |
| TLI.isOperationLegal(ISD::BRTWOWAY_CC, MVT::Other)) { |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(N1.getOperand(2)); |
| Ops.push_back(N1.getOperand(0)); |
| Ops.push_back(N1.getOperand(1)); |
| Ops.push_back(N2); |
| Ops.push_back(N3); |
| return DAG.getNode(ISD::BRTWOWAY_CC, MVT::Other, Ops); |
| } |
| return SDOperand(); |
| } |
| |
| // Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB. |
| // |
| SDOperand DAGCombiner::visitBR_CC(SDNode *N) { |
| CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1)); |
| SDOperand CondLHS = N->getOperand(2), CondRHS = N->getOperand(3); |
| |
| // Use SimplifySetCC to simplify SETCC's. |
| SDOperand Simp = SimplifySetCC(MVT::i1, CondLHS, CondRHS, CC->get(), false); |
| ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(Simp.Val); |
| |
| // fold br_cc true, dest -> br dest (unconditional branch) |
| if (SCCC && SCCC->getValue()) |
| return DAG.getNode(ISD::BR, MVT::Other, N->getOperand(0), |
| N->getOperand(4)); |
| // fold br_cc false, dest -> unconditional fall through |
| if (SCCC && SCCC->isNullValue()) |
| return N->getOperand(0); |
| // fold to a simpler setcc |
| if (Simp.Val && Simp.getOpcode() == ISD::SETCC) |
| return DAG.getNode(ISD::BR_CC, MVT::Other, N->getOperand(0), |
| Simp.getOperand(2), Simp.getOperand(0), |
| Simp.getOperand(1), N->getOperand(4)); |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitBRTWOWAY_CC(SDNode *N) { |
| SDOperand Chain = N->getOperand(0); |
| SDOperand CCN = N->getOperand(1); |
| SDOperand LHS = N->getOperand(2); |
| SDOperand RHS = N->getOperand(3); |
| SDOperand N4 = N->getOperand(4); |
| SDOperand N5 = N->getOperand(5); |
| |
| SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), LHS, RHS, |
| cast<CondCodeSDNode>(CCN)->get(), false); |
| ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val); |
| |
| // fold select_cc lhs, rhs, x, x, cc -> x |
| if (N4 == N5) |
| return DAG.getNode(ISD::BR, MVT::Other, Chain, N4); |
| // fold select_cc true, x, y -> x |
| if (SCCC && SCCC->getValue()) |
| return DAG.getNode(ISD::BR, MVT::Other, Chain, N4); |
| // fold select_cc false, x, y -> y |
| if (SCCC && SCCC->isNullValue()) |
| return DAG.getNode(ISD::BR, MVT::Other, Chain, N5); |
| // fold to a simpler setcc |
| if (SCC.Val && SCC.getOpcode() == ISD::SETCC) { |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(SCC.getOperand(2)); |
| Ops.push_back(SCC.getOperand(0)); |
| Ops.push_back(SCC.getOperand(1)); |
| Ops.push_back(N4); |
| Ops.push_back(N5); |
| return DAG.getNode(ISD::BRTWOWAY_CC, MVT::Other, Ops); |
| } |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitLOAD(SDNode *N) { |
| SDOperand Chain = N->getOperand(0); |
| SDOperand Ptr = N->getOperand(1); |
| SDOperand SrcValue = N->getOperand(2); |
| |
| // If this load is directly stored, replace the load value with the stored |
| // value. |
| // TODO: Handle store large -> read small portion. |
| // TODO: Handle TRUNCSTORE/EXTLOAD |
| if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr && |
| Chain.getOperand(1).getValueType() == N->getValueType(0)) |
| return CombineTo(N, Chain.getOperand(1), Chain); |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::visitSTORE(SDNode *N) { |
| SDOperand Chain = N->getOperand(0); |
| SDOperand Value = N->getOperand(1); |
| SDOperand Ptr = N->getOperand(2); |
| SDOperand SrcValue = N->getOperand(3); |
| |
| // If this is a store that kills a previous store, remove the previous store. |
| if (Chain.getOpcode() == ISD::STORE && Chain.getOperand(2) == Ptr && |
| Chain.Val->hasOneUse() /* Avoid introducing DAG cycles */ && |
| // Make sure that these stores are the same value type: |
| // FIXME: we really care that the second store is >= size of the first. |
| Value.getValueType() == Chain.getOperand(1).getValueType()) { |
| // Create a new store of Value that replaces both stores. |
| SDNode *PrevStore = Chain.Val; |
| if (PrevStore->getOperand(1) == Value) // Same value multiply stored. |
| return Chain; |
| SDOperand NewStore = DAG.getNode(ISD::STORE, MVT::Other, |
| PrevStore->getOperand(0), Value, Ptr, |
| SrcValue); |
| CombineTo(N, NewStore); // Nuke this store. |
| CombineTo(PrevStore, NewStore); // Nuke the previous store. |
| return SDOperand(N, 0); |
| } |
| |
| // If this is a store of a bit convert, store the input value. |
| // FIXME: This needs to know that the resultant store does not need a |
| // higher alignment than the original. |
| if (0 && Value.getOpcode() == ISD::BIT_CONVERT) |
| return DAG.getNode(ISD::STORE, MVT::Other, Chain, Value.getOperand(0), |
| Ptr, SrcValue); |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::SimplifySelect(SDOperand N0, SDOperand N1, SDOperand N2){ |
| assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!"); |
| |
| SDOperand SCC = SimplifySelectCC(N0.getOperand(0), N0.getOperand(1), N1, N2, |
| cast<CondCodeSDNode>(N0.getOperand(2))->get()); |
| // If we got a simplified select_cc node back from SimplifySelectCC, then |
| // break it down into a new SETCC node, and a new SELECT node, and then return |
| // the SELECT node, since we were called with a SELECT node. |
| if (SCC.Val) { |
| // Check to see if we got a select_cc back (to turn into setcc/select). |
| // Otherwise, just return whatever node we got back, like fabs. |
| if (SCC.getOpcode() == ISD::SELECT_CC) { |
| SDOperand SETCC = DAG.getNode(ISD::SETCC, N0.getValueType(), |
| SCC.getOperand(0), SCC.getOperand(1), |
| SCC.getOperand(4)); |
| WorkList.push_back(SETCC.Val); |
| return DAG.getNode(ISD::SELECT, SCC.getValueType(), SCC.getOperand(2), |
| SCC.getOperand(3), SETCC); |
| } |
| return SCC; |
| } |
| return SDOperand(); |
| } |
| |
| /// SimplifySelectOps - Given a SELECT or a SELECT_CC node, where LHS and RHS |
| /// are the two values being selected between, see if we can simplify the |
| /// select. |
| /// |
| bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDOperand LHS, |
| SDOperand RHS) { |
| |
| // If this is a select from two identical things, try to pull the operation |
| // through the select. |
| if (LHS.getOpcode() == RHS.getOpcode() && LHS.hasOneUse() && RHS.hasOneUse()){ |
| #if 0 |
| std::cerr << "SELECT: ["; LHS.Val->dump(); |
| std::cerr << "] ["; RHS.Val->dump(); |
| std::cerr << "]\n"; |
| #endif |
| |
| // If this is a load and the token chain is identical, replace the select |
| // of two loads with a load through a select of the address to load from. |
| // This triggers in things like "select bool X, 10.0, 123.0" after the FP |
| // constants have been dropped into the constant pool. |
| if ((LHS.getOpcode() == ISD::LOAD || |
| LHS.getOpcode() == ISD::EXTLOAD || |
| LHS.getOpcode() == ISD::ZEXTLOAD || |
| LHS.getOpcode() == ISD::SEXTLOAD) && |
| // Token chains must be identical. |
| LHS.getOperand(0) == RHS.getOperand(0) && |
| // If this is an EXTLOAD, the VT's must match. |
| (LHS.getOpcode() == ISD::LOAD || |
| LHS.getOperand(3) == RHS.getOperand(3))) { |
| // FIXME: this conflates two src values, discarding one. This is not |
| // the right thing to do, but nothing uses srcvalues now. When they do, |
| // turn SrcValue into a list of locations. |
| SDOperand Addr; |
| if (TheSelect->getOpcode() == ISD::SELECT) |
| Addr = DAG.getNode(ISD::SELECT, LHS.getOperand(1).getValueType(), |
| TheSelect->getOperand(0), LHS.getOperand(1), |
| RHS.getOperand(1)); |
| else |
| Addr = DAG.getNode(ISD::SELECT_CC, LHS.getOperand(1).getValueType(), |
| TheSelect->getOperand(0), |
| TheSelect->getOperand(1), |
| LHS.getOperand(1), RHS.getOperand(1), |
| TheSelect->getOperand(4)); |
| |
| SDOperand Load; |
| if (LHS.getOpcode() == ISD::LOAD) |
| Load = DAG.getLoad(TheSelect->getValueType(0), LHS.getOperand(0), |
| Addr, LHS.getOperand(2)); |
| else |
| Load = DAG.getExtLoad(LHS.getOpcode(), TheSelect->getValueType(0), |
| LHS.getOperand(0), Addr, LHS.getOperand(2), |
| cast<VTSDNode>(LHS.getOperand(3))->getVT()); |
| // Users of the select now use the result of the load. |
| CombineTo(TheSelect, Load); |
| |
| // Users of the old loads now use the new load's chain. We know the |
| // old-load value is dead now. |
| CombineTo(LHS.Val, Load.getValue(0), Load.getValue(1)); |
| CombineTo(RHS.Val, Load.getValue(0), Load.getValue(1)); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| SDOperand DAGCombiner::SimplifySelectCC(SDOperand N0, SDOperand N1, |
| SDOperand N2, SDOperand N3, |
| ISD::CondCode CC) { |
| |
| MVT::ValueType VT = N2.getValueType(); |
| ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val); |
| ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); |
| ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); |
| ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N3.Val); |
| |
| // Determine if the condition we're dealing with is constant |
| SDOperand SCC = SimplifySetCC(TLI.getSetCCResultTy(), N0, N1, CC, false); |
| ConstantSDNode *SCCC = dyn_cast_or_null<ConstantSDNode>(SCC.Val); |
| |
| // fold select_cc true, x, y -> x |
| if (SCCC && SCCC->getValue()) |
| return N2; |
| // fold select_cc false, x, y -> y |
| if (SCCC && SCCC->getValue() == 0) |
| return N3; |
| |
| // Check to see if we can simplify the select into an fabs node |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1)) { |
| // Allow either -0.0 or 0.0 |
| if (CFP->getValue() == 0.0) { |
| // select (setg[te] X, +/-0.0), X, fneg(X) -> fabs |
| if ((CC == ISD::SETGE || CC == ISD::SETGT) && |
| N0 == N2 && N3.getOpcode() == ISD::FNEG && |
| N2 == N3.getOperand(0)) |
| return DAG.getNode(ISD::FABS, VT, N0); |
| |
| // select (setl[te] X, +/-0.0), fneg(X), X -> fabs |
| if ((CC == ISD::SETLT || CC == ISD::SETLE) && |
| N0 == N3 && N2.getOpcode() == ISD::FNEG && |
| N2.getOperand(0) == N3) |
| return DAG.getNode(ISD::FABS, VT, N3); |
| } |
| } |
| |
| // Check to see if we can perform the "gzip trick", transforming |
| // select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A |
| if (N1C && N1C->isNullValue() && N3C && N3C->isNullValue() && |
| MVT::isInteger(N0.getValueType()) && |
| MVT::isInteger(N2.getValueType()) && CC == ISD::SETLT) { |
| MVT::ValueType XType = N0.getValueType(); |
| MVT::ValueType AType = N2.getValueType(); |
| if (XType >= AType) { |
| // and (sra X, size(X)-1, A) -> "and (srl X, C2), A" iff A is a |
| // single-bit constant. |
| if (N2C && ((N2C->getValue() & (N2C->getValue()-1)) == 0)) { |
| unsigned ShCtV = Log2_64(N2C->getValue()); |
| ShCtV = MVT::getSizeInBits(XType)-ShCtV-1; |
| SDOperand ShCt = DAG.getConstant(ShCtV, TLI.getShiftAmountTy()); |
| SDOperand Shift = DAG.getNode(ISD::SRL, XType, N0, ShCt); |
| WorkList.push_back(Shift.Val); |
| if (XType > AType) { |
| Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift); |
| WorkList.push_back(Shift.Val); |
| } |
| return DAG.getNode(ISD::AND, AType, Shift, N2); |
| } |
| SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0, |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| WorkList.push_back(Shift.Val); |
| if (XType > AType) { |
| Shift = DAG.getNode(ISD::TRUNCATE, AType, Shift); |
| WorkList.push_back(Shift.Val); |
| } |
| return DAG.getNode(ISD::AND, AType, Shift, N2); |
| } |
| } |
| |
| // fold select C, 16, 0 -> shl C, 4 |
| if (N2C && N3C && N3C->isNullValue() && isPowerOf2_64(N2C->getValue()) && |
| TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) { |
| // Get a SetCC of the condition |
| // FIXME: Should probably make sure that setcc is legal if we ever have a |
| // target where it isn't. |
| SDOperand Temp, SCC = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC); |
| WorkList.push_back(SCC.Val); |
| // cast from setcc result type to select result type |
| if (AfterLegalize) |
| Temp = DAG.getZeroExtendInReg(SCC, N2.getValueType()); |
| else |
| Temp = DAG.getNode(ISD::ZERO_EXTEND, N2.getValueType(), SCC); |
| WorkList.push_back(Temp.Val); |
| // shl setcc result by log2 n2c |
| return DAG.getNode(ISD::SHL, N2.getValueType(), Temp, |
| DAG.getConstant(Log2_64(N2C->getValue()), |
| TLI.getShiftAmountTy())); |
| } |
| |
| // Check to see if this is the equivalent of setcc |
| // FIXME: Turn all of these into setcc if setcc if setcc is legal |
| // otherwise, go ahead with the folds. |
| if (0 && N3C && N3C->isNullValue() && N2C && (N2C->getValue() == 1ULL)) { |
| MVT::ValueType XType = N0.getValueType(); |
| if (TLI.isOperationLegal(ISD::SETCC, TLI.getSetCCResultTy())) { |
| SDOperand Res = DAG.getSetCC(TLI.getSetCCResultTy(), N0, N1, CC); |
| if (Res.getValueType() != VT) |
| Res = DAG.getNode(ISD::ZERO_EXTEND, VT, Res); |
| return Res; |
| } |
| |
| // seteq X, 0 -> srl (ctlz X, log2(size(X))) |
| if (N1C && N1C->isNullValue() && CC == ISD::SETEQ && |
| TLI.isOperationLegal(ISD::CTLZ, XType)) { |
| SDOperand Ctlz = DAG.getNode(ISD::CTLZ, XType, N0); |
| return DAG.getNode(ISD::SRL, XType, Ctlz, |
| DAG.getConstant(Log2_32(MVT::getSizeInBits(XType)), |
| TLI.getShiftAmountTy())); |
| } |
| // setgt X, 0 -> srl (and (-X, ~X), size(X)-1) |
| if (N1C && N1C->isNullValue() && CC == ISD::SETGT) { |
| SDOperand NegN0 = DAG.getNode(ISD::SUB, XType, DAG.getConstant(0, XType), |
| N0); |
| SDOperand NotN0 = DAG.getNode(ISD::XOR, XType, N0, |
| DAG.getConstant(~0ULL, XType)); |
| return DAG.getNode(ISD::SRL, XType, |
| DAG.getNode(ISD::AND, XType, NegN0, NotN0), |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| } |
| // setgt X, -1 -> xor (srl (X, size(X)-1), 1) |
| if (N1C && N1C->isAllOnesValue() && CC == ISD::SETGT) { |
| SDOperand Sign = DAG.getNode(ISD::SRL, XType, N0, |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| return DAG.getNode(ISD::XOR, XType, Sign, DAG.getConstant(1, XType)); |
| } |
| } |
| |
| // Check to see if this is an integer abs. select_cc setl[te] X, 0, -X, X -> |
| // Y = sra (X, size(X)-1); xor (add (X, Y), Y) |
| if (N1C && N1C->isNullValue() && (CC == ISD::SETLT || CC == ISD::SETLE) && |
| N0 == N3 && N2.getOpcode() == ISD::SUB && N0 == N2.getOperand(1)) { |
| if (ConstantSDNode *SubC = dyn_cast<ConstantSDNode>(N2.getOperand(0))) { |
| MVT::ValueType XType = N0.getValueType(); |
| if (SubC->isNullValue() && MVT::isInteger(XType)) { |
| SDOperand Shift = DAG.getNode(ISD::SRA, XType, N0, |
| DAG.getConstant(MVT::getSizeInBits(XType)-1, |
| TLI.getShiftAmountTy())); |
| SDOperand Add = DAG.getNode(ISD::ADD, XType, N0, Shift); |
| WorkList.push_back(Shift.Val); |
| WorkList.push_back(Add.Val); |
| return DAG.getNode(ISD::XOR, XType, Add, Shift); |
| } |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand DAGCombiner::SimplifySetCC(MVT::ValueType VT, SDOperand N0, |
| SDOperand N1, ISD::CondCode Cond, |
| bool foldBooleans) { |
| // These setcc operations always fold. |
| switch (Cond) { |
| default: break; |
| case ISD::SETFALSE: |
| case ISD::SETFALSE2: return DAG.getConstant(0, VT); |
| case ISD::SETTRUE: |
| case ISD::SETTRUE2: return DAG.getConstant(1, VT); |
| } |
| |
| if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) { |
| uint64_t C1 = N1C->getValue(); |
| if (ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val)) { |
| uint64_t C0 = N0C->getValue(); |
| |
| // Sign extend the operands if required |
| if (ISD::isSignedIntSetCC(Cond)) { |
| C0 = N0C->getSignExtended(); |
| C1 = N1C->getSignExtended(); |
| } |
| |
| switch (Cond) { |
| default: assert(0 && "Unknown integer setcc!"); |
| case ISD::SETEQ: return DAG.getConstant(C0 == C1, VT); |
| case ISD::SETNE: return DAG.getConstant(C0 != C1, VT); |
| case ISD::SETULT: return DAG.getConstant(C0 < C1, VT); |
| case ISD::SETUGT: return DAG.getConstant(C0 > C1, VT); |
| case ISD::SETULE: return DAG.getConstant(C0 <= C1, VT); |
| case ISD::SETUGE: return DAG.getConstant(C0 >= C1, VT); |
| case ISD::SETLT: return DAG.getConstant((int64_t)C0 < (int64_t)C1, VT); |
| case ISD::SETGT: return DAG.getConstant((int64_t)C0 > (int64_t)C1, VT); |
| case ISD::SETLE: return DAG.getConstant((int64_t)C0 <= (int64_t)C1, VT); |
| case ISD::SETGE: return DAG.getConstant((int64_t)C0 >= (int64_t)C1, VT); |
| } |
| } else { |
| // If the LHS is a ZERO_EXTEND, perform the comparison on the input. |
| if (N0.getOpcode() == ISD::ZERO_EXTEND) { |
| unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType()); |
| |
| // If the comparison constant has bits in the upper part, the |
| // zero-extended value could never match. |
| if (C1 & (~0ULL << InSize)) { |
| unsigned VSize = MVT::getSizeInBits(N0.getValueType()); |
| switch (Cond) { |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| case ISD::SETEQ: return DAG.getConstant(0, VT); |
| case ISD::SETULT: |
| case ISD::SETULE: |
| case ISD::SETNE: return DAG.getConstant(1, VT); |
| case ISD::SETGT: |
| case ISD::SETGE: |
| // True if the sign bit of C1 is set. |
| return DAG.getConstant((C1 & (1ULL << VSize)) != 0, VT); |
| case ISD::SETLT: |
| case ISD::SETLE: |
| // True if the sign bit of C1 isn't set. |
| return DAG.getConstant((C1 & (1ULL << VSize)) == 0, VT); |
| default: |
| break; |
| } |
| } |
| |
| // Otherwise, we can perform the comparison with the low bits. |
| switch (Cond) { |
| case ISD::SETEQ: |
| case ISD::SETNE: |
| case ISD::SETUGT: |
| case ISD::SETUGE: |
| case ISD::SETULT: |
| case ISD::SETULE: |
| return DAG.getSetCC(VT, N0.getOperand(0), |
| DAG.getConstant(C1, N0.getOperand(0).getValueType()), |
| Cond); |
| default: |
| break; // todo, be more careful with signed comparisons |
| } |
| } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && |
| (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { |
| MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); |
| unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy); |
| MVT::ValueType ExtDstTy = N0.getValueType(); |
| unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy); |
| |
| // If the extended part has any inconsistent bits, it cannot ever |
| // compare equal. In other words, they have to be all ones or all |
| // zeros. |
| uint64_t ExtBits = |
| (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1)); |
| if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits) |
| return DAG.getConstant(Cond == ISD::SETNE, VT); |
| |
| SDOperand ZextOp; |
| MVT::ValueType Op0Ty = N0.getOperand(0).getValueType(); |
| if (Op0Ty == ExtSrcTy) { |
| ZextOp = N0.getOperand(0); |
| } else { |
| int64_t Imm = ~0ULL >> (64-ExtSrcTyBits); |
| ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0), |
| DAG.getConstant(Imm, Op0Ty)); |
| } |
| WorkList.push_back(ZextOp.Val); |
| // Otherwise, make this a use of a zext. |
| return DAG.getSetCC(VT, ZextOp, |
| DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)), |
| ExtDstTy), |
| Cond); |
| } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) && |
| (Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| (N0.getOpcode() == ISD::XOR || |
| (N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::XOR && |
| N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && |
| isa<ConstantSDNode>(N0.getOperand(1)) && |
| cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) { |
| // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We can |
| // only do this if the top bits are known zero. |
| if (TLI.MaskedValueIsZero(N1, |
| MVT::getIntVTBitMask(N0.getValueType())-1)) { |
| // Okay, get the un-inverted input value. |
| SDOperand Val; |
| if (N0.getOpcode() == ISD::XOR) |
| Val = N0.getOperand(0); |
| else { |
| assert(N0.getOpcode() == ISD::AND && |
| N0.getOperand(0).getOpcode() == ISD::XOR); |
| // ((X^1)&1)^1 -> X & 1 |
| Val = DAG.getNode(ISD::AND, N0.getValueType(), |
| N0.getOperand(0).getOperand(0), N0.getOperand(1)); |
| } |
| return DAG.getSetCC(VT, Val, N1, |
| Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); |
| } |
| } |
| |
| uint64_t MinVal, MaxVal; |
| unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0)); |
| if (ISD::isSignedIntSetCC(Cond)) { |
| MinVal = 1ULL << (OperandBitSize-1); |
| if (OperandBitSize != 1) // Avoid X >> 64, which is undefined. |
| MaxVal = ~0ULL >> (65-OperandBitSize); |
| else |
| MaxVal = 0; |
| } else { |
| MinVal = 0; |
| MaxVal = ~0ULL >> (64-OperandBitSize); |
| } |
| |
| // Canonicalize GE/LE comparisons to use GT/LT comparisons. |
| if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { |
| if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true |
| --C1; // X >= C0 --> X > (C0-1) |
| return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()), |
| (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); |
| } |
| |
| if (Cond == ISD::SETLE || Cond == ISD::SETULE) { |
| if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true |
| ++C1; // X <= C0 --> X < (C0+1) |
| return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()), |
| (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); |
| } |
| |
| if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) |
| return DAG.getConstant(0, VT); // X < MIN --> false |
| |
| // Canonicalize setgt X, Min --> setne X, Min |
| if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) |
| return DAG.getSetCC(VT, N0, N1, ISD::SETNE); |
| // Canonicalize setlt X, Max --> setne X, Max |
| if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) |
| return DAG.getSetCC(VT, N0, N1, ISD::SETNE); |
| |
| // If we have setult X, 1, turn it into seteq X, 0 |
| if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) |
| return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()), |
| ISD::SETEQ); |
| // If we have setugt X, Max-1, turn it into seteq X, Max |
| else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) |
| return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()), |
| ISD::SETEQ); |
| |
| // If we have "setcc X, C0", check to see if we can shrink the immediate |
| // by changing cc. |
| |
| // SETUGT X, SINTMAX -> SETLT X, 0 |
| if (Cond == ISD::SETUGT && OperandBitSize != 1 && |
| C1 == (~0ULL >> (65-OperandBitSize))) |
| return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()), |
| ISD::SETLT); |
| |
| // FIXME: Implement the rest of these. |
| |
| // Fold bit comparisons when we can. |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| VT == N0.getValueType() && N0.getOpcode() == ISD::AND) |
| if (ConstantSDNode *AndRHS = |
| dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 |
| // Perform the xform if the AND RHS is a single bit. |
| if ((AndRHS->getValue() & (AndRHS->getValue()-1)) == 0) { |
| return DAG.getNode(ISD::SRL, VT, N0, |
| DAG.getConstant(Log2_64(AndRHS->getValue()), |
| TLI.getShiftAmountTy())); |
| } |
| } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) { |
| // (X & 8) == 8 --> (X & 8) >> 3 |
| // Perform the xform if C1 is a single bit. |
| if ((C1 & (C1-1)) == 0) { |
| return DAG.getNode(ISD::SRL, VT, N0, |
| DAG.getConstant(Log2_64(C1),TLI.getShiftAmountTy())); |
| } |
| } |
| } |
| } |
| } else if (isa<ConstantSDNode>(N0.Val)) { |
| // Ensure that the constant occurs on the RHS. |
| return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); |
| } |
| |
| if (ConstantFPSDNode *N0C = dyn_cast<ConstantFPSDNode>(N0.Val)) |
| if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) { |
| double C0 = N0C->getValue(), C1 = N1C->getValue(); |
| |
| switch (Cond) { |
| default: break; // FIXME: Implement the rest of these! |
| case ISD::SETEQ: return DAG.getConstant(C0 == C1, VT); |
| case ISD::SETNE: return DAG.getConstant(C0 != C1, VT); |
| case ISD::SETLT: return DAG.getConstant(C0 < C1, VT); |
| case ISD::SETGT: return DAG.getConstant(C0 > C1, VT); |
| case ISD::SETLE: return DAG.getConstant(C0 <= C1, VT); |
| case ISD::SETGE: return DAG.getConstant(C0 >= C1, VT); |
| } |
| } else { |
| // Ensure that the constant occurs on the RHS. |
| return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); |
| } |
| |
| if (N0 == N1) { |
| // We can always fold X == Y for integer setcc's. |
| if (MVT::isInteger(N0.getValueType())) |
| return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); |
| unsigned UOF = ISD::getUnorderedFlavor(Cond); |
| if (UOF == 2) // FP operators that are undefined on NaNs. |
| return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); |
| if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) |
| return DAG.getConstant(UOF, VT); |
| // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO |
| // if it is not already. |
| ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; |
| if (NewCond != Cond) |
| return DAG.getSetCC(VT, N0, N1, NewCond); |
| } |
| |
| if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && |
| MVT::isInteger(N0.getValueType())) { |
| if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || |
| N0.getOpcode() == ISD::XOR) { |
| // Simplify (X+Y) == (X+Z) --> Y == Z |
| if (N0.getOpcode() == N1.getOpcode()) { |
| if (N0.getOperand(0) == N1.getOperand(0)) |
| return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond); |
| if (N0.getOperand(1) == N1.getOperand(1)) |
| return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond); |
| if (isCommutativeBinOp(N0.getOpcode())) { |
| // If X op Y == Y op X, try other combinations. |
| if (N0.getOperand(0) == N1.getOperand(1)) |
| return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond); |
| if (N0.getOperand(1) == N1.getOperand(0)) |
| return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond); |
| } |
| } |
| |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { |
| if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { |
| // Turn (X+C1) == C2 --> X == C2-C1 |
| if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) { |
| return DAG.getSetCC(VT, N0.getOperand(0), |
| DAG.getConstant(RHSC->getValue()-LHSR->getValue(), |
| N0.getValueType()), Cond); |
| } |
| |
| // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. |
| if (N0.getOpcode() == ISD::XOR) |
| // If we know that all of the inverted bits are zero, don't bother |
| // performing the inversion. |
| if (TLI.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue())) |
| return DAG.getSetCC(VT, N0.getOperand(0), |
| DAG.getConstant(LHSR->getValue()^RHSC->getValue(), |
| N0.getValueType()), Cond); |
| } |
| |
| // Turn (C1-X) == C2 --> X == C1-C2 |
| if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { |
| if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) { |
| return DAG.getSetCC(VT, N0.getOperand(1), |
| DAG.getConstant(SUBC->getValue()-RHSC->getValue(), |
| N0.getValueType()), Cond); |
| } |
| } |
| } |
| |
| // Simplify (X+Z) == X --> Z == 0 |
| if (N0.getOperand(0) == N1) |
| return DAG.getSetCC(VT, N0.getOperand(1), |
| DAG.getConstant(0, N0.getValueType()), Cond); |
| if (N0.getOperand(1) == N1) { |
| if (isCommutativeBinOp(N0.getOpcode())) |
| return DAG.getSetCC(VT, N0.getOperand(0), |
| DAG.getConstant(0, N0.getValueType()), Cond); |
| else { |
| assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); |
| // (Z-X) == X --> Z == X<<1 |
| SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), |
| N1, |
| DAG.getConstant(1,TLI.getShiftAmountTy())); |
| WorkList.push_back(SH.Val); |
| return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond); |
| } |
| } |
| } |
| |
| if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || |
| N1.getOpcode() == ISD::XOR) { |
| // Simplify X == (X+Z) --> Z == 0 |
| if (N1.getOperand(0) == N0) { |
| return DAG.getSetCC(VT, N1.getOperand(1), |
| DAG.getConstant(0, N1.getValueType()), Cond); |
| } else if (N1.getOperand(1) == N0) { |
| if (isCommutativeBinOp(N1.getOpcode())) { |
| return DAG.getSetCC(VT, N1.getOperand(0), |
| DAG.getConstant(0, N1.getValueType()), Cond); |
| } else { |
| assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); |
| // X == (Z-X) --> X<<1 == Z |
| SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0, |
| DAG.getConstant(1,TLI.getShiftAmountTy())); |
| WorkList.push_back(SH.Val); |
| return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond); |
| } |
| } |
| } |
| } |
| |
| // Fold away ALL boolean setcc's. |
| SDOperand Temp; |
| if (N0.getValueType() == MVT::i1 && foldBooleans) { |
| switch (Cond) { |
| default: assert(0 && "Unknown integer setcc!"); |
| case ISD::SETEQ: // X == Y -> (X^Y)^1 |
| Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1); |
| N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1)); |
| WorkList.push_back(Temp.Val); |
| break; |
| case ISD::SETNE: // X != Y --> (X^Y) |
| N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1); |
| break; |
| case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y |
| case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y |
| Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1)); |
| N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp); |
| WorkList.push_back(Temp.Val); |
| break; |
| case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X |
| case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X |
| Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1)); |
| N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp); |
| WorkList.push_back(Temp.Val); |
| break; |
| case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y |
| case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y |
| Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1)); |
| N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp); |
| WorkList.push_back(Temp.Val); |
| break; |
| case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X |
| case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X |
| Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1)); |
| N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp); |
| break; |
| } |
| if (VT != MVT::i1) { |
| WorkList.push_back(N0.Val); |
| // FIXME: If running after legalize, we probably can't do this. |
| N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0); |
| } |
| return N0; |
| } |
| |
| // Could not fold it. |
| return SDOperand(); |
| } |
| |
| /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, |
| /// return a DAG expression to select that will generate the same value by |
| /// multiplying by a magic number. See: |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| SDOperand DAGCombiner::BuildSDIV(SDNode *N) { |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // Check to see if we can do this. |
| if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) |
| return SDOperand(); // BuildSDIV only operates on i32 or i64 |
| if (!TLI.isOperationLegal(ISD::MULHS, VT)) |
| return SDOperand(); // Make sure the target supports MULHS. |
| |
| int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended(); |
| ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d); |
| |
| // Multiply the numerator (operand 0) by the magic value |
| SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0), |
| DAG.getConstant(magics.m, VT)); |
| // If d > 0 and m < 0, add the numerator |
| if (d > 0 && magics.m < 0) { |
| Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0)); |
| WorkList.push_back(Q.Val); |
| } |
| // If d < 0 and m > 0, subtract the numerator. |
| if (d < 0 && magics.m > 0) { |
| Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0)); |
| WorkList.push_back(Q.Val); |
| } |
| // Shift right algebraic if shift value is nonzero |
| if (magics.s > 0) { |
| Q = DAG.getNode(ISD::SRA, VT, Q, |
| DAG.getConstant(magics.s, TLI.getShiftAmountTy())); |
| WorkList.push_back(Q.Val); |
| } |
| // Extract the sign bit and add it to the quotient |
| SDOperand T = |
| DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1, |
| TLI.getShiftAmountTy())); |
| WorkList.push_back(T.Val); |
| return DAG.getNode(ISD::ADD, VT, Q, T); |
| } |
| |
| /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, |
| /// return a DAG expression to select that will generate the same value by |
| /// multiplying by a magic number. See: |
| /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> |
| SDOperand DAGCombiner::BuildUDIV(SDNode *N) { |
| MVT::ValueType VT = N->getValueType(0); |
| |
| // Check to see if we can do this. |
| if (!TLI.isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) |
| return SDOperand(); // BuildUDIV only operates on i32 or i64 |
| if (!TLI.isOperationLegal(ISD::MULHU, VT)) |
| return SDOperand(); // Make sure the target supports MULHU. |
| |
| uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue(); |
| mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d); |
| |
| // Multiply the numerator (operand 0) by the magic value |
| SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0), |
| DAG.getConstant(magics.m, VT)); |
| WorkList.push_back(Q.Val); |
| |
| if (magics.a == 0) { |
| return DAG.getNode(ISD::SRL, VT, Q, |
| DAG.getConstant(magics.s, TLI.getShiftAmountTy())); |
| } else { |
| SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q); |
| WorkList.push_back(NPQ.Val); |
| NPQ = DAG.getNode(ISD::SRL, VT, NPQ, |
| DAG.getConstant(1, TLI.getShiftAmountTy())); |
| WorkList.push_back(NPQ.Val); |
| NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q); |
| WorkList.push_back(NPQ.Val); |
| return DAG.getNode(ISD::SRL, VT, NPQ, |
| DAG.getConstant(magics.s-1, TLI.getShiftAmountTy())); |
| } |
| } |
| |
| // SelectionDAG::Combine - This is the entry point for the file. |
| // |
| void SelectionDAG::Combine(bool RunningAfterLegalize) { |
| /// run - This is the main entry point to this class. |
| /// |
| DAGCombiner(*this).Run(RunningAfterLegalize); |
| } |