| //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file contains the SplitAnalysis class as well as mutator functions for | 
 | // live range splitting. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "regalloc" | 
 | #include "SplitKit.h" | 
 | #include "LiveRangeEdit.h" | 
 | #include "VirtRegMap.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
 | #include "llvm/CodeGen/MachineDominators.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<bool> | 
 | AllowSplit("spiller-splits-edges", | 
 |            cl::desc("Allow critical edge splitting during spilling")); | 
 |  | 
 | STATISTIC(NumFinished, "Number of splits finished"); | 
 | STATISTIC(NumSimple,   "Number of splits that were simple"); | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                                 Split Analysis | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, | 
 |                              const LiveIntervals &lis, | 
 |                              const MachineLoopInfo &mli) | 
 |   : MF(vrm.getMachineFunction()), | 
 |     VRM(vrm), | 
 |     LIS(lis), | 
 |     Loops(mli), | 
 |     TII(*MF.getTarget().getInstrInfo()), | 
 |     CurLI(0) {} | 
 |  | 
 | void SplitAnalysis::clear() { | 
 |   UseSlots.clear(); | 
 |   UsingInstrs.clear(); | 
 |   UsingBlocks.clear(); | 
 |   LiveBlocks.clear(); | 
 |   CurLI = 0; | 
 | } | 
 |  | 
 | bool SplitAnalysis::canAnalyzeBranch(const MachineBasicBlock *MBB) { | 
 |   MachineBasicBlock *T, *F; | 
 |   SmallVector<MachineOperand, 4> Cond; | 
 |   return !TII.AnalyzeBranch(const_cast<MachineBasicBlock&>(*MBB), T, F, Cond); | 
 | } | 
 |  | 
 | /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. | 
 | void SplitAnalysis::analyzeUses() { | 
 |   const MachineRegisterInfo &MRI = MF.getRegInfo(); | 
 |   for (MachineRegisterInfo::reg_iterator I = MRI.reg_begin(CurLI->reg), | 
 |        E = MRI.reg_end(); I != E; ++I) { | 
 |     MachineOperand &MO = I.getOperand(); | 
 |     if (MO.isUse() && MO.isUndef()) | 
 |       continue; | 
 |     MachineInstr *MI = MO.getParent(); | 
 |     if (MI->isDebugValue() || !UsingInstrs.insert(MI)) | 
 |       continue; | 
 |     UseSlots.push_back(LIS.getInstructionIndex(MI).getDefIndex()); | 
 |     MachineBasicBlock *MBB = MI->getParent(); | 
 |     UsingBlocks[MBB]++; | 
 |   } | 
 |   array_pod_sort(UseSlots.begin(), UseSlots.end()); | 
 |  | 
 |   // Compute per-live block info. | 
 |   if (!calcLiveBlockInfo()) { | 
 |     // FIXME: calcLiveBlockInfo found inconsistencies in the live range. | 
 |     // I am looking at you, SimpleRegisterCoalescing! | 
 |     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); | 
 |     const_cast<LiveIntervals&>(LIS) | 
 |       .shrinkToUses(const_cast<LiveInterval*>(CurLI)); | 
 |     LiveBlocks.clear(); | 
 |     bool fixed = calcLiveBlockInfo(); | 
 |     (void)fixed; | 
 |     assert(fixed && "Couldn't fix broken live interval"); | 
 |   } | 
 |  | 
 |   DEBUG(dbgs() << "Analyze counted " | 
 |                << UsingInstrs.size() << " instrs, " | 
 |                << UsingBlocks.size() << " blocks, " | 
 |                << LiveBlocks.size() << " spanned.\n"); | 
 | } | 
 |  | 
 | /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks | 
 | /// where CurLI is live. | 
 | bool SplitAnalysis::calcLiveBlockInfo() { | 
 |   if (CurLI->empty()) | 
 |     return true; | 
 |  | 
 |   LiveInterval::const_iterator LVI = CurLI->begin(); | 
 |   LiveInterval::const_iterator LVE = CurLI->end(); | 
 |  | 
 |   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; | 
 |   UseI = UseSlots.begin(); | 
 |   UseE = UseSlots.end(); | 
 |  | 
 |   // Loop over basic blocks where CurLI is live. | 
 |   MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); | 
 |   for (;;) { | 
 |     BlockInfo BI; | 
 |     BI.MBB = MFI; | 
 |     tie(BI.Start, BI.Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); | 
 |  | 
 |     // The last split point is the latest possible insertion point that dominates | 
 |     // all successor blocks. If interference reaches LastSplitPoint, it is not | 
 |     // possible to insert a split or reload that makes CurLI live in the | 
 |     // outgoing bundle. | 
 |     MachineBasicBlock::iterator LSP = LIS.getLastSplitPoint(*CurLI, BI.MBB); | 
 |     if (LSP == BI.MBB->end()) | 
 |       BI.LastSplitPoint = BI.Stop; | 
 |     else | 
 |       BI.LastSplitPoint = LIS.getInstructionIndex(LSP); | 
 |  | 
 |     // LVI is the first live segment overlapping MBB. | 
 |     BI.LiveIn = LVI->start <= BI.Start; | 
 |     if (!BI.LiveIn) | 
 |       BI.Def = LVI->start; | 
 |  | 
 |     // Find the first and last uses in the block. | 
 |     BI.Uses = hasUses(MFI); | 
 |     if (BI.Uses && UseI != UseE) { | 
 |       BI.FirstUse = *UseI; | 
 |       assert(BI.FirstUse >= BI.Start); | 
 |       do ++UseI; | 
 |       while (UseI != UseE && *UseI < BI.Stop); | 
 |       BI.LastUse = UseI[-1]; | 
 |       assert(BI.LastUse < BI.Stop); | 
 |     } | 
 |  | 
 |     // Look for gaps in the live range. | 
 |     bool hasGap = false; | 
 |     BI.LiveOut = true; | 
 |     while (LVI->end < BI.Stop) { | 
 |       SlotIndex LastStop = LVI->end; | 
 |       if (++LVI == LVE || LVI->start >= BI.Stop) { | 
 |         BI.Kill = LastStop; | 
 |         BI.LiveOut = false; | 
 |         break; | 
 |       } | 
 |       if (LastStop < LVI->start) { | 
 |         hasGap = true; | 
 |         BI.Kill = LastStop; | 
 |         BI.Def = LVI->start; | 
 |       } | 
 |     } | 
 |  | 
 |     // Don't set LiveThrough when the block has a gap. | 
 |     BI.LiveThrough = !hasGap && BI.LiveIn && BI.LiveOut; | 
 |     LiveBlocks.push_back(BI); | 
 |  | 
 |     // FIXME: This should never happen. The live range stops or starts without a | 
 |     // corresponding use. An earlier pass did something wrong. | 
 |     if (!BI.LiveThrough && !BI.Uses) | 
 |       return false; | 
 |  | 
 |     // LVI is now at LVE or LVI->end >= Stop. | 
 |     if (LVI == LVE) | 
 |       break; | 
 |  | 
 |     // Live segment ends exactly at Stop. Move to the next segment. | 
 |     if (LVI->end == BI.Stop && ++LVI == LVE) | 
 |       break; | 
 |  | 
 |     // Pick the next basic block. | 
 |     if (LVI->start < BI.Stop) | 
 |       ++MFI; | 
 |     else | 
 |       MFI = LIS.getMBBFromIndex(LVI->start); | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { | 
 |   unsigned OrigReg = VRM.getOriginal(CurLI->reg); | 
 |   const LiveInterval &Orig = LIS.getInterval(OrigReg); | 
 |   assert(!Orig.empty() && "Splitting empty interval?"); | 
 |   LiveInterval::const_iterator I = Orig.find(Idx); | 
 |  | 
 |   // Range containing Idx should begin at Idx. | 
 |   if (I != Orig.end() && I->start <= Idx) | 
 |     return I->start == Idx; | 
 |  | 
 |   // Range does not contain Idx, previous must end at Idx. | 
 |   return I != Orig.begin() && (--I)->end == Idx; | 
 | } | 
 |  | 
 | void SplitAnalysis::print(const BlockPtrSet &B, raw_ostream &OS) const { | 
 |   for (BlockPtrSet::const_iterator I = B.begin(), E = B.end(); I != E; ++I) { | 
 |     unsigned count = UsingBlocks.lookup(*I); | 
 |     OS << " BB#" << (*I)->getNumber(); | 
 |     if (count) | 
 |       OS << '(' << count << ')'; | 
 |   } | 
 | } | 
 |  | 
 | void SplitAnalysis::analyze(const LiveInterval *li) { | 
 |   clear(); | 
 |   CurLI = li; | 
 |   analyzeUses(); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                               Split Editor | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. | 
 | SplitEditor::SplitEditor(SplitAnalysis &sa, | 
 |                          LiveIntervals &lis, | 
 |                          VirtRegMap &vrm, | 
 |                          MachineDominatorTree &mdt) | 
 |   : SA(sa), LIS(lis), VRM(vrm), | 
 |     MRI(vrm.getMachineFunction().getRegInfo()), | 
 |     MDT(mdt), | 
 |     TII(*vrm.getMachineFunction().getTarget().getInstrInfo()), | 
 |     TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()), | 
 |     Edit(0), | 
 |     OpenIdx(0), | 
 |     RegAssign(Allocator) | 
 | {} | 
 |  | 
 | void SplitEditor::reset(LiveRangeEdit &lre) { | 
 |   Edit = &lre; | 
 |   OpenIdx = 0; | 
 |   RegAssign.clear(); | 
 |   Values.clear(); | 
 |  | 
 |   // We don't need to clear LiveOutCache, only LiveOutSeen entries are read. | 
 |   LiveOutSeen.clear(); | 
 |  | 
 |   // We don't need an AliasAnalysis since we will only be performing | 
 |   // cheap-as-a-copy remats anyway. | 
 |   Edit->anyRematerializable(LIS, TII, 0); | 
 | } | 
 |  | 
 | void SplitEditor::dump() const { | 
 |   if (RegAssign.empty()) { | 
 |     dbgs() << " empty\n"; | 
 |     return; | 
 |   } | 
 |  | 
 |   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) | 
 |     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); | 
 |   dbgs() << '\n'; | 
 | } | 
 |  | 
 | VNInfo *SplitEditor::defValue(unsigned RegIdx, | 
 |                               const VNInfo *ParentVNI, | 
 |                               SlotIndex Idx) { | 
 |   assert(ParentVNI && "Mapping  NULL value"); | 
 |   assert(Idx.isValid() && "Invalid SlotIndex"); | 
 |   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); | 
 |   LiveInterval *LI = Edit->get(RegIdx); | 
 |  | 
 |   // Create a new value. | 
 |   VNInfo *VNI = LI->getNextValue(Idx, 0, LIS.getVNInfoAllocator()); | 
 |  | 
 |   // Use insert for lookup, so we can add missing values with a second lookup. | 
 |   std::pair<ValueMap::iterator, bool> InsP = | 
 |     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), VNI)); | 
 |  | 
 |   // This was the first time (RegIdx, ParentVNI) was mapped. | 
 |   // Keep it as a simple def without any liveness. | 
 |   if (InsP.second) | 
 |     return VNI; | 
 |  | 
 |   // If the previous value was a simple mapping, add liveness for it now. | 
 |   if (VNInfo *OldVNI = InsP.first->second) { | 
 |     SlotIndex Def = OldVNI->def; | 
 |     LI->addRange(LiveRange(Def, Def.getNextSlot(), OldVNI)); | 
 |     // No longer a simple mapping. | 
 |     InsP.first->second = 0; | 
 |   } | 
 |  | 
 |   // This is a complex mapping, add liveness for VNI | 
 |   SlotIndex Def = VNI->def; | 
 |   LI->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); | 
 |  | 
 |   return VNI; | 
 | } | 
 |  | 
 | void SplitEditor::markComplexMapped(unsigned RegIdx, const VNInfo *ParentVNI) { | 
 |   assert(ParentVNI && "Mapping  NULL value"); | 
 |   VNInfo *&VNI = Values[std::make_pair(RegIdx, ParentVNI->id)]; | 
 |  | 
 |   // ParentVNI was either unmapped or already complex mapped. Either way. | 
 |   if (!VNI) | 
 |     return; | 
 |  | 
 |   // This was previously a single mapping. Make sure the old def is represented | 
 |   // by a trivial live range. | 
 |   SlotIndex Def = VNI->def; | 
 |   Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI)); | 
 |   VNI = 0; | 
 | } | 
 |  | 
 | // extendRange - Extend the live range to reach Idx. | 
 | // Potentially create phi-def values. | 
 | void SplitEditor::extendRange(unsigned RegIdx, SlotIndex Idx) { | 
 |   assert(Idx.isValid() && "Invalid SlotIndex"); | 
 |   MachineBasicBlock *IdxMBB = LIS.getMBBFromIndex(Idx); | 
 |   assert(IdxMBB && "No MBB at Idx"); | 
 |   LiveInterval *LI = Edit->get(RegIdx); | 
 |  | 
 |   // Is there a def in the same MBB we can extend? | 
 |   if (LI->extendInBlock(LIS.getMBBStartIdx(IdxMBB), Idx)) | 
 |     return; | 
 |  | 
 |   // Now for the fun part. We know that ParentVNI potentially has multiple defs, | 
 |   // and we may need to create even more phi-defs to preserve VNInfo SSA form. | 
 |   // Perform a search for all predecessor blocks where we know the dominating | 
 |   // VNInfo. Insert phi-def VNInfos along the path back to IdxMBB. | 
 |  | 
 |   // Initialize the live-out cache the first time it is needed. | 
 |   if (LiveOutSeen.empty()) { | 
 |     unsigned N = VRM.getMachineFunction().getNumBlockIDs(); | 
 |     LiveOutSeen.resize(N); | 
 |     LiveOutCache.resize(N); | 
 |   } | 
 |  | 
 |   // Blocks where LI should be live-in. | 
 |   SmallVector<MachineDomTreeNode*, 16> LiveIn; | 
 |   LiveIn.push_back(MDT[IdxMBB]); | 
 |  | 
 |   // Remember if we have seen more than one value. | 
 |   bool UniqueVNI = true; | 
 |   VNInfo *IdxVNI = 0; | 
 |  | 
 |   // Using LiveOutCache as a visited set, perform a BFS for all reaching defs. | 
 |   for (unsigned i = 0; i != LiveIn.size(); ++i) { | 
 |     MachineBasicBlock *MBB = LiveIn[i]->getBlock(); | 
 |     assert(!MBB->pred_empty() && "Value live-in to entry block?"); | 
 |     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), | 
 |            PE = MBB->pred_end(); PI != PE; ++PI) { | 
 |        MachineBasicBlock *Pred = *PI; | 
 |        LiveOutPair &LOP = LiveOutCache[Pred]; | 
 |  | 
 |        // Is this a known live-out block? | 
 |        if (LiveOutSeen.test(Pred->getNumber())) { | 
 |          if (VNInfo *VNI = LOP.first) { | 
 |            if (IdxVNI && IdxVNI != VNI) | 
 |              UniqueVNI = false; | 
 |            IdxVNI = VNI; | 
 |          } | 
 |          continue; | 
 |        } | 
 |  | 
 |        // First time. LOP is garbage and must be cleared below. | 
 |        LiveOutSeen.set(Pred->getNumber()); | 
 |  | 
 |        // Does Pred provide a live-out value? | 
 |        SlotIndex Start, Last; | 
 |        tie(Start, Last) = LIS.getSlotIndexes()->getMBBRange(Pred); | 
 |        Last = Last.getPrevSlot(); | 
 |        VNInfo *VNI = LI->extendInBlock(Start, Last); | 
 |        LOP.first = VNI; | 
 |        if (VNI) { | 
 |          LOP.second = MDT[LIS.getMBBFromIndex(VNI->def)]; | 
 |          if (IdxVNI && IdxVNI != VNI) | 
 |            UniqueVNI = false; | 
 |          IdxVNI = VNI; | 
 |          continue; | 
 |        } | 
 |        LOP.second = 0; | 
 |  | 
 |        // No, we need a live-in value for Pred as well | 
 |        if (Pred != IdxMBB) | 
 |          LiveIn.push_back(MDT[Pred]); | 
 |        else | 
 |          UniqueVNI = false; // Loopback to IdxMBB, ask updateSSA() for help. | 
 |     } | 
 |   } | 
 |  | 
 |   // We may need to add phi-def values to preserve the SSA form. | 
 |   if (UniqueVNI) { | 
 |     LiveOutPair LOP(IdxVNI, MDT[LIS.getMBBFromIndex(IdxVNI->def)]); | 
 |     // Update LiveOutCache, but skip IdxMBB at LiveIn[0]. | 
 |     for (unsigned i = 1, e = LiveIn.size(); i != e; ++i) | 
 |       LiveOutCache[LiveIn[i]->getBlock()] = LOP; | 
 |   } else | 
 |     IdxVNI = updateSSA(RegIdx, LiveIn, Idx, IdxMBB); | 
 |  | 
 |   // Since we went through the trouble of a full BFS visiting all reaching defs, | 
 |   // the values in LiveIn are now accurate. No more phi-defs are needed | 
 |   // for these blocks, so we can color the live ranges. | 
 |   for (unsigned i = 0, e = LiveIn.size(); i != e; ++i) { | 
 |     MachineBasicBlock *MBB = LiveIn[i]->getBlock(); | 
 |     SlotIndex Start = LIS.getMBBStartIdx(MBB); | 
 |     VNInfo *VNI = LiveOutCache[MBB].first; | 
 |  | 
 |     // Anything in LiveIn other than IdxMBB is live-through. | 
 |     // In IdxMBB, we should stop at Idx unless the same value is live-out. | 
 |     if (MBB == IdxMBB && IdxVNI != VNI) | 
 |       LI->addRange(LiveRange(Start, Idx.getNextSlot(), IdxVNI)); | 
 |     else | 
 |       LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); | 
 |   } | 
 | } | 
 |  | 
 | VNInfo *SplitEditor::updateSSA(unsigned RegIdx, | 
 |                                SmallVectorImpl<MachineDomTreeNode*> &LiveIn, | 
 |                                SlotIndex Idx, | 
 |                                const MachineBasicBlock *IdxMBB) { | 
 |   // This is essentially the same iterative algorithm that SSAUpdater uses, | 
 |   // except we already have a dominator tree, so we don't have to recompute it. | 
 |   LiveInterval *LI = Edit->get(RegIdx); | 
 |   VNInfo *IdxVNI = 0; | 
 |   unsigned Changes; | 
 |   do { | 
 |     Changes = 0; | 
 |     // Propagate live-out values down the dominator tree, inserting phi-defs | 
 |     // when necessary. Since LiveIn was created by a BFS, going backwards makes | 
 |     // it more likely for us to visit immediate dominators before their | 
 |     // children. | 
 |     for (unsigned i = LiveIn.size(); i; --i) { | 
 |       MachineDomTreeNode *Node = LiveIn[i-1]; | 
 |       MachineBasicBlock *MBB = Node->getBlock(); | 
 |       MachineDomTreeNode *IDom = Node->getIDom(); | 
 |       LiveOutPair IDomValue; | 
 |  | 
 |       // We need a live-in value to a block with no immediate dominator? | 
 |       // This is probably an unreachable block that has survived somehow. | 
 |       bool needPHI = !IDom || !LiveOutSeen.test(IDom->getBlock()->getNumber()); | 
 |  | 
 |       // IDom dominates all of our predecessors, but it may not be the immediate | 
 |       // dominator. Check if any of them have live-out values that are properly | 
 |       // dominated by IDom. If so, we need a phi-def here. | 
 |       if (!needPHI) { | 
 |         IDomValue = LiveOutCache[IDom->getBlock()]; | 
 |         for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), | 
 |                PE = MBB->pred_end(); PI != PE; ++PI) { | 
 |           LiveOutPair Value = LiveOutCache[*PI]; | 
 |           if (!Value.first || Value.first == IDomValue.first) | 
 |             continue; | 
 |           // This predecessor is carrying something other than IDomValue. | 
 |           // It could be because IDomValue hasn't propagated yet, or it could be | 
 |           // because MBB is in the dominance frontier of that value. | 
 |           if (MDT.dominates(IDom, Value.second)) { | 
 |             needPHI = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Create a phi-def if required. | 
 |       if (needPHI) { | 
 |         ++Changes; | 
 |         SlotIndex Start = LIS.getMBBStartIdx(MBB); | 
 |         VNInfo *VNI = LI->getNextValue(Start, 0, LIS.getVNInfoAllocator()); | 
 |         VNI->setIsPHIDef(true); | 
 |         // We no longer need LI to be live-in. | 
 |         LiveIn.erase(LiveIn.begin()+(i-1)); | 
 |         // Blocks in LiveIn are either IdxMBB, or have a value live-through. | 
 |         if (MBB == IdxMBB) | 
 |           IdxVNI = VNI; | 
 |         // Check if we need to update live-out info. | 
 |         LiveOutPair &LOP = LiveOutCache[MBB]; | 
 |         if (LOP.second == Node || !LiveOutSeen.test(MBB->getNumber())) { | 
 |           // We already have a live-out defined in MBB, so this must be IdxMBB. | 
 |           assert(MBB == IdxMBB && "Adding phi-def to known live-out"); | 
 |           LI->addRange(LiveRange(Start, Idx.getNextSlot(), VNI)); | 
 |         } else { | 
 |           // This phi-def is also live-out, so color the whole block. | 
 |           LI->addRange(LiveRange(Start, LIS.getMBBEndIdx(MBB), VNI)); | 
 |           LOP = LiveOutPair(VNI, Node); | 
 |         } | 
 |       } else if (IDomValue.first) { | 
 |         // No phi-def here. Remember incoming value for IdxMBB. | 
 |         if (MBB == IdxMBB) { | 
 |           IdxVNI = IDomValue.first; | 
 |           // IdxMBB need not be live-out. | 
 |           if (!LiveOutSeen.test(MBB->getNumber())) | 
 |             continue; | 
 |         } | 
 |         assert(LiveOutSeen.test(MBB->getNumber()) && "Expected live-out block"); | 
 |         // Propagate IDomValue if needed: | 
 |         // MBB is live-out and doesn't define its own value. | 
 |         LiveOutPair &LOP = LiveOutCache[MBB]; | 
 |         if (LOP.second != Node && LOP.first != IDomValue.first) { | 
 |           ++Changes; | 
 |           LOP = IDomValue; | 
 |         } | 
 |       } | 
 |     } | 
 |   } while (Changes); | 
 |  | 
 |   assert(IdxVNI && "Didn't find value for Idx"); | 
 |   return IdxVNI; | 
 | } | 
 |  | 
 | VNInfo *SplitEditor::defFromParent(unsigned RegIdx, | 
 |                                    VNInfo *ParentVNI, | 
 |                                    SlotIndex UseIdx, | 
 |                                    MachineBasicBlock &MBB, | 
 |                                    MachineBasicBlock::iterator I) { | 
 |   MachineInstr *CopyMI = 0; | 
 |   SlotIndex Def; | 
 |   LiveInterval *LI = Edit->get(RegIdx); | 
 |  | 
 |   // Attempt cheap-as-a-copy rematerialization. | 
 |   LiveRangeEdit::Remat RM(ParentVNI); | 
 |   if (Edit->canRematerializeAt(RM, UseIdx, true, LIS)) { | 
 |     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI); | 
 |   } else { | 
 |     // Can't remat, just insert a copy from parent. | 
 |     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) | 
 |                .addReg(Edit->getReg()); | 
 |     Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex(); | 
 |   } | 
 |  | 
 |   // Define the value in Reg. | 
 |   VNInfo *VNI = defValue(RegIdx, ParentVNI, Def); | 
 |   VNI->setCopy(CopyMI); | 
 |   return VNI; | 
 | } | 
 |  | 
 | /// Create a new virtual register and live interval. | 
 | void SplitEditor::openIntv() { | 
 |   assert(!OpenIdx && "Previous LI not closed before openIntv"); | 
 |  | 
 |   // Create the complement as index 0. | 
 |   if (Edit->empty()) | 
 |     Edit->create(LIS, VRM); | 
 |  | 
 |   // Create the open interval. | 
 |   OpenIdx = Edit->size(); | 
 |   Edit->create(LIS, VRM); | 
 | } | 
 |  | 
 | SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { | 
 |   assert(OpenIdx && "openIntv not called before enterIntvBefore"); | 
 |   DEBUG(dbgs() << "    enterIntvBefore " << Idx); | 
 |   Idx = Idx.getBaseIndex(); | 
 |   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); | 
 |   if (!ParentVNI) { | 
 |     DEBUG(dbgs() << ": not live\n"); | 
 |     return Idx; | 
 |   } | 
 |   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); | 
 |   MachineInstr *MI = LIS.getInstructionFromIndex(Idx); | 
 |   assert(MI && "enterIntvBefore called with invalid index"); | 
 |  | 
 |   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); | 
 |   return VNI->def; | 
 | } | 
 |  | 
 | SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { | 
 |   assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); | 
 |   SlotIndex End = LIS.getMBBEndIdx(&MBB); | 
 |   SlotIndex Last = End.getPrevSlot(); | 
 |   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); | 
 |   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); | 
 |   if (!ParentVNI) { | 
 |     DEBUG(dbgs() << ": not live\n"); | 
 |     return End; | 
 |   } | 
 |   DEBUG(dbgs() << ": valno " << ParentVNI->id); | 
 |   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, | 
 |                               LIS.getLastSplitPoint(Edit->getParent(), &MBB)); | 
 |   RegAssign.insert(VNI->def, End, OpenIdx); | 
 |   DEBUG(dump()); | 
 |   return VNI->def; | 
 | } | 
 |  | 
 | /// useIntv - indicate that all instructions in MBB should use OpenLI. | 
 | void SplitEditor::useIntv(const MachineBasicBlock &MBB) { | 
 |   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); | 
 | } | 
 |  | 
 | void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { | 
 |   assert(OpenIdx && "openIntv not called before useIntv"); | 
 |   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):"); | 
 |   RegAssign.insert(Start, End, OpenIdx); | 
 |   DEBUG(dump()); | 
 | } | 
 |  | 
 | SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { | 
 |   assert(OpenIdx && "openIntv not called before leaveIntvAfter"); | 
 |   DEBUG(dbgs() << "    leaveIntvAfter " << Idx); | 
 |  | 
 |   // The interval must be live beyond the instruction at Idx. | 
 |   Idx = Idx.getBoundaryIndex(); | 
 |   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); | 
 |   if (!ParentVNI) { | 
 |     DEBUG(dbgs() << ": not live\n"); | 
 |     return Idx.getNextSlot(); | 
 |   } | 
 |   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); | 
 |  | 
 |   MachineInstr *MI = LIS.getInstructionFromIndex(Idx); | 
 |   assert(MI && "No instruction at index"); | 
 |   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), | 
 |                               llvm::next(MachineBasicBlock::iterator(MI))); | 
 |   return VNI->def; | 
 | } | 
 |  | 
 | SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { | 
 |   assert(OpenIdx && "openIntv not called before leaveIntvBefore"); | 
 |   DEBUG(dbgs() << "    leaveIntvBefore " << Idx); | 
 |  | 
 |   // The interval must be live into the instruction at Idx. | 
 |   Idx = Idx.getBoundaryIndex(); | 
 |   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); | 
 |   if (!ParentVNI) { | 
 |     DEBUG(dbgs() << ": not live\n"); | 
 |     return Idx.getNextSlot(); | 
 |   } | 
 |   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); | 
 |  | 
 |   MachineInstr *MI = LIS.getInstructionFromIndex(Idx); | 
 |   assert(MI && "No instruction at index"); | 
 |   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); | 
 |   return VNI->def; | 
 | } | 
 |  | 
 | SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { | 
 |   assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); | 
 |   SlotIndex Start = LIS.getMBBStartIdx(&MBB); | 
 |   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); | 
 |  | 
 |   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); | 
 |   if (!ParentVNI) { | 
 |     DEBUG(dbgs() << ": not live\n"); | 
 |     return Start; | 
 |   } | 
 |  | 
 |   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, | 
 |                               MBB.SkipPHIsAndLabels(MBB.begin())); | 
 |   RegAssign.insert(Start, VNI->def, OpenIdx); | 
 |   DEBUG(dump()); | 
 |   return VNI->def; | 
 | } | 
 |  | 
 | void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { | 
 |   assert(OpenIdx && "openIntv not called before overlapIntv"); | 
 |   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); | 
 |   assert(ParentVNI == Edit->getParent().getVNInfoAt(End.getPrevSlot()) && | 
 |          "Parent changes value in extended range"); | 
 |   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && | 
 |          "Range cannot span basic blocks"); | 
 |  | 
 |   // The complement interval will be extended as needed by extendRange(). | 
 |   markComplexMapped(0, ParentVNI); | 
 |   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):"); | 
 |   RegAssign.insert(Start, End, OpenIdx); | 
 |   DEBUG(dump()); | 
 | } | 
 |  | 
 | /// closeIntv - Indicate that we are done editing the currently open | 
 | /// LiveInterval, and ranges can be trimmed. | 
 | void SplitEditor::closeIntv() { | 
 |   assert(OpenIdx && "openIntv not called before closeIntv"); | 
 |   OpenIdx = 0; | 
 | } | 
 |  | 
 | /// transferSimpleValues - Transfer all simply defined values to the new live | 
 | /// ranges. | 
 | /// Values that were rematerialized or that have multiple defs are left alone. | 
 | bool SplitEditor::transferSimpleValues() { | 
 |   bool Skipped = false; | 
 |   RegAssignMap::const_iterator AssignI = RegAssign.begin(); | 
 |   for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), | 
 |          ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { | 
 |     DEBUG(dbgs() << "  blit " << *ParentI << ':'); | 
 |     VNInfo *ParentVNI = ParentI->valno; | 
 |     // RegAssign has holes where RegIdx 0 should be used. | 
 |     SlotIndex Start = ParentI->start; | 
 |     AssignI.advanceTo(Start); | 
 |     do { | 
 |       unsigned RegIdx; | 
 |       SlotIndex End = ParentI->end; | 
 |       if (!AssignI.valid()) { | 
 |         RegIdx = 0; | 
 |       } else if (AssignI.start() <= Start) { | 
 |         RegIdx = AssignI.value(); | 
 |         if (AssignI.stop() < End) { | 
 |           End = AssignI.stop(); | 
 |           ++AssignI; | 
 |         } | 
 |       } else { | 
 |         RegIdx = 0; | 
 |         End = std::min(End, AssignI.start()); | 
 |       } | 
 |       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); | 
 |       if (VNInfo *VNI = Values.lookup(std::make_pair(RegIdx, ParentVNI->id))) { | 
 |         DEBUG(dbgs() << ':' << VNI->id); | 
 |         Edit->get(RegIdx)->addRange(LiveRange(Start, End, VNI)); | 
 |       } else | 
 |         Skipped = true; | 
 |       Start = End; | 
 |     } while (Start != ParentI->end); | 
 |     DEBUG(dbgs() << '\n'); | 
 |   } | 
 |   return Skipped; | 
 | } | 
 |  | 
 | void SplitEditor::extendPHIKillRanges() { | 
 |     // Extend live ranges to be live-out for successor PHI values. | 
 |   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), | 
 |        E = Edit->getParent().vni_end(); I != E; ++I) { | 
 |     const VNInfo *PHIVNI = *I; | 
 |     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) | 
 |       continue; | 
 |     unsigned RegIdx = RegAssign.lookup(PHIVNI->def); | 
 |     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); | 
 |     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), | 
 |          PE = MBB->pred_end(); PI != PE; ++PI) { | 
 |       SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot(); | 
 |       // The predecessor may not have a live-out value. That is OK, like an | 
 |       // undef PHI operand. | 
 |       if (Edit->getParent().liveAt(End)) { | 
 |         assert(RegAssign.lookup(End) == RegIdx && | 
 |                "Different register assignment in phi predecessor"); | 
 |         extendRange(RegIdx, End); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// rewriteAssigned - Rewrite all uses of Edit->getReg(). | 
 | void SplitEditor::rewriteAssigned(bool ExtendRanges) { | 
 |   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), | 
 |        RE = MRI.reg_end(); RI != RE;) { | 
 |     MachineOperand &MO = RI.getOperand(); | 
 |     MachineInstr *MI = MO.getParent(); | 
 |     ++RI; | 
 |     // LiveDebugVariables should have handled all DBG_VALUE instructions. | 
 |     if (MI->isDebugValue()) { | 
 |       DEBUG(dbgs() << "Zapping " << *MI); | 
 |       MO.setReg(0); | 
 |       continue; | 
 |     } | 
 |  | 
 |     // <undef> operands don't really read the register, so just assign them to | 
 |     // the complement. | 
 |     if (MO.isUse() && MO.isUndef()) { | 
 |       MO.setReg(Edit->get(0)->reg); | 
 |       continue; | 
 |     } | 
 |  | 
 |     SlotIndex Idx = LIS.getInstructionIndex(MI); | 
 |     if (MO.isDef()) | 
 |       Idx = MO.isEarlyClobber() ? Idx.getUseIndex() : Idx.getDefIndex(); | 
 |  | 
 |     // Rewrite to the mapped register at Idx. | 
 |     unsigned RegIdx = RegAssign.lookup(Idx); | 
 |     MO.setReg(Edit->get(RegIdx)->reg); | 
 |     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t' | 
 |                  << Idx << ':' << RegIdx << '\t' << *MI); | 
 |  | 
 |     // Extend liveness to Idx if the instruction reads reg. | 
 |     if (!ExtendRanges) | 
 |       continue; | 
 |  | 
 |     // Skip instructions that don't read Reg. | 
 |     if (MO.isDef()) { | 
 |       if (!MO.getSubReg() && !MO.isEarlyClobber()) | 
 |         continue; | 
 |       // We may wan't to extend a live range for a partial redef, or for a use | 
 |       // tied to an early clobber. | 
 |       Idx = Idx.getPrevSlot(); | 
 |       if (!Edit->getParent().liveAt(Idx)) | 
 |         continue; | 
 |     } else | 
 |       Idx = Idx.getUseIndex(); | 
 |  | 
 |     extendRange(RegIdx, Idx); | 
 |   } | 
 | } | 
 |  | 
 | void SplitEditor::deleteRematVictims() { | 
 |   SmallVector<MachineInstr*, 8> Dead; | 
 |   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ | 
 |     LiveInterval *LI = *I; | 
 |     for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); | 
 |            LII != LIE; ++LII) { | 
 |       // Dead defs end at the store slot. | 
 |       if (LII->end != LII->valno->def.getNextSlot()) | 
 |         continue; | 
 |       MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); | 
 |       assert(MI && "Missing instruction for dead def"); | 
 |       MI->addRegisterDead(LI->reg, &TRI); | 
 |  | 
 |       if (!MI->allDefsAreDead()) | 
 |         continue; | 
 |  | 
 |       DEBUG(dbgs() << "All defs dead: " << *MI); | 
 |       Dead.push_back(MI); | 
 |     } | 
 |   } | 
 |  | 
 |   if (Dead.empty()) | 
 |     return; | 
 |  | 
 |   Edit->eliminateDeadDefs(Dead, LIS, VRM, TII); | 
 | } | 
 |  | 
 | void SplitEditor::finish() { | 
 |   assert(OpenIdx == 0 && "Previous LI not closed before rewrite"); | 
 |   ++NumFinished; | 
 |  | 
 |   // At this point, the live intervals in Edit contain VNInfos corresponding to | 
 |   // the inserted copies. | 
 |  | 
 |   // Add the original defs from the parent interval. | 
 |   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), | 
 |          E = Edit->getParent().vni_end(); I != E; ++I) { | 
 |     const VNInfo *ParentVNI = *I; | 
 |     if (ParentVNI->isUnused()) | 
 |       continue; | 
 |     unsigned RegIdx = RegAssign.lookup(ParentVNI->def); | 
 |     VNInfo *VNI = defValue(RegIdx, ParentVNI, ParentVNI->def); | 
 |     VNI->setIsPHIDef(ParentVNI->isPHIDef()); | 
 |     VNI->setCopy(ParentVNI->getCopy()); | 
 |  | 
 |     // Mark rematted values as complex everywhere to force liveness computation. | 
 |     // The new live ranges may be truncated. | 
 |     if (Edit->didRematerialize(ParentVNI)) | 
 |       for (unsigned i = 0, e = Edit->size(); i != e; ++i) | 
 |         markComplexMapped(i, ParentVNI); | 
 |   } | 
 |  | 
 | #ifndef NDEBUG | 
 |   // Every new interval must have a def by now, otherwise the split is bogus. | 
 |   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) | 
 |     assert((*I)->hasAtLeastOneValue() && "Split interval has no value"); | 
 | #endif | 
 |  | 
 |   // Transfer the simply mapped values, check if any are complex. | 
 |   bool Complex = transferSimpleValues(); | 
 |   if (Complex) | 
 |     extendPHIKillRanges(); | 
 |   else | 
 |     ++NumSimple; | 
 |  | 
 |   // Rewrite virtual registers, possibly extending ranges. | 
 |   rewriteAssigned(Complex); | 
 |  | 
 |   // Delete defs that were rematted everywhere. | 
 |   if (Complex) | 
 |     deleteRematVictims(); | 
 |  | 
 |   // Get rid of unused values and set phi-kill flags. | 
 |   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) | 
 |     (*I)->RenumberValues(LIS); | 
 |  | 
 |   // Now check if any registers were separated into multiple components. | 
 |   ConnectedVNInfoEqClasses ConEQ(LIS); | 
 |   for (unsigned i = 0, e = Edit->size(); i != e; ++i) { | 
 |     // Don't use iterators, they are invalidated by create() below. | 
 |     LiveInterval *li = Edit->get(i); | 
 |     unsigned NumComp = ConEQ.Classify(li); | 
 |     if (NumComp <= 1) | 
 |       continue; | 
 |     DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n'); | 
 |     SmallVector<LiveInterval*, 8> dups; | 
 |     dups.push_back(li); | 
 |     for (unsigned i = 1; i != NumComp; ++i) | 
 |       dups.push_back(&Edit->create(LIS, VRM)); | 
 |     ConEQ.Distribute(&dups[0], MRI); | 
 |   } | 
 |  | 
 |   // Calculate spill weight and allocation hints for new intervals. | 
 |   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), LIS, SA.Loops); | 
 | } | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                            Single Block Splitting | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// getMultiUseBlocks - if CurLI has more than one use in a basic block, it | 
 | /// may be an advantage to split CurLI for the duration of the block. | 
 | bool SplitAnalysis::getMultiUseBlocks(BlockPtrSet &Blocks) { | 
 |   // If CurLI is local to one block, there is no point to splitting it. | 
 |   if (LiveBlocks.size() <= 1) | 
 |     return false; | 
 |   // Add blocks with multiple uses. | 
 |   for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) { | 
 |     const BlockInfo &BI = LiveBlocks[i]; | 
 |     if (!BI.Uses) | 
 |       continue; | 
 |     unsigned Instrs = UsingBlocks.lookup(BI.MBB); | 
 |     if (Instrs <= 1) | 
 |       continue; | 
 |     if (Instrs == 2 && BI.LiveIn && BI.LiveOut && !BI.LiveThrough) | 
 |       continue; | 
 |     Blocks.insert(BI.MBB); | 
 |   } | 
 |   return !Blocks.empty(); | 
 | } | 
 |  | 
 | /// splitSingleBlocks - Split CurLI into a separate live interval inside each | 
 | /// basic block in Blocks. | 
 | void SplitEditor::splitSingleBlocks(const SplitAnalysis::BlockPtrSet &Blocks) { | 
 |   DEBUG(dbgs() << "  splitSingleBlocks for " << Blocks.size() << " blocks.\n"); | 
 |  | 
 |   for (unsigned i = 0, e = SA.LiveBlocks.size(); i != e; ++i) { | 
 |     const SplitAnalysis::BlockInfo &BI = SA.LiveBlocks[i]; | 
 |     if (!BI.Uses || !Blocks.count(BI.MBB)) | 
 |       continue; | 
 |  | 
 |     openIntv(); | 
 |     SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstUse, | 
 |                                                   BI.LastSplitPoint)); | 
 |     if (!BI.LiveOut || BI.LastUse < BI.LastSplitPoint) { | 
 |       useIntv(SegStart, leaveIntvAfter(BI.LastUse)); | 
 |     } else { | 
 |       // The last use is after the last valid split point. | 
 |       SlotIndex SegStop = leaveIntvBefore(BI.LastSplitPoint); | 
 |       useIntv(SegStart, SegStop); | 
 |       overlapIntv(SegStop, BI.LastUse); | 
 |     } | 
 |     closeIntv(); | 
 |   } | 
 |   finish(); | 
 | } |