| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" |
| "http://www.w3.org/TR/html4/strict.dtd"> |
| <html> |
| <head> |
| <title>LLVM Assembly Language Reference Manual</title> |
| <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> |
| <meta name="author" content="Chris Lattner"> |
| <meta name="description" |
| content="LLVM Assembly Language Reference Manual."> |
| <link rel="stylesheet" href="llvm.css" type="text/css"> |
| </head> |
| |
| <body> |
| |
| <div class="doc_title"> LLVM Language Reference Manual </div> |
| <ol> |
| <li><a href="#abstract">Abstract</a></li> |
| <li><a href="#introduction">Introduction</a></li> |
| <li><a href="#identifiers">Identifiers</a></li> |
| <li><a href="#highlevel">High Level Structure</a> |
| <ol> |
| <li><a href="#modulestructure">Module Structure</a></li> |
| <li><a href="#linkage">Linkage Types</a></li> |
| <li><a href="#callingconv">Calling Conventions</a></li> |
| <li><a href="#namedtypes">Named Types</a></li> |
| <li><a href="#globalvars">Global Variables</a></li> |
| <li><a href="#functionstructure">Functions</a></li> |
| <li><a href="#aliasstructure">Aliases</a></li> |
| <li><a href="#paramattrs">Parameter Attributes</a></li> |
| <li><a href="#fnattrs">Function Attributes</a></li> |
| <li><a href="#gc">Garbage Collector Names</a></li> |
| <li><a href="#moduleasm">Module-Level Inline Assembly</a></li> |
| <li><a href="#datalayout">Data Layout</a></li> |
| </ol> |
| </li> |
| <li><a href="#typesystem">Type System</a> |
| <ol> |
| <li><a href="#t_classifications">Type Classifications</a></li> |
| <li><a href="#t_primitive">Primitive Types</a> |
| <ol> |
| <li><a href="#t_floating">Floating Point Types</a></li> |
| <li><a href="#t_void">Void Type</a></li> |
| <li><a href="#t_label">Label Type</a></li> |
| </ol> |
| </li> |
| <li><a href="#t_derived">Derived Types</a> |
| <ol> |
| <li><a href="#t_integer">Integer Type</a></li> |
| <li><a href="#t_array">Array Type</a></li> |
| <li><a href="#t_function">Function Type</a></li> |
| <li><a href="#t_pointer">Pointer Type</a></li> |
| <li><a href="#t_struct">Structure Type</a></li> |
| <li><a href="#t_pstruct">Packed Structure Type</a></li> |
| <li><a href="#t_vector">Vector Type</a></li> |
| <li><a href="#t_opaque">Opaque Type</a></li> |
| </ol> |
| </li> |
| <li><a href="#t_uprefs">Type Up-references</a></li> |
| </ol> |
| </li> |
| <li><a href="#constants">Constants</a> |
| <ol> |
| <li><a href="#simpleconstants">Simple Constants</a></li> |
| <li><a href="#complexconstants">Complex Constants</a></li> |
| <li><a href="#globalconstants">Global Variable and Function Addresses</a></li> |
| <li><a href="#undefvalues">Undefined Values</a></li> |
| <li><a href="#constantexprs">Constant Expressions</a></li> |
| <li><a href="#metadata">Embedded Metadata</a></li> |
| </ol> |
| </li> |
| <li><a href="#othervalues">Other Values</a> |
| <ol> |
| <li><a href="#inlineasm">Inline Assembler Expressions</a></li> |
| </ol> |
| </li> |
| <li><a href="#instref">Instruction Reference</a> |
| <ol> |
| <li><a href="#terminators">Terminator Instructions</a> |
| <ol> |
| <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li> |
| <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li> |
| <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li> |
| <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li> |
| <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li> |
| <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#binaryops">Binary Operations</a> |
| <ol> |
| <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li> |
| <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li> |
| <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li> |
| <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li> |
| <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li> |
| <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li> |
| <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li> |
| <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li> |
| <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#bitwiseops">Bitwise Binary Operations</a> |
| <ol> |
| <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li> |
| <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li> |
| <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li> |
| <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li> |
| <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li> |
| <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#vectorops">Vector Operations</a> |
| <ol> |
| <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li> |
| <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li> |
| <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#aggregateops">Aggregate Operations</a> |
| <ol> |
| <li><a href="#i_extractvalue">'<tt>extractvalue</tt>' Instruction</a></li> |
| <li><a href="#i_insertvalue">'<tt>insertvalue</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#memoryops">Memory Access and Addressing Operations</a> |
| <ol> |
| <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li> |
| <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li> |
| <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li> |
| <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li> |
| <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li> |
| <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#convertops">Conversion Operations</a> |
| <ol> |
| <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li> |
| <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li> |
| <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li> |
| <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li> |
| <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li> |
| <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li> |
| <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li> |
| <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li> |
| <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li> |
| <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li> |
| <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li> |
| <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| <li><a href="#otherops">Other Operations</a> |
| <ol> |
| <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li> |
| <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li> |
| <li><a href="#i_vicmp">'<tt>vicmp</tt>' Instruction</a></li> |
| <li><a href="#i_vfcmp">'<tt>vfcmp</tt>' Instruction</a></li> |
| <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li> |
| <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li> |
| <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li> |
| <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li> |
| </ol> |
| </li> |
| </ol> |
| </li> |
| <li><a href="#intrinsics">Intrinsic Functions</a> |
| <ol> |
| <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a> |
| <ol> |
| <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li> |
| <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li> |
| <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a> |
| <ol> |
| <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li> |
| <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li> |
| <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| <li><a href="#int_codegen">Code Generator Intrinsics</a> |
| <ol> |
| <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li> |
| <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li> |
| <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li> |
| <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li> |
| <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li> |
| <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li> |
| <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| <li><a href="#int_libc">Standard C Library Intrinsics</a> |
| <ol> |
| <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| <li><a href="#int_manip">Bit Manipulation Intrinsics</a> |
| <ol> |
| <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li> |
| <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li> |
| <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li> |
| <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li> |
| <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li> |
| <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li> |
| </ol> |
| </li> |
| <li><a href="#int_overflow">Arithmetic with Overflow Intrinsics</a> |
| <ol> |
| <li><a href="#int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt> Intrinsics</a></li> |
| <li><a href="#int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt> Intrinsics</a></li> |
| <li><a href="#int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt> Intrinsics</a></li> |
| <li><a href="#int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt> Intrinsics</a></li> |
| <li><a href="#int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt> Intrinsics</a></li> |
| <li><a href="#int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt> Intrinsics</a></li> |
| </ol> |
| </li> |
| <li><a href="#int_debugger">Debugger intrinsics</a></li> |
| <li><a href="#int_eh">Exception Handling intrinsics</a></li> |
| <li><a href="#int_trampoline">Trampoline Intrinsic</a> |
| <ol> |
| <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| <li><a href="#int_atomics">Atomic intrinsics</a> |
| <ol> |
| <li><a href="#int_memory_barrier"><tt>llvm.memory_barrier</tt></a></li> |
| <li><a href="#int_atomic_cmp_swap"><tt>llvm.atomic.cmp.swap</tt></a></li> |
| <li><a href="#int_atomic_swap"><tt>llvm.atomic.swap</tt></a></li> |
| <li><a href="#int_atomic_load_add"><tt>llvm.atomic.load.add</tt></a></li> |
| <li><a href="#int_atomic_load_sub"><tt>llvm.atomic.load.sub</tt></a></li> |
| <li><a href="#int_atomic_load_and"><tt>llvm.atomic.load.and</tt></a></li> |
| <li><a href="#int_atomic_load_nand"><tt>llvm.atomic.load.nand</tt></a></li> |
| <li><a href="#int_atomic_load_or"><tt>llvm.atomic.load.or</tt></a></li> |
| <li><a href="#int_atomic_load_xor"><tt>llvm.atomic.load.xor</tt></a></li> |
| <li><a href="#int_atomic_load_max"><tt>llvm.atomic.load.max</tt></a></li> |
| <li><a href="#int_atomic_load_min"><tt>llvm.atomic.load.min</tt></a></li> |
| <li><a href="#int_atomic_load_umax"><tt>llvm.atomic.load.umax</tt></a></li> |
| <li><a href="#int_atomic_load_umin"><tt>llvm.atomic.load.umin</tt></a></li> |
| </ol> |
| </li> |
| <li><a href="#int_general">General intrinsics</a> |
| <ol> |
| <li><a href="#int_var_annotation"> |
| '<tt>llvm.var.annotation</tt>' Intrinsic</a></li> |
| <li><a href="#int_annotation"> |
| '<tt>llvm.annotation.*</tt>' Intrinsic</a></li> |
| <li><a href="#int_trap"> |
| '<tt>llvm.trap</tt>' Intrinsic</a></li> |
| <li><a href="#int_stackprotector"> |
| '<tt>llvm.stackprotector</tt>' Intrinsic</a></li> |
| </ol> |
| </li> |
| </ol> |
| </li> |
| </ol> |
| |
| <div class="doc_author"> |
| <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a> |
| and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="abstract">Abstract </a></div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| <p>This document is a reference manual for the LLVM assembly language. |
| LLVM is a Static Single Assignment (SSA) based representation that provides |
| type safety, low-level operations, flexibility, and the capability of |
| representing 'all' high-level languages cleanly. It is the common code |
| representation used throughout all phases of the LLVM compilation |
| strategy.</p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="introduction">Introduction</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>The LLVM code representation is designed to be used in three |
| different forms: as an in-memory compiler IR, as an on-disk bitcode |
| representation (suitable for fast loading by a Just-In-Time compiler), |
| and as a human readable assembly language representation. This allows |
| LLVM to provide a powerful intermediate representation for efficient |
| compiler transformations and analysis, while providing a natural means |
| to debug and visualize the transformations. The three different forms |
| of LLVM are all equivalent. This document describes the human readable |
| representation and notation.</p> |
| |
| <p>The LLVM representation aims to be light-weight and low-level |
| while being expressive, typed, and extensible at the same time. It |
| aims to be a "universal IR" of sorts, by being at a low enough level |
| that high-level ideas may be cleanly mapped to it (similar to how |
| microprocessors are "universal IR's", allowing many source languages to |
| be mapped to them). By providing type information, LLVM can be used as |
| the target of optimizations: for example, through pointer analysis, it |
| can be proven that a C automatic variable is never accessed outside of |
| the current function... allowing it to be promoted to a simple SSA |
| value instead of a memory location.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div> |
| |
| <div class="doc_text"> |
| |
| <p>It is important to note that this document describes 'well formed' |
| LLVM assembly language. There is a difference between what the parser |
| accepts and what is considered 'well formed'. For example, the |
| following instruction is syntactically okay, but not well formed:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| %x = <a href="#i_add">add</a> i32 1, %x |
| </pre> |
| </div> |
| |
| <p>...because the definition of <tt>%x</tt> does not dominate all of |
| its uses. The LLVM infrastructure provides a verification pass that may |
| be used to verify that an LLVM module is well formed. This pass is |
| automatically run by the parser after parsing input assembly and by |
| the optimizer before it outputs bitcode. The violations pointed out |
| by the verifier pass indicate bugs in transformation passes or input to |
| the parser.</p> |
| </div> |
| |
| <!-- Describe the typesetting conventions here. --> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="identifiers">Identifiers</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM identifiers come in two basic types: global and local. Global |
| identifiers (functions, global variables) begin with the @ character. Local |
| identifiers (register names, types) begin with the % character. Additionally, |
| there are three different formats for identifiers, for different purposes:</p> |
| |
| <ol> |
| <li>Named values are represented as a string of characters with their prefix. |
| For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual |
| regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'. |
| Identifiers which require other characters in their names can be surrounded |
| with quotes. Special characters may be escaped using "\xx" where xx is the |
| ASCII code for the character in hexadecimal. In this way, any character can |
| be used in a name value, even quotes themselves. |
| |
| <li>Unnamed values are represented as an unsigned numeric value with their |
| prefix. For example, %12, @2, %44.</li> |
| |
| <li>Constants, which are described in a <a href="#constants">section about |
| constants</a>, below.</li> |
| </ol> |
| |
| <p>LLVM requires that values start with a prefix for two reasons: Compilers |
| don't need to worry about name clashes with reserved words, and the set of |
| reserved words may be expanded in the future without penalty. Additionally, |
| unnamed identifiers allow a compiler to quickly come up with a temporary |
| variable without having to avoid symbol table conflicts.</p> |
| |
| <p>Reserved words in LLVM are very similar to reserved words in other |
| languages. There are keywords for different opcodes |
| ('<tt><a href="#i_add">add</a></tt>', |
| '<tt><a href="#i_bitcast">bitcast</a></tt>', |
| '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a |
| href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...), |
| and others. These reserved words cannot conflict with variable names, because |
| none of them start with a prefix character ('%' or '@').</p> |
| |
| <p>Here is an example of LLVM code to multiply the integer variable |
| '<tt>%X</tt>' by 8:</p> |
| |
| <p>The easy way:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| %result = <a href="#i_mul">mul</a> i32 %X, 8 |
| </pre> |
| </div> |
| |
| <p>After strength reduction:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| %result = <a href="#i_shl">shl</a> i32 %X, i8 3 |
| </pre> |
| </div> |
| |
| <p>And the hard way:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i> |
| <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i> |
| %result = <a href="#i_add">add</a> i32 %1, %1 |
| </pre> |
| </div> |
| |
| <p>This last way of multiplying <tt>%X</tt> by 8 illustrates several |
| important lexical features of LLVM:</p> |
| |
| <ol> |
| |
| <li>Comments are delimited with a '<tt>;</tt>' and go until the end of |
| line.</li> |
| |
| <li>Unnamed temporaries are created when the result of a computation is not |
| assigned to a named value.</li> |
| |
| <li>Unnamed temporaries are numbered sequentially</li> |
| |
| </ol> |
| |
| <p>...and it also shows a convention that we follow in this document. When |
| demonstrating instructions, we will follow an instruction with a comment that |
| defines the type and name of value produced. Comments are shown in italic |
| text.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="highlevel">High Level Structure</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="modulestructure">Module Structure</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM programs are composed of "Module"s, each of which is a |
| translation unit of the input programs. Each module consists of |
| functions, global variables, and symbol table entries. Modules may be |
| combined together with the LLVM linker, which merges function (and |
| global variable) definitions, resolves forward declarations, and merges |
| symbol table entries. Here is an example of the "hello world" module:</p> |
| |
| <div class="doc_code"> |
| <pre><i>; Declare the string constant as a global constant...</i> |
| <a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a |
| href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i> |
| |
| <i>; External declaration of the puts function</i> |
| <a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i> |
| |
| <i>; Definition of main function</i> |
| define i32 @main() { <i>; i32()* </i> |
| <i>; Convert [13 x i8]* to i8 *...</i> |
| %cast210 = <a |
| href="#i_getelementptr">getelementptr</a> [13 x i8]* @.LC0, i64 0, i64 0 <i>; i8 *</i> |
| |
| <i>; Call puts function to write out the string to stdout...</i> |
| <a |
| href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i> |
| <a |
| href="#i_ret">ret</a> i32 0<br>}<br> |
| </pre> |
| </div> |
| |
| <p>This example is made up of a <a href="#globalvars">global variable</a> |
| named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" |
| function, and a <a href="#functionstructure">function definition</a> |
| for "<tt>main</tt>".</p> |
| |
| <p>In general, a module is made up of a list of global values, |
| where both functions and global variables are global values. Global values are |
| represented by a pointer to a memory location (in this case, a pointer to an |
| array of char, and a pointer to a function), and have one of the following <a |
| href="#linkage">linkage types</a>.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="linkage">Linkage Types</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p> |
| All Global Variables and Functions have one of the following types of linkage: |
| </p> |
| |
| <dl> |
| |
| <dt><tt><b><a name="linkage_private">private</a></b></tt>: </dt> |
| |
| <dd>Global values with private linkage are only directly accessible by |
| objects in the current module. In particular, linking code into a module with |
| an private global value may cause the private to be renamed as necessary to |
| avoid collisions. Because the symbol is private to the module, all |
| references can be updated. This doesn't show up in any symbol table in the |
| object file. |
| </dd> |
| |
| <dt><tt><b><a name="linkage_internal">internal</a></b></tt>: </dt> |
| |
| <dd> Similar to private, but the value shows as a local symbol (STB_LOCAL in |
| the case of ELF) in the object file. This corresponds to the notion of the |
| '<tt>static</tt>' keyword in C. |
| </dd> |
| |
| <dt><tt><b><a name="available_externally">available_externally</a></b></tt>: |
| </dt> |
| |
| <dd>Globals with "<tt>available_externally</tt>" linkage are never emitted |
| into the object file corresponding to the LLVM module. They exist to |
| allow inlining and other optimizations to take place given knowledge of the |
| definition of the global, which is known to be somewhere outside the module. |
| Globals with <tt>available_externally</tt> linkage are allowed to be discarded |
| at will, and are otherwise the same as <tt>linkonce_odr</tt>. This linkage |
| type is only allowed on definitions, not declarations.</dd> |
| |
| <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt> |
| |
| <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of |
| the same name when linkage occurs. This is typically used to implement |
| inline functions, templates, or other code which must be generated in each |
| translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are |
| allowed to be discarded. |
| </dd> |
| |
| <dt><tt><b><a name="linkage_common">common</a></b></tt>: </dt> |
| |
| <dd>"<tt>common</tt>" linkage is exactly the same as <tt>linkonce</tt> |
| linkage, except that unreferenced <tt>common</tt> globals may not be |
| discarded. This is used for globals that may be emitted in multiple |
| translation units, but that are not guaranteed to be emitted into every |
| translation unit that uses them. One example of this is tentative |
| definitions in C, such as "<tt>int X;</tt>" at global scope. |
| </dd> |
| |
| <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt> |
| |
| <dd>"<tt>weak</tt>" linkage is the same as <tt>common</tt> linkage, except |
| that some targets may choose to emit different assembly sequences for them |
| for target-dependent reasons. This is used for globals that are declared |
| "weak" in C source code. |
| </dd> |
| |
| <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt> |
| |
| <dd>"<tt>appending</tt>" linkage may only be applied to global variables of |
| pointer to array type. When two global variables with appending linkage are |
| linked together, the two global arrays are appended together. This is the |
| LLVM, typesafe, equivalent of having the system linker append together |
| "sections" with identical names when .o files are linked. |
| </dd> |
| |
| <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt> |
| |
| <dd>The semantics of this linkage follow the ELF object file model: the |
| symbol is weak until linked, if not linked, the symbol becomes null instead |
| of being an undefined reference. |
| </dd> |
| |
| <dt><tt><b><a name="linkage_linkonce">linkonce_odr</a></b></tt>: </dt> |
| <dt><tt><b><a name="linkage_weak">weak_odr</a></b></tt>: </dt> |
| <dd>Some languages allow differing globals to be merged, such as two |
| functions with different semantics. Other languages, such as <tt>C++</tt>, |
| ensure that only equivalent globals are ever merged (the "one definition |
| rule" - "ODR"). Such languages can use the <tt>linkonce_odr</tt> |
| and <tt>weak_odr</tt> linkage types to indicate that the global will only |
| be merged with equivalent globals. These linkage types are otherwise the |
| same as their non-<tt>odr</tt> versions. |
| </dd> |
| |
| <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt> |
| |
| <dd>If none of the above identifiers are used, the global is externally |
| visible, meaning that it participates in linkage and can be used to resolve |
| external symbol references. |
| </dd> |
| </dl> |
| |
| <p> |
| The next two types of linkage are targeted for Microsoft Windows platform |
| only. They are designed to support importing (exporting) symbols from (to) |
| DLLs (Dynamic Link Libraries). |
| </p> |
| |
| <dl> |
| <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt> |
| |
| <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function |
| or variable via a global pointer to a pointer that is set up by the DLL |
| exporting the symbol. On Microsoft Windows targets, the pointer name is |
| formed by combining <code>__imp_</code> and the function or variable name. |
| </dd> |
| |
| <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt> |
| |
| <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global |
| pointer to a pointer in a DLL, so that it can be referenced with the |
| <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer |
| name is formed by combining <code>__imp_</code> and the function or variable |
| name. |
| </dd> |
| |
| </dl> |
| |
| <p>For example, since the "<tt>.LC0</tt>" |
| variable is defined to be internal, if another module defined a "<tt>.LC0</tt>" |
| variable and was linked with this one, one of the two would be renamed, |
| preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are |
| external (i.e., lacking any linkage declarations), they are accessible |
| outside of the current module.</p> |
| <p>It is illegal for a function <i>declaration</i> |
| to have any linkage type other than "externally visible", <tt>dllimport</tt> |
| or <tt>extern_weak</tt>.</p> |
| <p>Aliases can have only <tt>external</tt>, <tt>internal</tt>, <tt>weak</tt> |
| or <tt>weak_odr</tt> linkages.</p> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="callingconv">Calling Conventions</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a> |
| and <a href="#i_invoke">invokes</a> can all have an optional calling convention |
| specified for the call. The calling convention of any pair of dynamic |
| caller/callee must match, or the behavior of the program is undefined. The |
| following calling conventions are supported by LLVM, and more may be added in |
| the future:</p> |
| |
| <dl> |
| <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt> |
| |
| <dd>This calling convention (the default if no other calling convention is |
| specified) matches the target C calling conventions. This calling convention |
| supports varargs function calls and tolerates some mismatch in the declared |
| prototype and implemented declaration of the function (as does normal C). |
| </dd> |
| |
| <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt> |
| |
| <dd>This calling convention attempts to make calls as fast as possible |
| (e.g. by passing things in registers). This calling convention allows the |
| target to use whatever tricks it wants to produce fast code for the target, |
| without having to conform to an externally specified ABI (Application Binary |
| Interface). Implementations of this convention should allow arbitrary |
| <a href="CodeGenerator.html#tailcallopt">tail call optimization</a> to be |
| supported. This calling convention does not support varargs and requires the |
| prototype of all callees to exactly match the prototype of the function |
| definition. |
| </dd> |
| |
| <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt> |
| |
| <dd>This calling convention attempts to make code in the caller as efficient |
| as possible under the assumption that the call is not commonly executed. As |
| such, these calls often preserve all registers so that the call does not break |
| any live ranges in the caller side. This calling convention does not support |
| varargs and requires the prototype of all callees to exactly match the |
| prototype of the function definition. |
| </dd> |
| |
| <dt><b>"<tt>cc <<em>n</em>></tt>" - Numbered convention</b>:</dt> |
| |
| <dd>Any calling convention may be specified by number, allowing |
| target-specific calling conventions to be used. Target specific calling |
| conventions start at 64. |
| </dd> |
| </dl> |
| |
| <p>More calling conventions can be added/defined on an as-needed basis, to |
| support pascal conventions or any other well-known target-independent |
| convention.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="visibility">Visibility Styles</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p> |
| All Global Variables and Functions have one of the following visibility styles: |
| </p> |
| |
| <dl> |
| <dt><b>"<tt>default</tt>" - Default style</b>:</dt> |
| |
| <dd>On targets that use the ELF object file format, default visibility means |
| that the declaration is visible to other |
| modules and, in shared libraries, means that the declared entity may be |
| overridden. On Darwin, default visibility means that the declaration is |
| visible to other modules. Default visibility corresponds to "external |
| linkage" in the language. |
| </dd> |
| |
| <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt> |
| |
| <dd>Two declarations of an object with hidden visibility refer to the same |
| object if they are in the same shared object. Usually, hidden visibility |
| indicates that the symbol will not be placed into the dynamic symbol table, |
| so no other module (executable or shared library) can reference it |
| directly. |
| </dd> |
| |
| <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt> |
| |
| <dd>On ELF, protected visibility indicates that the symbol will be placed in |
| the dynamic symbol table, but that references within the defining module will |
| bind to the local symbol. That is, the symbol cannot be overridden by another |
| module. |
| </dd> |
| </dl> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="namedtypes">Named Types</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM IR allows you to specify name aliases for certain types. This can make |
| it easier to read the IR and make the IR more condensed (particularly when |
| recursive types are involved). An example of a name specification is: |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| %mytype = type { %mytype*, i32 } |
| </pre> |
| </div> |
| |
| <p>You may give a name to any <a href="#typesystem">type</a> except "<a |
| href="t_void">void</a>". Type name aliases may be used anywhere a type is |
| expected with the syntax "%mytype".</p> |
| |
| <p>Note that type names are aliases for the structural type that they indicate, |
| and that you can therefore specify multiple names for the same type. This often |
| leads to confusing behavior when dumping out a .ll file. Since LLVM IR uses |
| structural typing, the name is not part of the type. When printing out LLVM IR, |
| the printer will pick <em>one name</em> to render all types of a particular |
| shape. This means that if you have code where two different source types end up |
| having the same LLVM type, that the dumper will sometimes print the "wrong" or |
| unexpected type. This is an important design point and isn't going to |
| change.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="globalvars">Global Variables</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Global variables define regions of memory allocated at compilation time |
| instead of run-time. Global variables may optionally be initialized, may have |
| an explicit section to be placed in, and may have an optional explicit alignment |
| specified. A variable may be defined as "thread_local", which means that it |
| will not be shared by threads (each thread will have a separated copy of the |
| variable). A variable may be defined as a global "constant," which indicates |
| that the contents of the variable will <b>never</b> be modified (enabling better |
| optimization, allowing the global data to be placed in the read-only section of |
| an executable, etc). Note that variables that need runtime initialization |
| cannot be marked "constant" as there is a store to the variable.</p> |
| |
| <p> |
| LLVM explicitly allows <em>declarations</em> of global variables to be marked |
| constant, even if the final definition of the global is not. This capability |
| can be used to enable slightly better optimization of the program, but requires |
| the language definition to guarantee that optimizations based on the |
| 'constantness' are valid for the translation units that do not include the |
| definition. |
| </p> |
| |
| <p>As SSA values, global variables define pointer values that are in |
| scope (i.e. they dominate) all basic blocks in the program. Global |
| variables always define a pointer to their "content" type because they |
| describe a region of memory, and all memory objects in LLVM are |
| accessed through pointers.</p> |
| |
| <p>A global variable may be declared to reside in a target-specifc numbered |
| address space. For targets that support them, address spaces may affect how |
| optimizations are performed and/or what target instructions are used to access |
| the variable. The default address space is zero. The address space qualifier |
| must precede any other attributes.</p> |
| |
| <p>LLVM allows an explicit section to be specified for globals. If the target |
| supports it, it will emit globals to the section specified.</p> |
| |
| <p>An explicit alignment may be specified for a global. If not present, or if |
| the alignment is set to zero, the alignment of the global is set by the target |
| to whatever it feels convenient. If an explicit alignment is specified, the |
| global is forced to have at least that much alignment. All alignments must be |
| a power of 2.</p> |
| |
| <p>For example, the following defines a global in a numbered address space with |
| an initializer, section, and alignment:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| @G = addrspace(5) constant float 1.0, section "foo", align 4 |
| </pre> |
| </div> |
| |
| </div> |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="functionstructure">Functions</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM function definitions consist of the "<tt>define</tt>" keyord, |
| an optional <a href="#linkage">linkage type</a>, an optional |
| <a href="#visibility">visibility style</a>, an optional |
| <a href="#callingconv">calling convention</a>, a return type, an optional |
| <a href="#paramattrs">parameter attribute</a> for the return type, a function |
| name, a (possibly empty) argument list (each with optional |
| <a href="#paramattrs">parameter attributes</a>), optional |
| <a href="#fnattrs">function attributes</a>, an optional section, |
| an optional alignment, an optional <a href="#gc">garbage collector name</a>, |
| an opening curly brace, a list of basic blocks, and a closing curly brace. |
| |
| LLVM function declarations consist of the "<tt>declare</tt>" keyword, an |
| optional <a href="#linkage">linkage type</a>, an optional |
| <a href="#visibility">visibility style</a>, an optional |
| <a href="#callingconv">calling convention</a>, a return type, an optional |
| <a href="#paramattrs">parameter attribute</a> for the return type, a function |
| name, a possibly empty list of arguments, an optional alignment, and an optional |
| <a href="#gc">garbage collector name</a>.</p> |
| |
| <p>A function definition contains a list of basic blocks, forming the CFG |
| (Control Flow Graph) for |
| the function. Each basic block may optionally start with a label (giving the |
| basic block a symbol table entry), contains a list of instructions, and ends |
| with a <a href="#terminators">terminator</a> instruction (such as a branch or |
| function return).</p> |
| |
| <p>The first basic block in a function is special in two ways: it is immediately |
| executed on entrance to the function, and it is not allowed to have predecessor |
| basic blocks (i.e. there can not be any branches to the entry block of a |
| function). Because the block can have no predecessors, it also cannot have any |
| <a href="#i_phi">PHI nodes</a>.</p> |
| |
| <p>LLVM allows an explicit section to be specified for functions. If the target |
| supports it, it will emit functions to the section specified.</p> |
| |
| <p>An explicit alignment may be specified for a function. If not present, or if |
| the alignment is set to zero, the alignment of the function is set by the target |
| to whatever it feels convenient. If an explicit alignment is specified, the |
| function is forced to have at least that much alignment. All alignments must be |
| a power of 2.</p> |
| |
| <h5>Syntax:</h5> |
| |
| <div class="doc_code"> |
| <tt> |
| define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>] |
| [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] |
| <ResultType> @<FunctionName> ([argument list]) |
| [<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N] |
| [<a href="#gc">gc</a>] { ... } |
| </tt> |
| </div> |
| |
| </div> |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="aliasstructure">Aliases</a> |
| </div> |
| <div class="doc_text"> |
| <p>Aliases act as "second name" for the aliasee value (which can be either |
| function, global variable, another alias or bitcast of global value). Aliases |
| may have an optional <a href="#linkage">linkage type</a>, and an |
| optional <a href="#visibility">visibility style</a>.</p> |
| |
| <h5>Syntax:</h5> |
| |
| <div class="doc_code"> |
| <pre> |
| @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee> |
| </pre> |
| </div> |
| |
| </div> |
| |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div> |
| <div class="doc_text"> |
| <p>The return type and each parameter of a function type may have a set of |
| <i>parameter attributes</i> associated with them. Parameter attributes are |
| used to communicate additional information about the result or parameters of |
| a function. Parameter attributes are considered to be part of the function, |
| not of the function type, so functions with different parameter attributes |
| can have the same function type.</p> |
| |
| <p>Parameter attributes are simple keywords that follow the type specified. If |
| multiple parameter attributes are needed, they are space separated. For |
| example:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| declare i32 @printf(i8* noalias nocapture, ...) |
| declare i32 @atoi(i8 zeroext) |
| declare signext i8 @returns_signed_char() |
| </pre> |
| </div> |
| |
| <p>Note that any attributes for the function result (<tt>nounwind</tt>, |
| <tt>readonly</tt>) come immediately after the argument list.</p> |
| |
| <p>Currently, only the following parameter attributes are defined:</p> |
| <dl> |
| <dt><tt>zeroext</tt></dt> |
| <dd>This indicates to the code generator that the parameter or return value |
| should be zero-extended to a 32-bit value by the caller (for a parameter) |
| or the callee (for a return value).</dd> |
| |
| <dt><tt>signext</tt></dt> |
| <dd>This indicates to the code generator that the parameter or return value |
| should be sign-extended to a 32-bit value by the caller (for a parameter) |
| or the callee (for a return value).</dd> |
| |
| <dt><tt>inreg</tt></dt> |
| <dd>This indicates that this parameter or return value should be treated |
| in a special target-dependent fashion during while emitting code for a |
| function call or return (usually, by putting it in a register as opposed |
| to memory, though some targets use it to distinguish between two different |
| kinds of registers). Use of this attribute is target-specific.</dd> |
| |
| <dt><tt><a name="byval">byval</a></tt></dt> |
| <dd>This indicates that the pointer parameter should really be passed by |
| value to the function. The attribute implies that a hidden copy of the |
| pointee is made between the caller and the callee, so the callee is unable |
| to modify the value in the callee. This attribute is only valid on LLVM |
| pointer arguments. It is generally used to pass structs and arrays by |
| value, but is also valid on pointers to scalars. The copy is considered to |
| belong to the caller not the callee (for example, |
| <tt><a href="#readonly">readonly</a></tt> functions should not write to |
| <tt>byval</tt> parameters). This is not a valid attribute for return |
| values. The byval attribute also supports specifying an alignment with the |
| align attribute. This has a target-specific effect on the code generator |
| that usually indicates a desired alignment for the synthesized stack |
| slot.</dd> |
| |
| <dt><tt>sret</tt></dt> |
| <dd>This indicates that the pointer parameter specifies the address of a |
| structure that is the return value of the function in the source program. |
| This pointer must be guaranteed by the caller to be valid: loads and stores |
| to the structure may be assumed by the callee to not to trap. This may only |
| be applied to the first parameter. This is not a valid attribute for |
| return values. </dd> |
| |
| <dt><tt>noalias</tt></dt> |
| <dd>This indicates that the pointer does not alias any global or any other |
| parameter. The caller is responsible for ensuring that this is the |
| case. On a function return value, <tt>noalias</tt> additionally indicates |
| that the pointer does not alias any other pointers visible to the |
| caller. For further details, please see the discussion of the NoAlias |
| response in |
| <a href="http://llvm.org/docs/AliasAnalysis.html#MustMayNo">alias |
| analysis</a>.</dd> |
| |
| <dt><tt>nocapture</tt></dt> |
| <dd>This indicates that the callee does not make any copies of the pointer |
| that outlive the callee itself. This is not a valid attribute for return |
| values.</dd> |
| |
| <dt><tt>nest</tt></dt> |
| <dd>This indicates that the pointer parameter can be excised using the |
| <a href="#int_trampoline">trampoline intrinsics</a>. This is not a valid |
| attribute for return values.</dd> |
| </dl> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="gc">Garbage Collector Names</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p>Each function may specify a garbage collector name, which is simply a |
| string.</p> |
| |
| <div class="doc_code"><pre |
| >define void @f() gc "name" { ...</pre></div> |
| |
| <p>The compiler declares the supported values of <i>name</i>. Specifying a |
| collector which will cause the compiler to alter its output in order to support |
| the named garbage collection algorithm.</p> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="fnattrs">Function Attributes</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Function attributes are set to communicate additional information about |
| a function. Function attributes are considered to be part of the function, |
| not of the function type, so functions with different parameter attributes |
| can have the same function type.</p> |
| |
| <p>Function attributes are simple keywords that follow the type specified. If |
| multiple attributes are needed, they are space separated. For |
| example:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| define void @f() noinline { ... } |
| define void @f() alwaysinline { ... } |
| define void @f() alwaysinline optsize { ... } |
| define void @f() optsize |
| </pre> |
| </div> |
| |
| <dl> |
| <dt><tt>alwaysinline</tt></dt> |
| <dd>This attribute indicates that the inliner should attempt to inline this |
| function into callers whenever possible, ignoring any active inlining size |
| threshold for this caller.</dd> |
| |
| <dt><tt>noinline</tt></dt> |
| <dd>This attribute indicates that the inliner should never inline this function |
| in any situation. This attribute may not be used together with the |
| <tt>alwaysinline</tt> attribute.</dd> |
| |
| <dt><tt>optsize</tt></dt> |
| <dd>This attribute suggests that optimization passes and code generator passes |
| make choices that keep the code size of this function low, and otherwise do |
| optimizations specifically to reduce code size.</dd> |
| |
| <dt><tt>noreturn</tt></dt> |
| <dd>This function attribute indicates that the function never returns normally. |
| This produces undefined behavior at runtime if the function ever does |
| dynamically return.</dd> |
| |
| <dt><tt>nounwind</tt></dt> |
| <dd>This function attribute indicates that the function never returns with an |
| unwind or exceptional control flow. If the function does unwind, its runtime |
| behavior is undefined.</dd> |
| |
| <dt><tt>readnone</tt></dt> |
| <dd>This attribute indicates that the function computes its result (or the |
| exception it throws) based strictly on its arguments, without dereferencing any |
| pointer arguments or otherwise accessing any mutable state (e.g. memory, control |
| registers, etc) visible to caller functions. It does not write through any |
| pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) and |
| never changes any state visible to callers.</dd> |
| |
| <dt><tt><a name="readonly">readonly</a></tt></dt> |
| <dd>This attribute indicates that the function does not write through any |
| pointer arguments (including <tt><a href="#byval">byval</a></tt> arguments) |
| or otherwise modify any state (e.g. memory, control registers, etc) visible to |
| caller functions. It may dereference pointer arguments and read state that may |
| be set in the caller. A readonly function always returns the same value (or |
| throws the same exception) when called with the same set of arguments and global |
| state.</dd> |
| |
| <dt><tt><a name="ssp">ssp</a></tt></dt> |
| <dd>This attribute indicates that the function should emit a stack smashing |
| protector. It is in the form of a "canary"—a random value placed on the |
| stack before the local variables that's checked upon return from the function to |
| see if it has been overwritten. A heuristic is used to determine if a function |
| needs stack protectors or not. |
| |
| <p>If a function that has an <tt>ssp</tt> attribute is inlined into a function |
| that doesn't have an <tt>ssp</tt> attribute, then the resulting function will |
| have an <tt>ssp</tt> attribute.</p></dd> |
| |
| <dt><tt>sspreq</tt></dt> |
| <dd>This attribute indicates that the function should <em>always</em> emit a |
| stack smashing protector. This overrides the <tt><a href="#ssp">ssp</a></tt> |
| function attribute. |
| |
| <p>If a function that has an <tt>sspreq</tt> attribute is inlined into a |
| function that doesn't have an <tt>sspreq</tt> attribute or which has |
| an <tt>ssp</tt> attribute, then the resulting function will have |
| an <tt>sspreq</tt> attribute.</p></dd> |
| </dl> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="moduleasm">Module-Level Inline Assembly</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p> |
| Modules may contain "module-level inline asm" blocks, which corresponds to the |
| GCC "file scope inline asm" blocks. These blocks are internally concatenated by |
| LLVM and treated as a single unit, but may be separated in the .ll file if |
| desired. The syntax is very simple: |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| module asm "inline asm code goes here" |
| module asm "more can go here" |
| </pre> |
| </div> |
| |
| <p>The strings can contain any character by escaping non-printable characters. |
| The escape sequence used is simply "\xx" where "xx" is the two digit hex code |
| for the number. |
| </p> |
| |
| <p> |
| The inline asm code is simply printed to the machine code .s file when |
| assembly code is generated. |
| </p> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="datalayout">Data Layout</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p>A module may specify a target specific data layout string that specifies how |
| data is to be laid out in memory. The syntax for the data layout is simply:</p> |
| <pre> target datalayout = "<i>layout specification</i>"</pre> |
| <p>The <i>layout specification</i> consists of a list of specifications |
| separated by the minus sign character ('-'). Each specification starts with a |
| letter and may include other information after the letter to define some |
| aspect of the data layout. The specifications accepted are as follows: </p> |
| <dl> |
| <dt><tt>E</tt></dt> |
| <dd>Specifies that the target lays out data in big-endian form. That is, the |
| bits with the most significance have the lowest address location.</dd> |
| <dt><tt>e</tt></dt> |
| <dd>Specifies that the target lays out data in little-endian form. That is, |
| the bits with the least significance have the lowest address location.</dd> |
| <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> |
| <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and |
| <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i> |
| alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted |
| too.</dd> |
| <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> |
| <dd>This specifies the alignment for an integer type of a given bit |
| <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd> |
| <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> |
| <dd>This specifies the alignment for a vector type of a given bit |
| <i>size</i>.</dd> |
| <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> |
| <dd>This specifies the alignment for a floating point type of a given bit |
| <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64 |
| (double).</dd> |
| <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt> |
| <dd>This specifies the alignment for an aggregate type of a given bit |
| <i>size</i>.</dd> |
| </dl> |
| <p>When constructing the data layout for a given target, LLVM starts with a |
| default set of specifications which are then (possibly) overriden by the |
| specifications in the <tt>datalayout</tt> keyword. The default specifications |
| are given in this list:</p> |
| <ul> |
| <li><tt>E</tt> - big endian</li> |
| <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li> |
| <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li> |
| <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li> |
| <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li> |
| <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li> |
| <li><tt>i64:32:64</tt> - i64 has ABI alignment of 32-bits but preferred |
| alignment of 64-bits</li> |
| <li><tt>f32:32:32</tt> - float is 32-bit aligned</li> |
| <li><tt>f64:64:64</tt> - double is 64-bit aligned</li> |
| <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li> |
| <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li> |
| <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li> |
| </ul> |
| <p>When LLVM is determining the alignment for a given type, it uses the |
| following rules:</p> |
| <ol> |
| <li>If the type sought is an exact match for one of the specifications, that |
| specification is used.</li> |
| <li>If no match is found, and the type sought is an integer type, then the |
| smallest integer type that is larger than the bitwidth of the sought type is |
| used. If none of the specifications are larger than the bitwidth then the the |
| largest integer type is used. For example, given the default specifications |
| above, the i7 type will use the alignment of i8 (next largest) while both |
| i65 and i256 will use the alignment of i64 (largest specified).</li> |
| <li>If no match is found, and the type sought is a vector type, then the |
| largest vector type that is smaller than the sought vector type will be used |
| as a fall back. This happens because <128 x double> can be implemented |
| in terms of 64 <2 x double>, for example.</li> |
| </ol> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="typesystem">Type System</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>The LLVM type system is one of the most important features of the |
| intermediate representation. Being typed enables a number of |
| optimizations to be performed on the intermediate representation directly, |
| without having to do |
| extra analyses on the side before the transformation. A strong type |
| system makes it easier to read the generated code and enables novel |
| analyses and transformations that are not feasible to perform on normal |
| three address code representations.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="t_classifications">Type |
| Classifications</a> </div> |
| <div class="doc_text"> |
| <p>The types fall into a few useful |
| classifications:</p> |
| |
| <table border="1" cellspacing="0" cellpadding="4"> |
| <tbody> |
| <tr><th>Classification</th><th>Types</th></tr> |
| <tr> |
| <td><a href="#t_integer">integer</a></td> |
| <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td> |
| </tr> |
| <tr> |
| <td><a href="#t_floating">floating point</a></td> |
| <td><tt>float, double, x86_fp80, fp128, ppc_fp128</tt></td> |
| </tr> |
| <tr> |
| <td><a name="t_firstclass">first class</a></td> |
| <td><a href="#t_integer">integer</a>, |
| <a href="#t_floating">floating point</a>, |
| <a href="#t_pointer">pointer</a>, |
| <a href="#t_vector">vector</a>, |
| <a href="#t_struct">structure</a>, |
| <a href="#t_array">array</a>, |
| <a href="#t_label">label</a>. |
| </td> |
| </tr> |
| <tr> |
| <td><a href="#t_primitive">primitive</a></td> |
| <td><a href="#t_label">label</a>, |
| <a href="#t_void">void</a>, |
| <a href="#t_floating">floating point</a>.</td> |
| </tr> |
| <tr> |
| <td><a href="#t_derived">derived</a></td> |
| <td><a href="#t_integer">integer</a>, |
| <a href="#t_array">array</a>, |
| <a href="#t_function">function</a>, |
| <a href="#t_pointer">pointer</a>, |
| <a href="#t_struct">structure</a>, |
| <a href="#t_pstruct">packed structure</a>, |
| <a href="#t_vector">vector</a>, |
| <a href="#t_opaque">opaque</a>. |
| </td> |
| </tr> |
| </tbody> |
| </table> |
| |
| <p>The <a href="#t_firstclass">first class</a> types are perhaps the |
| most important. Values of these types are the only ones which can be |
| produced by instructions, passed as arguments, or used as operands to |
| instructions.</p> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div> |
| |
| <div class="doc_text"> |
| <p>The primitive types are the fundamental building blocks of the LLVM |
| system.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_floating">Floating Point Types</a> </div> |
| |
| <div class="doc_text"> |
| <table> |
| <tbody> |
| <tr><th>Type</th><th>Description</th></tr> |
| <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr> |
| <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr> |
| <tr><td><tt>fp128</tt></td><td>128-bit floating point value (112-bit mantissa)</td></tr> |
| <tr><td><tt>x86_fp80</tt></td><td>80-bit floating point value (X87)</td></tr> |
| <tr><td><tt>ppc_fp128</tt></td><td>128-bit floating point value (two 64-bits)</td></tr> |
| </tbody> |
| </table> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_void">Void Type</a> </div> |
| |
| <div class="doc_text"> |
| <h5>Overview:</h5> |
| <p>The void type does not represent any value and has no size.</p> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| void |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_label">Label Type</a> </div> |
| |
| <div class="doc_text"> |
| <h5>Overview:</h5> |
| <p>The label type represents code labels.</p> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| label |
| </pre> |
| </div> |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div> |
| |
| <div class="doc_text"> |
| |
| <p>The real power in LLVM comes from the derived types in the system. |
| This is what allows a programmer to represent arrays, functions, |
| pointers, and other useful types. Note that these derived types may be |
| recursive: For example, it is possible to have a two dimensional array.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| <p>The integer type is a very simple derived type that simply specifies an |
| arbitrary bit width for the integer type desired. Any bit width from 1 bit to |
| 2^23-1 (about 8 million) can be specified.</p> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| iN |
| </pre> |
| |
| <p>The number of bits the integer will occupy is specified by the <tt>N</tt> |
| value.</p> |
| |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tbody> |
| <tr> |
| <td><tt>i1</tt></td> |
| <td>a single-bit integer.</td> |
| </tr><tr> |
| <td><tt>i32</tt></td> |
| <td>a 32-bit integer.</td> |
| </tr><tr> |
| <td><tt>i1942652</tt></td> |
| <td>a really big integer of over 1 million bits.</td> |
| </tr> |
| </tbody> |
| </table> |
| |
| <p>Note that the code generator does not yet support large integer types |
| to be used as function return types. The specific limit on how large a |
| return type the code generator can currently handle is target-dependent; |
| currently it's often 64 bits for 32-bit targets and 128 bits for 64-bit |
| targets.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| |
| <p>The array type is a very simple derived type that arranges elements |
| sequentially in memory. The array type requires a size (number of |
| elements) and an underlying data type.</p> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| [<# elements> x <elementtype>] |
| </pre> |
| |
| <p>The number of elements is a constant integer value; elementtype may |
| be any type with a size.</p> |
| |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>[40 x i32]</tt></td> |
| <td class="left">Array of 40 32-bit integer values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>[41 x i32]</tt></td> |
| <td class="left">Array of 41 32-bit integer values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>[4 x i8]</tt></td> |
| <td class="left">Array of 4 8-bit integer values.</td> |
| </tr> |
| </table> |
| <p>Here are some examples of multidimensional arrays:</p> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>[3 x [4 x i32]]</tt></td> |
| <td class="left">3x4 array of 32-bit integer values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>[12 x [10 x float]]</tt></td> |
| <td class="left">12x10 array of single precision floating point values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>[2 x [3 x [4 x i16]]]</tt></td> |
| <td class="left">2x3x4 array of 16-bit integer values.</td> |
| </tr> |
| </table> |
| |
| <p>Note that 'variable sized arrays' can be implemented in LLVM with a zero |
| length array. Normally, accesses past the end of an array are undefined in |
| LLVM (e.g. it is illegal to access the 5th element of a 3 element array). |
| As a special case, however, zero length arrays are recognized to be variable |
| length. This allows implementation of 'pascal style arrays' with the LLVM |
| type "{ i32, [0 x float]}", for example.</p> |
| |
| <p>Note that the code generator does not yet support large aggregate types |
| to be used as function return types. The specific limit on how large an |
| aggregate return type the code generator can currently handle is |
| target-dependent, and also dependent on the aggregate element types.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div> |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| |
| <p>The function type can be thought of as a function signature. It |
| consists of a return type and a list of formal parameter types. The |
| return type of a function type is a scalar type, a void type, or a struct type. |
| If the return type is a struct type then all struct elements must be of first |
| class types, and the struct must have at least one element.</p> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <returntype list> (<parameter list>) |
| </pre> |
| |
| <p>...where '<tt><parameter list></tt>' is a comma-separated list of type |
| specifiers. Optionally, the parameter list may include a type <tt>...</tt>, |
| which indicates that the function takes a variable number of arguments. |
| Variable argument functions can access their arguments with the <a |
| href="#int_varargs">variable argument handling intrinsic</a> functions. |
| '<tt><returntype list></tt>' is a comma-separated list of |
| <a href="#t_firstclass">first class</a> type specifiers.</p> |
| |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>i32 (i32)</tt></td> |
| <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt> |
| </td> |
| </tr><tr class="layout"> |
| <td class="left"><tt>float (i16 signext, i32 *) * |
| </tt></td> |
| <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes |
| an <tt>i16</tt> that should be sign extended and a |
| <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning |
| <tt>float</tt>. |
| </td> |
| </tr><tr class="layout"> |
| <td class="left"><tt>i32 (i8*, ...)</tt></td> |
| <td class="left">A vararg function that takes at least one |
| <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C), |
| which returns an integer. This is the signature for <tt>printf</tt> in |
| LLVM. |
| </td> |
| </tr><tr class="layout"> |
| <td class="left"><tt>{i32, i32} (i32)</tt></td> |
| <td class="left">A function taking an <tt>i32</tt>, returning two |
| <tt>i32</tt> values as an aggregate of type <tt>{ i32, i32 }</tt> |
| </td> |
| </tr> |
| </table> |
| |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div> |
| <div class="doc_text"> |
| <h5>Overview:</h5> |
| <p>The structure type is used to represent a collection of data members |
| together in memory. The packing of the field types is defined to match |
| the ABI of the underlying processor. The elements of a structure may |
| be any type that has a size.</p> |
| <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> |
| and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a |
| field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' |
| instruction.</p> |
| <h5>Syntax:</h5> |
| <pre> { <type list> }<br></pre> |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>{ i32, i32, i32 }</tt></td> |
| <td class="left">A triple of three <tt>i32</tt> values</td> |
| </tr><tr class="layout"> |
| <td class="left"><tt>{ float, i32 (i32) * }</tt></td> |
| <td class="left">A pair, where the first element is a <tt>float</tt> and the |
| second element is a <a href="#t_pointer">pointer</a> to a |
| <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning |
| an <tt>i32</tt>.</td> |
| </tr> |
| </table> |
| |
| <p>Note that the code generator does not yet support large aggregate types |
| to be used as function return types. The specific limit on how large an |
| aggregate return type the code generator can currently handle is |
| target-dependent, and also dependent on the aggregate element types.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a> |
| </div> |
| <div class="doc_text"> |
| <h5>Overview:</h5> |
| <p>The packed structure type is used to represent a collection of data members |
| together in memory. There is no padding between fields. Further, the alignment |
| of a packed structure is 1 byte. The elements of a packed structure may |
| be any type that has a size.</p> |
| <p>Structures are accessed using '<tt><a href="#i_load">load</a></tt> |
| and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a |
| field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>' |
| instruction.</p> |
| <h5>Syntax:</h5> |
| <pre> < { <type list> } > <br></pre> |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>< { i32, i32, i32 } ></tt></td> |
| <td class="left">A triple of three <tt>i32</tt> values</td> |
| </tr><tr class="layout"> |
| <td class="left"> |
| <tt>< { float, i32 (i32)* } ></tt></td> |
| <td class="left">A pair, where the first element is a <tt>float</tt> and the |
| second element is a <a href="#t_pointer">pointer</a> to a |
| <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning |
| an <tt>i32</tt>.</td> |
| </tr> |
| </table> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div> |
| <div class="doc_text"> |
| <h5>Overview:</h5> |
| <p>As in many languages, the pointer type represents a pointer or |
| reference to another object, which must live in memory. Pointer types may have |
| an optional address space attribute defining the target-specific numbered |
| address space where the pointed-to object resides. The default address space is |
| zero.</p> |
| |
| <p>Note that LLVM does not permit pointers to void (<tt>void*</tt>) nor does |
| it permit pointers to labels (<tt>label*</tt>). Use <tt>i8*</tt> instead.</p> |
| |
| <h5>Syntax:</h5> |
| <pre> <type> *<br></pre> |
| <h5>Examples:</h5> |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>[4 x i32]*</tt></td> |
| <td class="left">A <a href="#t_pointer">pointer</a> to <a |
| href="#t_array">array</a> of four <tt>i32</tt> values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>i32 (i32 *) *</tt></td> |
| <td class="left"> A <a href="#t_pointer">pointer</a> to a <a |
| href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an |
| <tt>i32</tt>.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>i32 addrspace(5)*</tt></td> |
| <td class="left">A <a href="#t_pointer">pointer</a> to an <tt>i32</tt> value |
| that resides in address space #5.</td> |
| </tr> |
| </table> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div> |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| |
| <p>A vector type is a simple derived type that represents a vector |
| of elements. Vector types are used when multiple primitive data |
| are operated in parallel using a single instruction (SIMD). |
| A vector type requires a size (number of |
| elements) and an underlying primitive data type. Vectors must have a power |
| of two length (1, 2, 4, 8, 16 ...). Vector types are |
| considered <a href="#t_firstclass">first class</a>.</p> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| < <# elements> x <elementtype> > |
| </pre> |
| |
| <p>The number of elements is a constant integer value; elementtype may |
| be any integer or floating point type.</p> |
| |
| <h5>Examples:</h5> |
| |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt><4 x i32></tt></td> |
| <td class="left">Vector of 4 32-bit integer values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt><8 x float></tt></td> |
| <td class="left">Vector of 8 32-bit floating-point values.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt><2 x i64></tt></td> |
| <td class="left">Vector of 2 64-bit integer values.</td> |
| </tr> |
| </table> |
| |
| <p>Note that the code generator does not yet support large vector types |
| to be used as function return types. The specific limit on how large a |
| vector return type codegen can currently handle is target-dependent; |
| currently it's often a few times longer than a hardware vector register.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div> |
| <div class="doc_text"> |
| |
| <h5>Overview:</h5> |
| |
| <p>Opaque types are used to represent unknown types in the system. This |
| corresponds (for example) to the C notion of a forward declared structure type. |
| In LLVM, opaque types can eventually be resolved to any type (not just a |
| structure type).</p> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| opaque |
| </pre> |
| |
| <h5>Examples:</h5> |
| |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>opaque</tt></td> |
| <td class="left">An opaque type.</td> |
| </tr> |
| </table> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="t_uprefs">Type Up-references</a> |
| </div> |
| |
| <div class="doc_text"> |
| <h5>Overview:</h5> |
| <p> |
| An "up reference" allows you to refer to a lexically enclosing type without |
| requiring it to have a name. For instance, a structure declaration may contain a |
| pointer to any of the types it is lexically a member of. Example of up |
| references (with their equivalent as named type declarations) include:</p> |
| |
| <pre> |
| { \2 * } %x = type { %x* } |
| { \2 }* %y = type { %y }* |
| \1* %z = type %z* |
| </pre> |
| |
| <p> |
| An up reference is needed by the asmprinter for printing out cyclic types when |
| there is no declared name for a type in the cycle. Because the asmprinter does |
| not want to print out an infinite type string, it needs a syntax to handle |
| recursive types that have no names (all names are optional in llvm IR). |
| </p> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| \<level> |
| </pre> |
| |
| <p> |
| The level is the count of the lexical type that is being referred to. |
| </p> |
| |
| <h5>Examples:</h5> |
| |
| <table class="layout"> |
| <tr class="layout"> |
| <td class="left"><tt>\1*</tt></td> |
| <td class="left">Self-referential pointer.</td> |
| </tr> |
| <tr class="layout"> |
| <td class="left"><tt>{ { \3*, i8 }, i32 }</tt></td> |
| <td class="left">Recursive structure where the upref refers to the out-most |
| structure.</td> |
| </tr> |
| </table> |
| </div> |
| |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="constants">Constants</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM has several different basic types of constants. This section describes |
| them all and their syntax.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div> |
| |
| <div class="doc_text"> |
| |
| <dl> |
| <dt><b>Boolean constants</b></dt> |
| |
| <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid |
| constants of the <tt><a href="#t_primitive">i1</a></tt> type. |
| </dd> |
| |
| <dt><b>Integer constants</b></dt> |
| |
| <dd>Standard integers (such as '4') are constants of the <a |
| href="#t_integer">integer</a> type. Negative numbers may be used with |
| integer types. |
| </dd> |
| |
| <dt><b>Floating point constants</b></dt> |
| |
| <dd>Floating point constants use standard decimal notation (e.g. 123.421), |
| exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal |
| notation (see below). The assembler requires the exact decimal value of |
| a floating-point constant. For example, the assembler accepts 1.25 but |
| rejects 1.3 because 1.3 is a repeating decimal in binary. Floating point |
| constants must have a <a href="#t_floating">floating point</a> type. </dd> |
| |
| <dt><b>Null pointer constants</b></dt> |
| |
| <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant |
| and must be of <a href="#t_pointer">pointer type</a>.</dd> |
| |
| </dl> |
| |
| <p>The one non-intuitive notation for constants is the hexadecimal form |
| of floating point constants. For example, the form '<tt>double |
| 0x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double |
| 4.5e+15</tt>'. The only time hexadecimal floating point constants are required |
| (and the only time that they are generated by the disassembler) is when a |
| floating point constant must be emitted but it cannot be represented as a |
| decimal floating point number in a reasonable number of digits. For example, |
| NaN's, infinities, and other |
| special values are represented in their IEEE hexadecimal format so that |
| assembly and disassembly do not cause any bits to change in the constants.</p> |
| <p>When using the hexadecimal form, constants of types float and double are |
| represented using the 16-digit form shown above (which matches the IEEE754 |
| representation for double); float values must, however, be exactly representable |
| as IEE754 single precision. |
| Hexadecimal format is always used for long |
| double, and there are three forms of long double. The 80-bit |
| format used by x86 is represented as <tt>0xK</tt> |
| followed by 20 hexadecimal digits. |
| The 128-bit format used by PowerPC (two adjacent doubles) is represented |
| by <tt>0xM</tt> followed by 32 hexadecimal digits. The IEEE 128-bit |
| format is represented |
| by <tt>0xL</tt> followed by 32 hexadecimal digits; no currently supported |
| target uses this format. Long doubles will only work if they match |
| the long double format on your target. All hexadecimal formats are big-endian |
| (sign bit at the left).</p> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="aggregateconstants"> <!-- old anchor --> |
| <a name="complexconstants">Complex Constants</a></a> |
| </div> |
| |
| <div class="doc_text"> |
| <p>Complex constants are a (potentially recursive) combination of simple |
| constants and smaller complex constants.</p> |
| |
| <dl> |
| <dt><b>Structure constants</b></dt> |
| |
| <dd>Structure constants are represented with notation similar to structure |
| type definitions (a comma separated list of elements, surrounded by braces |
| (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* @G }</tt>", |
| where "<tt>@G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants |
| must have <a href="#t_struct">structure type</a>, and the number and |
| types of elements must match those specified by the type. |
| </dd> |
| |
| <dt><b>Array constants</b></dt> |
| |
| <dd>Array constants are represented with notation similar to array type |
| definitions (a comma separated list of elements, surrounded by square brackets |
| (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array |
| constants must have <a href="#t_array">array type</a>, and the number and |
| types of elements must match those specified by the type. |
| </dd> |
| |
| <dt><b>Vector constants</b></dt> |
| |
| <dd>Vector constants are represented with notation similar to vector type |
| definitions (a comma separated list of elements, surrounded by |
| less-than/greater-than's (<tt><></tt>)). For example: "<tt>< i32 42, |
| i32 11, i32 74, i32 100 ></tt>". Vector constants must have <a |
| href="#t_vector">vector type</a>, and the number and types of elements must |
| match those specified by the type. |
| </dd> |
| |
| <dt><b>Zero initialization</b></dt> |
| |
| <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a |
| value to zero of <em>any</em> type, including scalar and aggregate types. |
| This is often used to avoid having to print large zero initializers (e.g. for |
| large arrays) and is always exactly equivalent to using explicit zero |
| initializers. |
| </dd> |
| |
| <dt><b>Metadata node</b></dt> |
| |
| <dd>A metadata node is a structure-like constant with the type of an empty |
| struct. For example: "<tt>{ } !{ i32 0, { } !"test" }</tt>". Unlike other |
| constants that are meant to be interpreted as part of the instruction stream, |
| metadata is a place to attach additional information such as debug info. |
| </dd> |
| </dl> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="globalconstants">Global Variable and Function Addresses</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>The addresses of <a href="#globalvars">global variables</a> and <a |
| href="#functionstructure">functions</a> are always implicitly valid (link-time) |
| constants. These constants are explicitly referenced when the <a |
| href="#identifiers">identifier for the global</a> is used and always have <a |
| href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM |
| file:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| @X = global i32 17 |
| @Y = global i32 42 |
| @Z = global [2 x i32*] [ i32* @X, i32* @Y ] |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div> |
| <div class="doc_text"> |
| <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has |
| no specific value. Undefined values may be of any type and be used anywhere |
| a constant is permitted.</p> |
| |
| <p>Undefined values indicate to the compiler that the program is well defined |
| no matter what value is used, giving the compiler more freedom to optimize. |
| </p> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"><a name="constantexprs">Constant Expressions</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Constant expressions are used to allow expressions involving other constants |
| to be used as constants. Constant expressions may be of any <a |
| href="#t_firstclass">first class</a> type and may involve any LLVM operation |
| that does not have side effects (e.g. load and call are not supported). The |
| following is the syntax for constant expressions:</p> |
| |
| <dl> |
| <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt> |
| <dd>Truncate a constant to another type. The bit size of CST must be larger |
| than the bit size of TYPE. Both types must be integers.</dd> |
| |
| <dt><b><tt>zext ( CST to TYPE )</tt></b></dt> |
| <dd>Zero extend a constant to another type. The bit size of CST must be |
| smaller or equal to the bit size of TYPE. Both types must be integers.</dd> |
| |
| <dt><b><tt>sext ( CST to TYPE )</tt></b></dt> |
| <dd>Sign extend a constant to another type. The bit size of CST must be |
| smaller or equal to the bit size of TYPE. Both types must be integers.</dd> |
| |
| <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt> |
| <dd>Truncate a floating point constant to another floating point type. The |
| size of CST must be larger than the size of TYPE. Both types must be |
| floating point.</dd> |
| |
| <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt> |
| <dd>Floating point extend a constant to another type. The size of CST must be |
| smaller or equal to the size of TYPE. Both types must be floating point.</dd> |
| |
| <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt> |
| <dd>Convert a floating point constant to the corresponding unsigned integer |
| constant. TYPE must be a scalar or vector integer type. CST must be of scalar |
| or vector floating point type. Both CST and TYPE must be scalars, or vectors |
| of the same number of elements. If the value won't fit in the integer type, |
| the results are undefined.</dd> |
| |
| <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt> |
| <dd>Convert a floating point constant to the corresponding signed integer |
| constant. TYPE must be a scalar or vector integer type. CST must be of scalar |
| or vector floating point type. Both CST and TYPE must be scalars, or vectors |
| of the same number of elements. If the value won't fit in the integer type, |
| the results are undefined.</dd> |
| |
| <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt> |
| <dd>Convert an unsigned integer constant to the corresponding floating point |
| constant. TYPE must be a scalar or vector floating point type. CST must be of |
| scalar or vector integer type. Both CST and TYPE must be scalars, or vectors |
| of the same number of elements. If the value won't fit in the floating point |
| type, the results are undefined.</dd> |
| |
| <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt> |
| <dd>Convert a signed integer constant to the corresponding floating point |
| constant. TYPE must be a scalar or vector floating point type. CST must be of |
| scalar or vector integer type. Both CST and TYPE must be scalars, or vectors |
| of the same number of elements. If the value won't fit in the floating point |
| type, the results are undefined.</dd> |
| |
| <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt> |
| <dd>Convert a pointer typed constant to the corresponding integer constant |
| TYPE must be an integer type. CST must be of pointer type. The CST value is |
| zero extended, truncated, or unchanged to make it fit in TYPE.</dd> |
| |
| <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt> |
| <dd>Convert a integer constant to a pointer constant. TYPE must be a |
| pointer type. CST must be of integer type. The CST value is zero extended, |
| truncated, or unchanged to make it fit in a pointer size. This one is |
| <i>really</i> dangerous!</dd> |
| |
| <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt> |
| <dd>Convert a constant, CST, to another TYPE. The constraints of the operands |
| are the same as those for the <a href="#i_bitcast">bitcast |
| instruction</a>.</dd> |
| |
| <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt> |
| |
| <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on |
| constants. As with the <a href="#i_getelementptr">getelementptr</a> |
| instruction, the index list may have zero or more indexes, which are required |
| to make sense for the type of "CSTPTR".</dd> |
| |
| <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt> |
| |
| <dd>Perform the <a href="#i_select">select operation</a> on |
| constants.</dd> |
| |
| <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt> |
| <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd> |
| |
| <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt> |
| <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd> |
| |
| <dt><b><tt>vicmp COND ( VAL1, VAL2 )</tt></b></dt> |
| <dd>Performs the <a href="#i_vicmp">vicmp operation</a> on constants.</dd> |
| |
| <dt><b><tt>vfcmp COND ( VAL1, VAL2 )</tt></b></dt> |
| <dd>Performs the <a href="#i_vfcmp">vfcmp operation</a> on constants.</dd> |
| |
| <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt> |
| |
| <dd>Perform the <a href="#i_extractelement">extractelement |
| operation</a> on constants.</dd> |
| |
| <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt> |
| |
| <dd>Perform the <a href="#i_insertelement">insertelement |
| operation</a> on constants.</dd> |
| |
| |
| <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt> |
| |
| <dd>Perform the <a href="#i_shufflevector">shufflevector |
| operation</a> on constants.</dd> |
| |
| <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt> |
| |
| <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may |
| be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise |
| binary</a> operations. The constraints on operands are the same as those for |
| the corresponding instruction (e.g. no bitwise operations on floating point |
| values are allowed).</dd> |
| </dl> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"><a name="metadata">Embedded Metadata</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Embedded metadata provides a way to attach arbitrary data to the |
| instruction stream without affecting the behaviour of the program. There are |
| two metadata primitives, strings and nodes. All metadata has the type of an |
| empty struct and is identified in syntax by a preceding exclamation point |
| ('<tt>!</tt>'). |
| </p> |
| |
| <p>A metadata string is a string surrounded by double quotes. It can contain |
| any character by escaping non-printable characters with "\xx" where "xx" is |
| the two digit hex code. For example: "<tt>!"test\00"</tt>". |
| </p> |
| |
| <p>Metadata nodes are represented with notation similar to structure constants |
| (a comma separated list of elements, surrounded by braces and preceeded by an |
| exclamation point). For example: "<tt>!{ { } !"test\00", i32 10}</tt>". |
| </p> |
| |
| <p>Optimizations may rely on metadata to provide additional information about |
| the program that isn't available in the instructions, or that isn't easily |
| computable. Similarly, the code generator may expect a certain metadata format |
| to be used to express debugging information.</p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="othervalues">Other Values</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="inlineasm">Inline Assembler Expressions</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p> |
| LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm"> |
| Module-Level Inline Assembly</a>) through the use of a special value. This |
| value represents the inline assembler as a string (containing the instructions |
| to emit), a list of operand constraints (stored as a string), and a flag that |
| indicates whether or not the inline asm expression has side effects. An example |
| inline assembler expression is: |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| i32 (i32) asm "bswap $0", "=r,r" |
| </pre> |
| </div> |
| |
| <p> |
| Inline assembler expressions may <b>only</b> be used as the callee operand of |
| a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have: |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| %X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y) |
| </pre> |
| </div> |
| |
| <p> |
| Inline asms with side effects not visible in the constraint list must be marked |
| as having side effects. This is done through the use of the |
| '<tt>sideeffect</tt>' keyword, like so: |
| </p> |
| |
| <div class="doc_code"> |
| <pre> |
| call void asm sideeffect "eieio", ""() |
| </pre> |
| </div> |
| |
| <p>TODO: The format of the asm and constraints string still need to be |
| documented here. Constraints on what can be done (e.g. duplication, moving, etc |
| need to be documented). This is probably best done by reference to another |
| document that covers inline asm from a holistic perspective. |
| </p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="instref">Instruction Reference</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>The LLVM instruction set consists of several different |
| classifications of instructions: <a href="#terminators">terminator |
| instructions</a>, <a href="#binaryops">binary instructions</a>, |
| <a href="#bitwiseops">bitwise binary instructions</a>, <a |
| href="#memoryops">memory instructions</a>, and <a href="#otherops">other |
| instructions</a>.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="terminators">Terminator |
| Instructions</a> </div> |
| |
| <div class="doc_text"> |
| |
| <p>As mentioned <a href="#functionstructure">previously</a>, every |
| basic block in a program ends with a "Terminator" instruction, which |
| indicates which block should be executed after the current block is |
| finished. These terminator instructions typically yield a '<tt>void</tt>' |
| value: they produce control flow, not values (the one exception being |
| the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p> |
| <p>There are six different terminator instructions: the '<a |
| href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>' |
| instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction, |
| the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a |
| href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a |
| href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> |
| ret <type> <value> <i>; Return a value from a non-void function</i> |
| ret void <i>; Return from void function</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>ret</tt>' instruction is used to return control flow (and |
| optionally a value) from a function back to the caller.</p> |
| <p>There are two forms of the '<tt>ret</tt>' instruction: one that |
| returns a value and then causes control flow, and one that just causes |
| control flow to occur.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The '<tt>ret</tt>' instruction optionally accepts a single argument, |
| the return value. The type of the return value must be a |
| '<a href="#t_firstclass">first class</a>' type.</p> |
| |
| <p>A function is not <a href="#wellformed">well formed</a> if |
| it it has a non-void return type and contains a '<tt>ret</tt>' |
| instruction with no return value or a return value with a type that |
| does not match its type, or if it has a void return type and contains |
| a '<tt>ret</tt>' instruction with a return value.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>When the '<tt>ret</tt>' instruction is executed, control flow |
| returns back to the calling function's context. If the caller is a "<a |
| href="#i_call"><tt>call</tt></a>" instruction, execution continues at |
| the instruction after the call. If the caller was an "<a |
| href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues |
| at the beginning of the "normal" destination block. If the instruction |
| returns a value, that value shall set the call or invoke instruction's |
| return value.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| ret i32 5 <i>; Return an integer value of 5</i> |
| ret void <i>; Return from a void function</i> |
| ret { i32, i8 } { i32 4, i8 2 } <i>; Return a struct of values 4 and 2</i> |
| </pre> |
| |
| <p>Note that the code generator does not yet fully support large |
| return values. The specific sizes that are currently supported are |
| dependent on the target. For integers, on 32-bit targets the limit |
| is often 64 bits, and on 64-bit targets the limit is often 128 bits. |
| For aggregate types, the current limits are dependent on the element |
| types; for example targets are often limited to 2 total integer |
| elements and 2 total floating-point elements.</p> |
| |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> br i1 <cond>, label <iftrue>, label <iffalse><br> br label <dest> <i>; Unconditional branch</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>br</tt>' instruction is used to cause control flow to |
| transfer to a different basic block in the current function. There are |
| two forms of this instruction, corresponding to a conditional branch |
| and an unconditional branch.</p> |
| <h5>Arguments:</h5> |
| <p>The conditional branch form of the '<tt>br</tt>' instruction takes a |
| single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The |
| unconditional form of the '<tt>br</tt>' instruction takes a single |
| '<tt>label</tt>' value as a target.</p> |
| <h5>Semantics:</h5> |
| <p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>' |
| argument is evaluated. If the value is <tt>true</tt>, control flows |
| to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>, |
| control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p> |
| <h5>Example:</h5> |
| <pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a |
| href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_switch">'<tt>switch</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| |
| <pre> |
| switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ] |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of |
| several different places. It is a generalization of the '<tt>br</tt>' |
| instruction, allowing a branch to occur to one of many possible |
| destinations.</p> |
| |
| |
| <h5>Arguments:</h5> |
| |
| <p>The '<tt>switch</tt>' instruction uses three parameters: an integer |
| comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and |
| an array of pairs of comparison value constants and '<tt>label</tt>'s. The |
| table is not allowed to contain duplicate constant entries.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The <tt>switch</tt> instruction specifies a table of values and |
| destinations. When the '<tt>switch</tt>' instruction is executed, this |
| table is searched for the given value. If the value is found, control flow is |
| transfered to the corresponding destination; otherwise, control flow is |
| transfered to the default destination.</p> |
| |
| <h5>Implementation:</h5> |
| |
| <p>Depending on properties of the target machine and the particular |
| <tt>switch</tt> instruction, this instruction may be code generated in different |
| ways. For example, it could be generated as a series of chained conditional |
| branches or with a lookup table.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <i>; Emulate a conditional br instruction</i> |
| %Val = <a href="#i_zext">zext</a> i1 %value to i32 |
| switch i32 %Val, label %truedest [ i32 0, label %falsedest ] |
| |
| <i>; Emulate an unconditional br instruction</i> |
| switch i32 0, label %dest [ ] |
| |
| <i>; Implement a jump table:</i> |
| switch i32 %val, label %otherwise [ i32 0, label %onzero |
| i32 1, label %onone |
| i32 2, label %ontwo ] |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_invoke">'<tt>invoke</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = invoke [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] <ptr to function ty> <function ptr val>(<function args>) [<a href="#fnattrs">fn attrs</a>] |
| to label <normal label> unwind label <exception label> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified |
| function, with the possibility of control flow transfer to either the |
| '<tt>normal</tt>' label or the |
| '<tt>exception</tt>' label. If the callee function returns with the |
| "<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the |
| "normal" label. If the callee (or any indirect callees) returns with the "<a |
| href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and |
| continued at the dynamically nearest "exception" label.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>This instruction requires several arguments:</p> |
| |
| <ol> |
| <li> |
| The optional "cconv" marker indicates which <a href="#callingconv">calling |
| convention</a> the call should use. If none is specified, the call defaults |
| to using C calling conventions. |
| </li> |
| |
| <li>The optional <a href="#paramattrs">Parameter Attributes</a> list for |
| return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', |
| and '<tt>inreg</tt>' attributes are valid here.</li> |
| |
| <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to |
| function value being invoked. In most cases, this is a direct function |
| invocation, but indirect <tt>invoke</tt>s are just as possible, branching off |
| an arbitrary pointer to function value. |
| </li> |
| |
| <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a |
| function to be invoked. </li> |
| |
| <li>'<tt>function args</tt>': argument list whose types match the function |
| signature argument types. If the function signature indicates the function |
| accepts a variable number of arguments, the extra arguments can be |
| specified. </li> |
| |
| <li>'<tt>normal label</tt>': the label reached when the called function |
| executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li> |
| |
| <li>'<tt>exception label</tt>': the label reached when a callee returns with |
| the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li> |
| |
| <li>The optional <a href="#fnattrs">function attributes</a> list. Only |
| '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and |
| '<tt>readnone</tt>' attributes are valid here.</li> |
| </ol> |
| |
| <h5>Semantics:</h5> |
| |
| <p>This instruction is designed to operate as a standard '<tt><a |
| href="#i_call">call</a></tt>' instruction in most regards. The primary |
| difference is that it establishes an association with a label, which is used by |
| the runtime library to unwind the stack.</p> |
| |
| <p>This instruction is used in languages with destructors to ensure that proper |
| cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown |
| exception. Additionally, this is important for implementation of |
| '<tt>catch</tt>' clauses in high-level languages that support them.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %retval = invoke i32 @Test(i32 15) to label %Continue |
| unwind label %TestCleanup <i>; {i32}:retval set</i> |
| %retval = invoke <a href="#callingconv">coldcc</a> i32 %Testfnptr(i32 15) to label %Continue |
| unwind label %TestCleanup <i>; {i32}:retval set</i> |
| </pre> |
| </div> |
| |
| |
| <!-- _______________________________________________________________________ --> |
| |
| <div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>' |
| Instruction</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| unwind |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow |
| at the first callee in the dynamic call stack which used an <a |
| href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is |
| primarily used to implement exception handling.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>unwind</tt>' instruction causes execution of the current function to |
| immediately halt. The dynamic call stack is then searched for the first <a |
| href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found, |
| execution continues at the "exceptional" destination block specified by the |
| <tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the |
| dynamic call chain, undefined behavior results.</p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| |
| <div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>' |
| Instruction</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| unreachable |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>unreachable</tt>' instruction has no defined semantics. This |
| instruction is used to inform the optimizer that a particular portion of the |
| code is not reachable. This can be used to indicate that the code after a |
| no-return function cannot be reached, and other facts.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p> |
| </div> |
| |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div> |
| <div class="doc_text"> |
| <p>Binary operators are used to do most of the computation in a |
| program. They require two operands of the same type, execute an operation on them, and |
| produce a single value. The operands might represent |
| multiple data, as is the case with the <a href="#t_vector">vector</a> data type. |
| The result value has the same type as its operands.</p> |
| <p>There are several different binary operators:</p> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_add">'<tt>add</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = add <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>add</tt>' instruction must be <a |
| href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, or |
| <a href="#t_vector">vector</a> values. Both arguments must have identical |
| types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The value produced is the integer or floating point sum of the two |
| operands.</p> |
| |
| <p>If an integer sum has unsigned overflow, the result returned is the |
| mathematical result modulo 2<sup>n</sup>, where n is the bit width of |
| the result.</p> |
| |
| <p>Because LLVM integers use a two's complement representation, this |
| instruction is appropriate for both signed and unsigned integers.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_sub">'<tt>sub</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = sub <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>sub</tt>' instruction returns the difference of its two |
| operands.</p> |
| |
| <p>Note that the '<tt>sub</tt>' instruction is used to represent the |
| '<tt>neg</tt>' instruction present in most other intermediate |
| representations.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>sub</tt>' instruction must be <a |
| href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, |
| or <a href="#t_vector">vector</a> values. Both arguments must have identical |
| types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The value produced is the integer or floating point difference of |
| the two operands.</p> |
| |
| <p>If an integer difference has unsigned overflow, the result returned is the |
| mathematical result modulo 2<sup>n</sup>, where n is the bit width of |
| the result.</p> |
| |
| <p>Because LLVM integers use a two's complement representation, this |
| instruction is appropriate for both signed and unsigned integers.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| <result> = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i> |
| <result> = sub i32 0, %val <i>; yields {i32}:result = -%var</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_mul">'<tt>mul</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> <result> = mul <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>mul</tt>' instruction returns the product of its two |
| operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>mul</tt>' instruction must be <a |
| href="#t_integer">integer</a>, <a href="#t_floating">floating point</a>, |
| or <a href="#t_vector">vector</a> values. Both arguments must have identical |
| types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The value produced is the integer or floating point product of the |
| two operands.</p> |
| |
| <p>If the result of an integer multiplication has unsigned overflow, |
| the result returned is the mathematical result modulo |
| 2<sup>n</sup>, where n is the bit width of the result.</p> |
| <p>Because LLVM integers use a two's complement representation, and the |
| result is the same width as the operands, this instruction returns the |
| correct result for both signed and unsigned integers. If a full product |
| (e.g. <tt>i32</tt>x<tt>i32</tt>-><tt>i64</tt>) is needed, the operands |
| should be sign-extended or zero-extended as appropriate to the |
| width of the full product.</p> |
| <h5>Example:</h5> |
| <pre> <result> = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction |
| </a></div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = udiv <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>udiv</tt>' instruction returns the quotient of its two |
| operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>udiv</tt>' instruction must be |
| <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer |
| values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The value produced is the unsigned integer quotient of the two operands.</p> |
| <p>Note that unsigned integer division and signed integer division are distinct |
| operations; for signed integer division, use '<tt>sdiv</tt>'.</p> |
| <p>Division by zero leads to undefined behavior.</p> |
| <h5>Example:</h5> |
| <pre> <result> = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction |
| </a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = sdiv <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>sdiv</tt>' instruction returns the quotient of its two |
| operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>sdiv</tt>' instruction must be |
| <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer |
| values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The value produced is the signed integer quotient of the two operands rounded towards zero.</p> |
| <p>Note that signed integer division and unsigned integer division are distinct |
| operations; for unsigned integer division, use '<tt>udiv</tt>'.</p> |
| <p>Division by zero leads to undefined behavior. Overflow also leads to |
| undefined behavior; this is a rare case, but can occur, for example, |
| by doing a 32-bit division of -2147483648 by -1.</p> |
| <h5>Example:</h5> |
| <pre> <result> = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = fdiv <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>fdiv</tt>' instruction returns the quotient of its two |
| operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>fdiv</tt>' instruction must be |
| <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> |
| of floating point values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The value produced is the floating point quotient of the two operands.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = urem <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>urem</tt>' instruction returns the remainder from the |
| unsigned division of its two arguments.</p> |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>urem</tt>' instruction must be |
| <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer |
| values. Both arguments must have identical types.</p> |
| <h5>Semantics:</h5> |
| <p>This instruction returns the unsigned integer <i>remainder</i> of a division. |
| This instruction always performs an unsigned division to get the remainder.</p> |
| <p>Note that unsigned integer remainder and signed integer remainder are |
| distinct operations; for signed integer remainder, use '<tt>srem</tt>'.</p> |
| <p>Taking the remainder of a division by zero leads to undefined behavior.</p> |
| <h5>Example:</h5> |
| <pre> <result> = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i> |
| </pre> |
| |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_srem">'<tt>srem</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = srem <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>srem</tt>' instruction returns the remainder from the |
| signed division of its two operands. This instruction can also take |
| <a href="#t_vector">vector</a> versions of the values in which case |
| the elements must be integers.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>srem</tt>' instruction must be |
| <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer |
| values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>This instruction returns the <i>remainder</i> of a division (where the result |
| has the same sign as the dividend, <tt>op1</tt>), not the <i>modulo</i> |
| operator (where the result has the same sign as the divisor, <tt>op2</tt>) of |
| a value. For more information about the difference, see <a |
| href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The |
| Math Forum</a>. For a table of how this is implemented in various languages, |
| please see <a href="http://en.wikipedia.org/wiki/Modulo_operation"> |
| Wikipedia: modulo operation</a>.</p> |
| <p>Note that signed integer remainder and unsigned integer remainder are |
| distinct operations; for unsigned integer remainder, use '<tt>urem</tt>'.</p> |
| <p>Taking the remainder of a division by zero leads to undefined behavior. |
| Overflow also leads to undefined behavior; this is a rare case, but can occur, |
| for example, by taking the remainder of a 32-bit division of -2147483648 by -1. |
| (The remainder doesn't actually overflow, but this rule lets srem be |
| implemented using instructions that return both the result of the division |
| and the remainder.)</p> |
| <h5>Example:</h5> |
| <pre> <result> = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i> |
| </pre> |
| |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_frem">'<tt>frem</tt>' Instruction</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> <result> = frem <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>frem</tt>' instruction returns the remainder from the |
| division of its two operands.</p> |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>frem</tt>' instruction must be |
| <a href="#t_floating">floating point</a> or <a href="#t_vector">vector</a> |
| of floating point values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>This instruction returns the <i>remainder</i> of a division. |
| The remainder has the same sign as the dividend.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <result> = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i> |
| </pre> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary |
| Operations</a> </div> |
| <div class="doc_text"> |
| <p>Bitwise binary operators are used to do various forms of |
| bit-twiddling in a program. They are generally very efficient |
| instructions and can commonly be strength reduced from other |
| instructions. They require two operands of the same type, execute an operation on them, |
| and produce a single value. The resulting value is the same type as its operands.</p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = shl <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>shl</tt>' instruction returns the first operand shifted to |
| the left a specified number of bits.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a |
| href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer |
| type. '<tt>op2</tt>' is treated as an unsigned value.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The value produced is <tt>op1</tt> * 2<sup><tt>op2</tt></sup> mod 2<sup>n</sup>, |
| where n is the width of the result. If <tt>op2</tt> is (statically or dynamically) negative or |
| equal to or larger than the number of bits in <tt>op1</tt>, the result is undefined. |
| If the arguments are vectors, each vector element of <tt>op1</tt> is shifted by the |
| corresponding shift amount in <tt>op2</tt>.</p> |
| |
| <h5>Example:</h5><pre> |
| <result> = shl i32 4, %var <i>; yields {i32}: 4 << %var</i> |
| <result> = shl i32 4, 2 <i>; yields {i32}: 16</i> |
| <result> = shl i32 1, 10 <i>; yields {i32}: 1024</i> |
| <result> = shl i32 1, 32 <i>; undefined</i> |
| <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> <i>; yields: result=<2 x i32> < i32 2, i32 4></i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = lshr <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first |
| operand shifted to the right a specified number of bits with zero fill.</p> |
| |
| <h5>Arguments:</h5> |
| <p>Both arguments to the '<tt>lshr</tt>' instruction must be the same |
| <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer |
| type. '<tt>op2</tt>' is treated as an unsigned value.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>This instruction always performs a logical shift right operation. The most |
| significant bits of the result will be filled with zero bits after the |
| shift. If <tt>op2</tt> is (statically or dynamically) equal to or larger than |
| the number of bits in <tt>op1</tt>, the result is undefined. If the arguments are |
| vectors, each vector element of <tt>op1</tt> is shifted by the corresponding shift |
| amount in <tt>op2</tt>.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| <result> = lshr i32 4, 1 <i>; yields {i32}:result = 2</i> |
| <result> = lshr i32 4, 2 <i>; yields {i32}:result = 1</i> |
| <result> = lshr i8 4, 3 <i>; yields {i8}:result = 0</i> |
| <result> = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i> |
| <result> = lshr i32 1, 32 <i>; undefined</i> |
| <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> <i>; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1></i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> <result> = ashr <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first |
| operand shifted to the right a specified number of bits with sign extension.</p> |
| |
| <h5>Arguments:</h5> |
| <p>Both arguments to the '<tt>ashr</tt>' instruction must be the same |
| <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer |
| type. '<tt>op2</tt>' is treated as an unsigned value.</p> |
| |
| <h5>Semantics:</h5> |
| <p>This instruction always performs an arithmetic shift right operation, |
| The most significant bits of the result will be filled with the sign bit |
| of <tt>op1</tt>. If <tt>op2</tt> is (statically or dynamically) equal to or |
| larger than the number of bits in <tt>op1</tt>, the result is undefined. If the |
| arguments are vectors, each vector element of <tt>op1</tt> is shifted by the |
| corresponding shift amount in <tt>op2</tt>.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| <result> = ashr i32 4, 1 <i>; yields {i32}:result = 2</i> |
| <result> = ashr i32 4, 2 <i>; yields {i32}:result = 1</i> |
| <result> = ashr i8 4, 3 <i>; yields {i8}:result = 0</i> |
| <result> = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i> |
| <result> = ashr i32 1, 32 <i>; undefined</i> |
| <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> <i>; yields: result=<2 x i32> < i32 -1, i32 0></i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>' |
| Instruction</a> </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = and <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>and</tt>' instruction returns the bitwise logical and of |
| its two operands.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>and</tt>' instruction must be |
| <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer |
| values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The truth table used for the '<tt>and</tt>' instruction is:</p> |
| <p> </p> |
| <div> |
| <table border="1" cellspacing="0" cellpadding="4"> |
| <tbody> |
| <tr> |
| <td>In0</td> |
| <td>In1</td> |
| <td>Out</td> |
| </tr> |
| <tr> |
| <td>0</td> |
| <td>0</td> |
| <td>0</td> |
| </tr> |
| <tr> |
| <td>0</td> |
| <td>1</td> |
| <td>0</td> |
| </tr> |
| <tr> |
| <td>1</td> |
| <td>0</td> |
| <td>0</td> |
| </tr> |
| <tr> |
| <td>1</td> |
| <td>1</td> |
| <td>1</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <h5>Example:</h5> |
| <pre> |
| <result> = and i32 4, %var <i>; yields {i32}:result = 4 & %var</i> |
| <result> = and i32 15, 40 <i>; yields {i32}:result = 8</i> |
| <result> = and i32 4, 8 <i>; yields {i32}:result = 0</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = or <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive |
| or of its two operands.</p> |
| <h5>Arguments:</h5> |
| |
| <p>The two arguments to the '<tt>or</tt>' instruction must be |
| <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer |
| values. Both arguments must have identical types.</p> |
| <h5>Semantics:</h5> |
| <p>The truth table used for the '<tt>or</tt>' instruction is:</p> |
| <p> </p> |
| <div> |
| <table border="1" cellspacing="0" cellpadding="4"> |
| <tbody> |
| <tr> |
| <td>In0</td> |
| <td>In1</td> |
| <td>Out</td> |
| </tr> |
| <tr> |
| <td>0</td> |
| <td>0</td> |
| <td>0</td> |
| </tr> |
| <tr> |
| <td>0</td> |
| <td>1</td> |
| <td>1</td> |
| </tr> |
| <tr> |
| <td>1</td> |
| <td>0</td> |
| <td>1</td> |
| </tr> |
| <tr> |
| <td>1</td> |
| <td>1</td> |
| <td>1</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <h5>Example:</h5> |
| <pre> <result> = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i> |
| <result> = or i32 15, 40 <i>; yields {i32}:result = 47</i> |
| <result> = or i32 4, 8 <i>; yields {i32}:result = 12</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = xor <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive |
| or of its two operands. The <tt>xor</tt> is used to implement the |
| "one's complement" operation, which is the "~" operator in C.</p> |
| <h5>Arguments:</h5> |
| <p>The two arguments to the '<tt>xor</tt>' instruction must be |
| <a href="#t_integer">integer</a> or <a href="#t_vector">vector</a> of integer |
| values. Both arguments must have identical types.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The truth table used for the '<tt>xor</tt>' instruction is:</p> |
| <p> </p> |
| <div> |
| <table border="1" cellspacing="0" cellpadding="4"> |
| <tbody> |
| <tr> |
| <td>In0</td> |
| <td>In1</td> |
| <td>Out</td> |
| </tr> |
| <tr> |
| <td>0</td> |
| <td>0</td> |
| <td>0</td> |
| </tr> |
| <tr> |
| <td>0</td> |
| <td>1</td> |
| <td>1</td> |
| </tr> |
| <tr> |
| <td>1</td> |
| <td>0</td> |
| <td>1</td> |
| </tr> |
| <tr> |
| <td>1</td> |
| <td>1</td> |
| <td>0</td> |
| </tr> |
| </tbody> |
| </table> |
| </div> |
| <p> </p> |
| <h5>Example:</h5> |
| <pre> <result> = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i> |
| <result> = xor i32 15, 40 <i>; yields {i32}:result = 39</i> |
| <result> = xor i32 4, 8 <i>; yields {i32}:result = 12</i> |
| <result> = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i> |
| </pre> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="vectorops">Vector Operations</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM supports several instructions to represent vector operations in a |
| target-independent manner. These instructions cover the element-access and |
| vector-specific operations needed to process vectors effectively. While LLVM |
| does directly support these vector operations, many sophisticated algorithms |
| will want to use target-specific intrinsics to take full advantage of a specific |
| target.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = extractelement <n x <ty>> <val>, i32 <idx> <i>; yields <ty></i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>extractelement</tt>' instruction extracts a single scalar |
| element from a vector at a specified index. |
| </p> |
| |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The first operand of an '<tt>extractelement</tt>' instruction is a |
| value of <a href="#t_vector">vector</a> type. The second operand is |
| an index indicating the position from which to extract the element. |
| The index may be a variable.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The result is a scalar of the same type as the element type of |
| <tt>val</tt>. Its value is the value at position <tt>idx</tt> of |
| <tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the |
| results are undefined. |
| </p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %result = extractelement <4 x i32> %vec, i32 0 <i>; yields i32</i> |
| </pre> |
| </div> |
| |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> <i>; yields <n x <ty>></i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>insertelement</tt>' instruction inserts a scalar |
| element into a vector at a specified index. |
| </p> |
| |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The first operand of an '<tt>insertelement</tt>' instruction is a |
| value of <a href="#t_vector">vector</a> type. The second operand is a |
| scalar value whose type must equal the element type of the first |
| operand. The third operand is an index indicating the position at |
| which to insert the value. The index may be a variable.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The result is a vector of the same type as <tt>val</tt>. Its |
| element values are those of <tt>val</tt> except at position |
| <tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt> |
| exceeds the length of <tt>val</tt>, the results are undefined. |
| </p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %result = insertelement <4 x i32> %vec, i32 1, i32 0 <i>; yields <4 x i32></i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> <i>; yields <m x <ty>></i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>shufflevector</tt>' instruction constructs a permutation of elements |
| from two input vectors, returning a vector with the same element type as |
| the input and length that is the same as the shuffle mask. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The first two operands of a '<tt>shufflevector</tt>' instruction are vectors |
| with types that match each other. The third argument is a shuffle mask whose |
| element type is always 'i32'. The result of the instruction is a vector whose |
| length is the same as the shuffle mask and whose element type is the same as |
| the element type of the first two operands. |
| </p> |
| |
| <p> |
| The shuffle mask operand is required to be a constant vector with either |
| constant integer or undef values. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The elements of the two input vectors are numbered from left to right across |
| both of the vectors. The shuffle mask operand specifies, for each element of |
| the result vector, which element of the two input vectors the result element |
| gets. The element selector may be undef (meaning "don't care") and the second |
| operand may be undef if performing a shuffle from only one vector. |
| </p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %result = shufflevector <4 x i32> %v1, <4 x i32> %v2, |
| <4 x i32> <i32 0, i32 4, i32 1, i32 5> <i>; yields <4 x i32></i> |
| %result = shufflevector <4 x i32> %v1, <4 x i32> undef, |
| <4 x i32> <i32 0, i32 1, i32 2, i32 3> <i>; yields <4 x i32></i> - Identity shuffle. |
| %result = shufflevector <8 x i32> %v1, <8 x i32> undef, |
| <4 x i32> <i32 0, i32 1, i32 2, i32 3> <i>; yields <4 x i32></i> |
| %result = shufflevector <4 x i32> %v1, <4 x i32> %v2, |
| <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > <i>; yields <8 x i32></i> |
| </pre> |
| </div> |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="aggregateops">Aggregate Operations</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM supports several instructions for working with aggregate values. |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_extractvalue">'<tt>extractvalue</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}* |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>extractvalue</tt>' instruction extracts the value of a struct field |
| or array element from an aggregate value. |
| </p> |
| |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The first operand of an '<tt>extractvalue</tt>' instruction is a |
| value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> |
| type. The operands are constant indices to specify which value to extract |
| in a similar manner as indices in a |
| '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The result is the value at the position in the aggregate specified by |
| the index operands. |
| </p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %result = extractvalue {i32, float} %agg, 0 <i>; yields i32</i> |
| </pre> |
| </div> |
| |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_insertvalue">'<tt>insertvalue</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = insertvalue <aggregate type> <val>, <ty> <val>, <idx> <i>; yields <n x <ty>></i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>insertvalue</tt>' instruction inserts a value |
| into a struct field or array element in an aggregate. |
| </p> |
| |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The first operand of an '<tt>insertvalue</tt>' instruction is a |
| value of <a href="#t_struct">struct</a> or <a href="#t_array">array</a> type. |
| The second operand is a first-class value to insert. |
| The following operands are constant indices |
| indicating the position at which to insert the value in a similar manner as |
| indices in a |
| '<tt><a href="#i_getelementptr">getelementptr</a></tt>' instruction. |
| The value to insert must have the same type as the value identified |
| by the indices. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The result is an aggregate of the same type as <tt>val</tt>. Its |
| value is that of <tt>val</tt> except that the value at the position |
| specified by the indices is that of <tt>elt</tt>. |
| </p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %result = insertvalue {i32, float} %agg, i32 1, 0 <i>; yields {i32, float}</i> |
| </pre> |
| </div> |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="memoryops">Memory Access and Addressing Operations</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>A key design point of an SSA-based representation is how it |
| represents memory. In LLVM, no memory locations are in SSA form, which |
| makes things very simple. This section describes how to read, write, |
| allocate, and free memory in LLVM.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_malloc">'<tt>malloc</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = malloc <type>[, i32 <NumElements>][, align <alignment>] <i>; yields {type*}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>malloc</tt>' instruction allocates memory from the system |
| heap and returns a pointer to it. The object is always allocated in the generic |
| address space (address space zero).</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The '<tt>malloc</tt>' instruction allocates |
| <tt>sizeof(<type>)*NumElements</tt> |
| bytes of memory from the operating system and returns a pointer of the |
| appropriate type to the program. If "NumElements" is specified, it is the |
| number of elements allocated, otherwise "NumElements" is defaulted to be one. |
| If a constant alignment is specified, the value result of the allocation is guaranteed to |
| be aligned to at least that boundary. If not specified, or if zero, the target can |
| choose to align the allocation on any convenient boundary.</p> |
| |
| <p>'<tt>type</tt>' must be a sized type.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>Memory is allocated using the system "<tt>malloc</tt>" function, and |
| a pointer is returned. The result of a zero byte allocation is undefined. The |
| result is null if there is insufficient memory available.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %array = malloc [4 x i8] <i>; yields {[%4 x i8]*}:array</i> |
| |
| %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i> |
| %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i> |
| %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i> |
| %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i> |
| %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i> |
| </pre> |
| |
| <p>Note that the code generator does not yet respect the |
| alignment value.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_free">'<tt>free</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| free <type> <value> <i>; yields {void}</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>free</tt>' instruction returns memory back to the unused |
| memory heap to be reallocated in the future.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>'<tt>value</tt>' shall be a pointer value that points to a value |
| that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>' |
| instruction.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>Access to the memory pointed to by the pointer is no longer defined |
| after this instruction executes. If the pointer is null, the operation |
| is a noop.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i> |
| free [4 x i8]* %array |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_alloca">'<tt>alloca</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = alloca <type>[, i32 <NumElements>][, align <alignment>] <i>; yields {type*}:result</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the |
| currently executing function, to be automatically released when this function |
| returns to its caller. The object is always allocated in the generic address |
| space (address space zero).</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(<type>)*NumElements</tt> |
| bytes of memory on the runtime stack, returning a pointer of the |
| appropriate type to the program. If "NumElements" is specified, it is the |
| number of elements allocated, otherwise "NumElements" is defaulted to be one. |
| If a constant alignment is specified, the value result of the allocation is guaranteed |
| to be aligned to at least that boundary. If not specified, or if zero, the target |
| can choose to align the allocation on any convenient boundary.</p> |
| |
| <p>'<tt>type</tt>' may be any sized type.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>Memory is allocated; a pointer is returned. The operation is undefiend if |
| there is insufficient stack space for the allocation. '<tt>alloca</tt>'d |
| memory is automatically released when the function returns. The '<tt>alloca</tt>' |
| instruction is commonly used to represent automatic variables that must |
| have an address available. When the function returns (either with the <tt><a |
| href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt> |
| instructions), the memory is reclaimed. Allocating zero bytes |
| is legal, but the result is undefined.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %ptr = alloca i32 <i>; yields {i32*}:ptr</i> |
| %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i> |
| %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i> |
| %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = load <ty>* <pointer>[, align <alignment>]<br> <result> = volatile load <ty>* <pointer>[, align <alignment>]<br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>load</tt>' instruction is used to read from memory.</p> |
| <h5>Arguments:</h5> |
| <p>The argument to the '<tt>load</tt>' instruction specifies the memory |
| address from which to load. The pointer must point to a <a |
| href="#t_firstclass">first class</a> type. If the <tt>load</tt> is |
| marked as <tt>volatile</tt>, then the optimizer is not allowed to modify |
| the number or order of execution of this <tt>load</tt> with other |
| volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt> |
| instructions. </p> |
| <p> |
| The optional constant "align" argument specifies the alignment of the operation |
| (that is, the alignment of the memory address). A value of 0 or an |
| omitted "align" argument means that the operation has the preferential |
| alignment for the target. It is the responsibility of the code emitter |
| to ensure that the alignment information is correct. Overestimating |
| the alignment results in an undefined behavior. Underestimating the |
| alignment may produce less efficient code. An alignment of 1 is always |
| safe. |
| </p> |
| <h5>Semantics:</h5> |
| <p>The location of memory pointed to is loaded. If the value being loaded |
| is of scalar type then the number of bytes read does not exceed the minimum |
| number of bytes needed to hold all bits of the type. For example, loading an |
| <tt>i24</tt> reads at most three bytes. When loading a value of a type like |
| <tt>i20</tt> with a size that is not an integral number of bytes, the result |
| is undefined if the value was not originally written using a store of the |
| same type.</p> |
| <h5>Examples:</h5> |
| <pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i> |
| <a |
| href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i> |
| %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i> |
| </pre> |
| </div> |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>' |
| Instruction</a> </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> store <ty> <value>, <ty>* <pointer>[, align <alignment>] <i>; yields {void}</i> |
| volatile store <ty> <value>, <ty>* <pointer>[, align <alignment>] <i>; yields {void}</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>store</tt>' instruction is used to write to memory.</p> |
| <h5>Arguments:</h5> |
| <p>There are two arguments to the '<tt>store</tt>' instruction: a value |
| to store and an address at which to store it. The type of the '<tt><pointer></tt>' |
| operand must be a pointer to the <a href="#t_firstclass">first class</a> type |
| of the '<tt><value></tt>' |
| operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the |
| optimizer is not allowed to modify the number or order of execution of |
| this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a |
| href="#i_store">store</a></tt> instructions.</p> |
| <p> |
| The optional constant "align" argument specifies the alignment of the operation |
| (that is, the alignment of the memory address). A value of 0 or an |
| omitted "align" argument means that the operation has the preferential |
| alignment for the target. It is the responsibility of the code emitter |
| to ensure that the alignment information is correct. Overestimating |
| the alignment results in an undefined behavior. Underestimating the |
| alignment may produce less efficient code. An alignment of 1 is always |
| safe. |
| </p> |
| <h5>Semantics:</h5> |
| <p>The contents of memory are updated to contain '<tt><value></tt>' |
| at the location specified by the '<tt><pointer></tt>' operand. |
| If '<tt><value></tt>' is of scalar type then the number of bytes |
| written does not exceed the minimum number of bytes needed to hold all |
| bits of the type. For example, storing an <tt>i24</tt> writes at most |
| three bytes. When writing a value of a type like <tt>i20</tt> with a |
| size that is not an integral number of bytes, it is unspecified what |
| happens to the extra bits that do not belong to the type, but they will |
| typically be overwritten.</p> |
| <h5>Example:</h5> |
| <pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i> |
| store i32 3, i32* %ptr <i>; yields {void}</i> |
| %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}* |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>getelementptr</tt>' instruction is used to get the address of a |
| subelement of an aggregate data structure. It performs address calculation only |
| and does not access memory.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The first argument is always a pointer, and forms the basis of the |
| calculation. The remaining arguments are indices, that indicate which of the |
| elements of the aggregate object are indexed. The interpretation of each index |
| is dependent on the type being indexed into. The first index always indexes the |
| pointer value given as the first argument, the second index indexes a value of |
| the type pointed to (not necessarily the value directly pointed to, since the |
| first index can be non-zero), etc. The first type indexed into must be a pointer |
| value, subsequent types can be arrays, vectors and structs. Note that subsequent |
| types being indexed into can never be pointers, since that would require loading |
| the pointer before continuing calculation.</p> |
| |
| <p>The type of each index argument depends on the type it is indexing into. |
| When indexing into a (packed) structure, only <tt>i32</tt> integer |
| <b>constants</b> are allowed. When indexing into an array, pointer or vector, |
| integers of any width are allowed (also non-constants).</p> |
| |
| <p>For example, let's consider a C code fragment and how it gets |
| compiled to LLVM:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| struct RT { |
| char A; |
| int B[10][20]; |
| char C; |
| }; |
| struct ST { |
| int X; |
| double Y; |
| struct RT Z; |
| }; |
| |
| int *foo(struct ST *s) { |
| return &s[1].Z.B[5][13]; |
| } |
| </pre> |
| </div> |
| |
| <p>The LLVM code generated by the GCC frontend is:</p> |
| |
| <div class="doc_code"> |
| <pre> |
| %RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 } |
| %ST = <a href="#namedtypes">type</a> { i32, double, %RT } |
| |
| define i32* %foo(%ST* %s) { |
| entry: |
| %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13 |
| ret i32* %reg |
| } |
| </pre> |
| </div> |
| |
| <h5>Semantics:</h5> |
| |
| <p>In the example above, the first index is indexing into the '<tt>%ST*</tt>' |
| type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT |
| }</tt>' type, a structure. The second index indexes into the third element of |
| the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]], |
| i8 }</tt>' type, another structure. The third index indexes into the second |
| element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an |
| array. The two dimensions of the array are subscripted into, yielding an |
| '<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer |
| to this element, thus computing a value of '<tt>i32*</tt>' type.</p> |
| |
| <p>Note that it is perfectly legal to index partially through a |
| structure, returning a pointer to an inner element. Because of this, |
| the LLVM code for the given testcase is equivalent to:</p> |
| |
| <pre> |
| define i32* %foo(%ST* %s) { |
| %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i> |
| %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i> |
| %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i> |
| %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i> |
| %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i> |
| ret i32* %t5 |
| } |
| </pre> |
| |
| <p>Note that it is undefined to access an array out of bounds: array |
| and pointer indexes must always be within the defined bounds of the |
| array type when accessed with an instruction that dereferences the |
| pointer (e.g. a load or store instruction). The one exception for |
| this rule is zero length arrays. These arrays are defined to be |
| accessible as variable length arrays, which requires access beyond the |
| zero'th element.</p> |
| |
| <p>The getelementptr instruction is often confusing. For some more insight |
| into how it works, see <a href="GetElementPtr.html">the getelementptr |
| FAQ</a>.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| <i>; yields [12 x i8]*:aptr</i> |
| %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1 |
| <i>; yields i8*:vptr</i> |
| %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1 |
| <i>; yields i8*:eptr</i> |
| %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1 |
| <i>; yields i32*:iptr</i> |
| %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0 |
| </pre> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="convertops">Conversion Operations</a> |
| </div> |
| <div class="doc_text"> |
| <p>The instructions in this category are the conversion instructions (casting) |
| which all take a single operand and a type. They perform various bit conversions |
| on the operand.</p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = trunc <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p> |
| The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>. |
| </p> |
| |
| <h5>Arguments:</h5> |
| <p> |
| The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must |
| be an <a href="#t_integer">integer</a> type, and a type that specifies the size |
| and type of the result, which must be an <a href="#t_integer">integer</a> |
| type. The bit size of <tt>value</tt> must be larger than the bit size of |
| <tt>ty2</tt>. Equal sized types are not allowed.</p> |
| |
| <h5>Semantics:</h5> |
| <p> |
| The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt> |
| and converts the remaining bits to <tt>ty2</tt>. Since the source size must be |
| larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>. |
| It will always truncate bits.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %X = trunc i32 257 to i8 <i>; yields i8:1</i> |
| %Y = trunc i32 123 to i1 <i>; yields i1:true</i> |
| %Y = trunc i32 122 to i1 <i>; yields i1:false</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = zext <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>zext</tt>' instruction zero extends its operand to type |
| <tt>ty2</tt>.</p> |
| |
| |
| <h5>Arguments:</h5> |
| <p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of |
| <a href="#t_integer">integer</a> type, and a type to cast it to, which must |
| also be of <a href="#t_integer">integer</a> type. The bit size of the |
| <tt>value</tt> must be smaller than the bit size of the destination type, |
| <tt>ty2</tt>.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero |
| bits until it reaches the size of the destination type, <tt>ty2</tt>.</p> |
| |
| <p>When zero extending from i1, the result will always be either 0 or 1.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %X = zext i32 257 to i64 <i>; yields i64:257</i> |
| %Y = zext i1 true to i32 <i>; yields i32:1</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = sext <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p> |
| |
| <h5>Arguments:</h5> |
| <p> |
| The '<tt>sext</tt>' instruction takes a value to cast, which must be of |
| <a href="#t_integer">integer</a> type, and a type to cast it to, which must |
| also be of <a href="#t_integer">integer</a> type. The bit size of the |
| <tt>value</tt> must be smaller than the bit size of the destination type, |
| <tt>ty2</tt>.</p> |
| |
| <h5>Semantics:</h5> |
| <p> |
| The '<tt>sext</tt>' instruction performs a sign extension by copying the sign |
| bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of |
| the type <tt>ty2</tt>.</p> |
| |
| <p>When sign extending from i1, the extension always results in -1 or 0.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %X = sext i8 -1 to i16 <i>; yields i16 :65535</i> |
| %Y = sext i1 true to i32 <i>; yields i32:-1</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = fptrunc <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type |
| <tt>ty2</tt>.</p> |
| |
| |
| <h5>Arguments:</h5> |
| <p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating |
| point</a> value to cast and a <a href="#t_floating">floating point</a> type to |
| cast it to. The size of <tt>value</tt> must be larger than the size of |
| <tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a |
| <i>no-op cast</i>.</p> |
| |
| <h5>Semantics:</h5> |
| <p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger |
| <a href="#t_floating">floating point</a> type to a smaller |
| <a href="#t_floating">floating point</a> type. If the value cannot fit within |
| the destination type, <tt>ty2</tt>, then the results are undefined.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %X = fptrunc double 123.0 to float <i>; yields float:123.0</i> |
| %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = fpext <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger |
| floating point value.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The '<tt>fpext</tt>' instruction takes a |
| <a href="#t_floating">floating point</a> <tt>value</tt> to cast, |
| and a <a href="#t_floating">floating point</a> type to cast it to. The source |
| type must be smaller than the destination type.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller |
| <a href="#t_floating">floating point</a> type to a larger |
| <a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be |
| used to make a <i>no-op cast</i> because it always changes bits. Use |
| <tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %X = fpext float 3.1415 to double <i>; yields double:3.1415</i> |
| %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = fptoui <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its |
| unsigned integer equivalent of type <tt>ty2</tt>. |
| </p> |
| |
| <h5>Arguments:</h5> |
| <p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a |
| scalar or vector <a href="#t_floating">floating point</a> value, and a type |
| to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> |
| type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a |
| vector integer type with the same number of elements as <tt>ty</tt></p> |
| |
| <h5>Semantics:</h5> |
| <p> The '<tt>fptoui</tt>' instruction converts its |
| <a href="#t_floating">floating point</a> operand into the nearest (rounding |
| towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>, |
| the results are undefined.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %X = fptoui double 123.0 to i32 <i>; yields i32:123</i> |
| %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i> |
| %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = fptosi <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>fptosi</tt>' instruction converts |
| <a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>. |
| </p> |
| |
| <h5>Arguments:</h5> |
| <p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a |
| scalar or vector <a href="#t_floating">floating point</a> value, and a type |
| to cast it to <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> |
| type. If <tt>ty</tt> is a vector floating point type, <tt>ty2</tt> must be a |
| vector integer type with the same number of elements as <tt>ty</tt></p> |
| |
| <h5>Semantics:</h5> |
| <p>The '<tt>fptosi</tt>' instruction converts its |
| <a href="#t_floating">floating point</a> operand into the nearest (rounding |
| towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>, |
| the results are undefined.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i> |
| %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i> |
| %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = uitofp <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned |
| integer and converts that value to the <tt>ty2</tt> type.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be a |
| scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it |
| to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> |
| type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector |
| floating point type with the same number of elements as <tt>ty</tt></p> |
| |
| <h5>Semantics:</h5> |
| <p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned |
| integer quantity and converts it to the corresponding floating point value. If |
| the value cannot fit in the floating point value, the results are undefined.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %X = uitofp i32 257 to float <i>; yields float:257.0</i> |
| %Y = uitofp i8 -1 to double <i>; yields double:255.0</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = sitofp <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed |
| integer and converts that value to the <tt>ty2</tt> type.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be a |
| scalar or vector <a href="#t_integer">integer</a> value, and a type to cast it |
| to <tt>ty2</tt>, which must be an <a href="#t_floating">floating point</a> |
| type. If <tt>ty</tt> is a vector integer type, <tt>ty2</tt> must be a vector |
| floating point type with the same number of elements as <tt>ty</tt></p> |
| |
| <h5>Semantics:</h5> |
| <p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed |
| integer quantity and converts it to the corresponding floating point value. If |
| the value cannot fit in the floating point value, the results are undefined.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %X = sitofp i32 257 to float <i>; yields float:257.0</i> |
| %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = ptrtoint <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to |
| the integer type <tt>ty2</tt>.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which |
| must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to |
| <tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type |
| <tt>ty2</tt> by interpreting the pointer value as an integer and either |
| truncating or zero extending that value to the size of the integer type. If |
| <tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If |
| <tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they |
| are the same size, then nothing is done (<i>no-op cast</i>) other than a type |
| change.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i> |
| %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = inttoptr <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to |
| a pointer type, <tt>ty2</tt>.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a> |
| value to cast, and a type to cast it to, which must be a |
| <a href="#t_pointer">pointer</a> type.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type |
| <tt>ty2</tt> by applying either a zero extension or a truncation depending on |
| the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the |
| size of a pointer then a truncation is done. If <tt>value</tt> is smaller than |
| the size of a pointer then a zero extension is done. If they are the same size, |
| nothing is done (<i>no-op cast</i>).</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i> |
| %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i> |
| %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = bitcast <ty> <value> to <ty2> <i>; yields ty2</i> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type |
| <tt>ty2</tt> without changing any bits.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be |
| a non-aggregate first class value, and a type to cast it to, which must also be |
| a non-aggregate <a href="#t_firstclass">first class</a> type. The bit sizes of |
| <tt>value</tt> |
| and the destination type, <tt>ty2</tt>, must be identical. If the source |
| type is a pointer, the destination type must also be a pointer. This |
| instruction supports bitwise conversion of vectors to integers and to vectors |
| of other types (as long as they have the same size).</p> |
| |
| <h5>Semantics:</h5> |
| <p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type |
| <tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with |
| this conversion. The conversion is done as if the <tt>value</tt> had been |
| stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be |
| converted to other pointer types with this instruction. To convert pointers to |
| other types, use the <a href="#i_inttoptr">inttoptr</a> or |
| <a href="#i_ptrtoint">ptrtoint</a> instructions first.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i> |
| %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i> |
| %Z = bitcast <2 x int> %V to i64; <i>; yields i64: %V</i> |
| </pre> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> <a name="otherops">Other Operations</a> </div> |
| <div class="doc_text"> |
| <p>The instructions in this category are the "miscellaneous" |
| instructions, which defy better classification.</p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = icmp <cond> <ty> <op1>, <op2> <i>; yields {i1} or {<N x i1>}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>icmp</tt>' instruction returns a boolean value or |
| a vector of boolean values based on comparison |
| of its two integer, integer vector, or pointer operands.</p> |
| <h5>Arguments:</h5> |
| <p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is |
| the condition code indicating the kind of comparison to perform. It is not |
| a value, just a keyword. The possible condition code are: |
| </p> |
| <ol> |
| <li><tt>eq</tt>: equal</li> |
| <li><tt>ne</tt>: not equal </li> |
| <li><tt>ugt</tt>: unsigned greater than</li> |
| <li><tt>uge</tt>: unsigned greater or equal</li> |
| <li><tt>ult</tt>: unsigned less than</li> |
| <li><tt>ule</tt>: unsigned less or equal</li> |
| <li><tt>sgt</tt>: signed greater than</li> |
| <li><tt>sge</tt>: signed greater or equal</li> |
| <li><tt>slt</tt>: signed less than</li> |
| <li><tt>sle</tt>: signed less or equal</li> |
| </ol> |
| <p>The remaining two arguments must be <a href="#t_integer">integer</a> or |
| <a href="#t_pointer">pointer</a> |
| or integer <a href="#t_vector">vector</a> typed. |
| They must also be identical types.</p> |
| <h5>Semantics:</h5> |
| <p>The '<tt>icmp</tt>' compares <tt>op1</tt> and <tt>op2</tt> according to |
| the condition code given as <tt>cond</tt>. The comparison performed always |
| yields either an <a href="#t_primitive"><tt>i1</tt></a> or vector of <tt>i1</tt> result, as follows: |
| </p> |
| <ol> |
| <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal, |
| <tt>false</tt> otherwise. No sign interpretation is necessary or performed. |
| </li> |
| <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal, |
| <tt>false</tt> otherwise. No sign interpretation is necessary or performed.</li> |
| <li><tt>ugt</tt>: interprets the operands as unsigned values and yields |
| <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li> |
| <li><tt>uge</tt>: interprets the operands as unsigned values and yields |
| <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li> |
| <li><tt>ult</tt>: interprets the operands as unsigned values and yields |
| <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li> |
| <li><tt>ule</tt>: interprets the operands as unsigned values and yields |
| <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> |
| <li><tt>sgt</tt>: interprets the operands as signed values and yields |
| <tt>true</tt> if <tt>op1</tt> is greater than <tt>op2</tt>.</li> |
| <li><tt>sge</tt>: interprets the operands as signed values and yields |
| <tt>true</tt> if <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li> |
| <li><tt>slt</tt>: interprets the operands as signed values and yields |
| <tt>true</tt> if <tt>op1</tt> is less than <tt>op2</tt>.</li> |
| <li><tt>sle</tt>: interprets the operands as signed values and yields |
| <tt>true</tt> if <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> |
| </ol> |
| <p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer |
| values are compared as if they were integers.</p> |
| <p>If the operands are integer vectors, then they are compared |
| element by element. The result is an <tt>i1</tt> vector with |
| the same number of elements as the values being compared. |
| Otherwise, the result is an <tt>i1</tt>. |
| </p> |
| |
| <h5>Example:</h5> |
| <pre> <result> = icmp eq i32 4, 5 <i>; yields: result=false</i> |
| <result> = icmp ne float* %X, %X <i>; yields: result=false</i> |
| <result> = icmp ult i16 4, 5 <i>; yields: result=true</i> |
| <result> = icmp sgt i16 4, 5 <i>; yields: result=false</i> |
| <result> = icmp ule i16 -4, 5 <i>; yields: result=false</i> |
| <result> = icmp sge i16 4, 5 <i>; yields: result=false</i> |
| </pre> |
| |
| <p>Note that the code generator does not yet support vector types with |
| the <tt>icmp</tt> instruction.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = fcmp <cond> <ty> <op1>, <op2> <i>; yields {i1} or {<N x i1>}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>fcmp</tt>' instruction returns a boolean value |
| or vector of boolean values based on comparison |
| of its operands.</p> |
| <p> |
| If the operands are floating point scalars, then the result |
| type is a boolean (<a href="#t_primitive"><tt>i1</tt></a>). |
| </p> |
| <p>If the operands are floating point vectors, then the result type |
| is a vector of boolean with the same number of elements as the |
| operands being compared.</p> |
| <h5>Arguments:</h5> |
| <p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is |
| the condition code indicating the kind of comparison to perform. It is not |
| a value, just a keyword. The possible condition code are:</p> |
| <ol> |
| <li><tt>false</tt>: no comparison, always returns false</li> |
| <li><tt>oeq</tt>: ordered and equal</li> |
| <li><tt>ogt</tt>: ordered and greater than </li> |
| <li><tt>oge</tt>: ordered and greater than or equal</li> |
| <li><tt>olt</tt>: ordered and less than </li> |
| <li><tt>ole</tt>: ordered and less than or equal</li> |
| <li><tt>one</tt>: ordered and not equal</li> |
| <li><tt>ord</tt>: ordered (no nans)</li> |
| <li><tt>ueq</tt>: unordered or equal</li> |
| <li><tt>ugt</tt>: unordered or greater than </li> |
| <li><tt>uge</tt>: unordered or greater than or equal</li> |
| <li><tt>ult</tt>: unordered or less than </li> |
| <li><tt>ule</tt>: unordered or less than or equal</li> |
| <li><tt>une</tt>: unordered or not equal</li> |
| <li><tt>uno</tt>: unordered (either nans)</li> |
| <li><tt>true</tt>: no comparison, always returns true</li> |
| </ol> |
| <p><i>Ordered</i> means that neither operand is a QNAN while |
| <i>unordered</i> means that either operand may be a QNAN.</p> |
| <p>Each of <tt>val1</tt> and <tt>val2</tt> arguments must be |
| either a <a href="#t_floating">floating point</a> type |
| or a <a href="#t_vector">vector</a> of floating point type. |
| They must have identical types.</p> |
| <h5>Semantics:</h5> |
| <p>The '<tt>fcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt> |
| according to the condition code given as <tt>cond</tt>. |
| If the operands are vectors, then the vectors are compared |
| element by element. |
| Each comparison performed |
| always yields an <a href="#t_primitive">i1</a> result, as follows:</p> |
| <ol> |
| <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li> |
| <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and |
| <tt>op1</tt> is equal to <tt>op2</tt>.</li> |
| <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and |
| <tt>op1</tt> is greather than <tt>op2</tt>.</li> |
| <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and |
| <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li> |
| <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and |
| <tt>op1</tt> is less than <tt>op2</tt>.</li> |
| <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and |
| <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> |
| <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and |
| <tt>op1</tt> is not equal to <tt>op2</tt>.</li> |
| <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li> |
| <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or |
| <tt>op1</tt> is equal to <tt>op2</tt>.</li> |
| <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or |
| <tt>op1</tt> is greater than <tt>op2</tt>.</li> |
| <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or |
| <tt>op1</tt> is greater than or equal to <tt>op2</tt>.</li> |
| <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or |
| <tt>op1</tt> is less than <tt>op2</tt>.</li> |
| <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or |
| <tt>op1</tt> is less than or equal to <tt>op2</tt>.</li> |
| <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or |
| <tt>op1</tt> is not equal to <tt>op2</tt>.</li> |
| <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li> |
| <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li> |
| </ol> |
| |
| <h5>Example:</h5> |
| <pre> <result> = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i> |
| <result> = fcmp one float 4.0, 5.0 <i>; yields: result=true</i> |
| <result> = fcmp olt float 4.0, 5.0 <i>; yields: result=true</i> |
| <result> = fcmp ueq double 1.0, 2.0 <i>; yields: result=false</i> |
| </pre> |
| |
| <p>Note that the code generator does not yet support vector types with |
| the <tt>fcmp</tt> instruction.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_vicmp">'<tt>vicmp</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = vicmp <cond> <ty> <op1>, <op2> <i>; yields {ty}:result</i> |
| </pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>vicmp</tt>' instruction returns an integer vector value based on |
| element-wise comparison of its two integer vector operands.</p> |
| <h5>Arguments:</h5> |
| <p>The '<tt>vicmp</tt>' instruction takes three operands. The first operand is |
| the condition code indicating the kind of comparison to perform. It is not |
| a value, just a keyword. The possible condition code are:</p> |
| <ol> |
| <li><tt>eq</tt>: equal</li> |
| <li><tt>ne</tt>: not equal </li> |
| <li><tt>ugt</tt>: unsigned greater than</li> |
| <li><tt>uge</tt>: unsigned greater or equal</li> |
| <li><tt>ult</tt>: unsigned less than</li> |
| <li><tt>ule</tt>: unsigned less or equal</li> |
| <li><tt>sgt</tt>: signed greater than</li> |
| <li><tt>sge</tt>: signed greater or equal</li> |
| <li><tt>slt</tt>: signed less than</li> |
| <li><tt>sle</tt>: signed less or equal</li> |
| </ol> |
| <p>The remaining two arguments must be <a href="#t_vector">vector</a> or |
| <a href="#t_integer">integer</a> typed. They must also be identical types.</p> |
| <h5>Semantics:</h5> |
| <p>The '<tt>vicmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt> |
| according to the condition code given as <tt>cond</tt>. The comparison yields a |
| <a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, of |
| identical type as the values being compared. The most significant bit in each |
| element is 1 if the element-wise comparison evaluates to true, and is 0 |
| otherwise. All other bits of the result are undefined. The condition codes |
| are evaluated identically to the <a href="#i_icmp">'<tt>icmp</tt>' |
| instruction</a>.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| <result> = vicmp eq <2 x i32> < i32 4, i32 0>, < i32 5, i32 0> <i>; yields: result=<2 x i32> < i32 0, i32 -1 ></i> |
| <result> = vicmp ult <2 x i8 > < i8 1, i8 2>, < i8 2, i8 2 > <i>; yields: result=<2 x i8> < i8 -1, i8 0 ></i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_vfcmp">'<tt>vfcmp</tt>' Instruction</a> |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> <result> = vfcmp <cond> <ty> <op1>, <op2></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>vfcmp</tt>' instruction returns an integer vector value based on |
| element-wise comparison of its two floating point vector operands. The output |
| elements have the same width as the input elements.</p> |
| <h5>Arguments:</h5> |
| <p>The '<tt>vfcmp</tt>' instruction takes three operands. The first operand is |
| the condition code indicating the kind of comparison to perform. It is not |
| a value, just a keyword. The possible condition code are:</p> |
| <ol> |
| <li><tt>false</tt>: no comparison, always returns false</li> |
| <li><tt>oeq</tt>: ordered and equal</li> |
| <li><tt>ogt</tt>: ordered and greater than </li> |
| <li><tt>oge</tt>: ordered and greater than or equal</li> |
| <li><tt>olt</tt>: ordered and less than </li> |
| <li><tt>ole</tt>: ordered and less than or equal</li> |
| <li><tt>one</tt>: ordered and not equal</li> |
| <li><tt>ord</tt>: ordered (no nans)</li> |
| <li><tt>ueq</tt>: unordered or equal</li> |
| <li><tt>ugt</tt>: unordered or greater than </li> |
| <li><tt>uge</tt>: unordered or greater than or equal</li> |
| <li><tt>ult</tt>: unordered or less than </li> |
| <li><tt>ule</tt>: unordered or less than or equal</li> |
| <li><tt>une</tt>: unordered or not equal</li> |
| <li><tt>uno</tt>: unordered (either nans)</li> |
| <li><tt>true</tt>: no comparison, always returns true</li> |
| </ol> |
| <p>The remaining two arguments must be <a href="#t_vector">vector</a> of |
| <a href="#t_floating">floating point</a> typed. They must also be identical |
| types.</p> |
| <h5>Semantics:</h5> |
| <p>The '<tt>vfcmp</tt>' instruction compares <tt>op1</tt> and <tt>op2</tt> |
| according to the condition code given as <tt>cond</tt>. The comparison yields a |
| <a href="#t_vector">vector</a> of <a href="#t_integer">integer</a> result, with |
| an identical number of elements as the values being compared, and each element |
| having identical with to the width of the floating point elements. The most |
| significant bit in each element is 1 if the element-wise comparison evaluates to |
| true, and is 0 otherwise. All other bits of the result are undefined. The |
| condition codes are evaluated identically to the |
| <a href="#i_fcmp">'<tt>fcmp</tt>' instruction</a>.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| <i>; yields: result=<2 x i32> < i32 0, i32 -1 ></i> |
| <result> = vfcmp oeq <2 x float> < float 4, float 0 >, < float 5, float 0 > |
| |
| <i>; yields: result=<2 x i64> < i64 -1, i64 0 ></i> |
| <result> = vfcmp ult <2 x double> < double 1, double 2 >, < double 2, double 2> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_phi">'<tt>phi</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> <result> = phi <ty> [ <val0>, <label0>], ...<br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>phi</tt>' instruction is used to implement the φ node in |
| the SSA graph representing the function.</p> |
| <h5>Arguments:</h5> |
| |
| <p>The type of the incoming values is specified with the first type |
| field. After this, the '<tt>phi</tt>' instruction takes a list of pairs |
| as arguments, with one pair for each predecessor basic block of the |
| current block. Only values of <a href="#t_firstclass">first class</a> |
| type may be used as the value arguments to the PHI node. Only labels |
| may be used as the label arguments.</p> |
| |
| <p>There must be no non-phi instructions between the start of a basic |
| block and the PHI instructions: i.e. PHI instructions must be first in |
| a basic block.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value |
| specified by the pair corresponding to the predecessor basic block that executed |
| just prior to the current block.</p> |
| |
| <h5>Example:</h5> |
| <pre> |
| Loop: ; Infinite loop that counts from 0 on up... |
| %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ] |
| %nextindvar = add i32 %indvar, 1 |
| br label %Loop |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_select">'<tt>select</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <result> = select <i>selty</i> <cond>, <ty> <val1>, <ty> <val2> <i>; yields ty</i> |
| |
| <i>selty</i> is either i1 or {<N x i1>} |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>select</tt>' instruction is used to choose one value based on a |
| condition, without branching. |
| </p> |
| |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The '<tt>select</tt>' instruction requires an 'i1' value or |
| a vector of 'i1' values indicating the |
| condition, and two values of the same <a href="#t_firstclass">first class</a> |
| type. If the val1/val2 are vectors and |
| the condition is a scalar, then entire vectors are selected, not |
| individual elements. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| If the condition is an i1 and it evaluates to 1, the instruction returns the first |
| value argument; otherwise, it returns the second value argument. |
| </p> |
| <p> |
| If the condition is a vector of i1, then the value arguments must |
| be vectors of the same size, and the selection is done element |
| by element. |
| </p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i> |
| </pre> |
| |
| <p>Note that the code generator does not yet support conditions |
| with vector type.</p> |
| |
| </div> |
| |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_call">'<tt>call</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| <result> = [tail] call [<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>] <ty> [<fnty>*] <fnptrval>(<function args>) [<a href="#fnattrs">fn attrs</a>] |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>call</tt>' instruction represents a simple function call.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>This instruction requires several arguments:</p> |
| |
| <ol> |
| <li> |
| <p>The optional "tail" marker indicates whether the callee function accesses |
| any allocas or varargs in the caller. If the "tail" marker is present, the |
| function call is eligible for tail call optimization. Note that calls may |
| be marked "tail" even if they do not occur before a <a |
| href="#i_ret"><tt>ret</tt></a> instruction.</p> |
| </li> |
| <li> |
| <p>The optional "cconv" marker indicates which <a href="#callingconv">calling |
| convention</a> the call should use. If none is specified, the call defaults |
| to using C calling conventions.</p> |
| </li> |
| |
| <li> |
| <p>The optional <a href="#paramattrs">Parameter Attributes</a> list for |
| return values. Only '<tt>zeroext</tt>', '<tt>signext</tt>', |
| and '<tt>inreg</tt>' attributes are valid here.</p> |
| </li> |
| |
| <li> |
| <p>'<tt>ty</tt>': the type of the call instruction itself which is also |
| the type of the return value. Functions that return no value are marked |
| <tt><a href="#t_void">void</a></tt>.</p> |
| </li> |
| <li> |
| <p>'<tt>fnty</tt>': shall be the signature of the pointer to function |
| value being invoked. The argument types must match the types implied by |
| this signature. This type can be omitted if the function is not varargs |
| and if the function type does not return a pointer to a function.</p> |
| </li> |
| <li> |
| <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to |
| be invoked. In most cases, this is a direct function invocation, but |
| indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer |
| to function value.</p> |
| </li> |
| <li> |
| <p>'<tt>function args</tt>': argument list whose types match the |
| function signature argument types. All arguments must be of |
| <a href="#t_firstclass">first class</a> type. If the function signature |
| indicates the function accepts a variable number of arguments, the extra |
| arguments can be specified.</p> |
| </li> |
| <li> |
| <p>The optional <a href="#fnattrs">function attributes</a> list. Only |
| '<tt>noreturn</tt>', '<tt>nounwind</tt>', '<tt>readonly</tt>' and |
| '<tt>readnone</tt>' attributes are valid here.</p> |
| </li> |
| </ol> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>call</tt>' instruction is used to cause control flow to |
| transfer to a specified function, with its incoming arguments bound to |
| the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>' |
| instruction in the called function, control flow continues with the |
| instruction after the function call, and the return value of the |
| function is bound to the result argument.</p> |
| |
| <h5>Example:</h5> |
| |
| <pre> |
| %retval = call i32 @test(i32 %argc) |
| call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42) <i>; yields i32</i> |
| %X = tail call i32 @foo() <i>; yields i32</i> |
| %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo() <i>; yields i32</i> |
| call void %foo(i8 97 signext) |
| |
| %struct.A = type { i32, i8 } |
| %r = call %struct.A @foo() <i>; yields { 32, i8 }</i> |
| %gr = extractvalue %struct.A %r, 0 <i>; yields i32</i> |
| %gr1 = extractvalue %struct.A %r, 1 <i>; yields i8</i> |
| %Z = call void @foo() noreturn <i>; indicates that %foo never returns normally</i> |
| %ZZ = call zeroext i32 @bar() <i>; Return value is %zero extended</i> |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| <resultval> = va_arg <va_list*> <arglist>, <argty> |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through |
| the "variable argument" area of a function call. It is used to implement the |
| <tt>va_arg</tt> macro in C.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>This instruction takes a <tt>va_list*</tt> value and the type of |
| the argument. It returns a value of the specified argument type and |
| increments the <tt>va_list</tt> to point to the next argument. The |
| actual type of <tt>va_list</tt> is target specific.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>va_arg</tt>' instruction loads an argument of the specified |
| type from the specified <tt>va_list</tt> and causes the |
| <tt>va_list</tt> to point to the next argument. For more information, |
| see the variable argument handling <a href="#int_varargs">Intrinsic |
| Functions</a>.</p> |
| |
| <p>It is legal for this instruction to be called in a function which does not |
| take a variable number of arguments, for example, the <tt>vfprintf</tt> |
| function.</p> |
| |
| <p><tt>va_arg</tt> is an LLVM instruction instead of an <a |
| href="#intrinsics">intrinsic function</a> because it takes a type as an |
| argument.</p> |
| |
| <h5>Example:</h5> |
| |
| <p>See the <a href="#int_varargs">variable argument processing</a> section.</p> |
| |
| <p>Note that the code generator does not yet fully support va_arg |
| on many targets. Also, it does not currently support va_arg with |
| aggregate types on any target.</p> |
| |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div> |
| <!-- *********************************************************************** --> |
| |
| <div class="doc_text"> |
| |
| <p>LLVM supports the notion of an "intrinsic function". These functions have |
| well known names and semantics and are required to follow certain restrictions. |
| Overall, these intrinsics represent an extension mechanism for the LLVM |
| language that does not require changing all of the transformations in LLVM when |
| adding to the language (or the bitcode reader/writer, the parser, etc...).</p> |
| |
| <p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This |
| prefix is reserved in LLVM for intrinsic names; thus, function names may not |
| begin with this prefix. Intrinsic functions must always be external functions: |
| you cannot define the body of intrinsic functions. Intrinsic functions may |
| only be used in call or invoke instructions: it is illegal to take the address |
| of an intrinsic function. Additionally, because intrinsic functions are part |
| of the LLVM language, it is required if any are added that they be documented |
| here.</p> |
| |
| <p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents |
| a family of functions that perform the same operation but on different data |
| types. Because LLVM can represent over 8 million different integer types, |
| overloading is used commonly to allow an intrinsic function to operate on any |
| integer type. One or more of the argument types or the result type can be |
| overloaded to accept any integer type. Argument types may also be defined as |
| exactly matching a previous argument's type or the result type. This allows an |
| intrinsic function which accepts multiple arguments, but needs all of them to |
| be of the same type, to only be overloaded with respect to a single argument or |
| the result.</p> |
| |
| <p>Overloaded intrinsics will have the names of its overloaded argument types |
| encoded into its function name, each preceded by a period. Only those types |
| which are overloaded result in a name suffix. Arguments whose type is matched |
| against another type do not. For example, the <tt>llvm.ctpop</tt> function can |
| take an integer of any width and returns an integer of exactly the same integer |
| width. This leads to a family of functions such as |
| <tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>. |
| Only one type, the return type, is overloaded, and only one type suffix is |
| required. Because the argument's type is matched against the return type, it |
| does not require its own name suffix.</p> |
| |
| <p>To learn how to add an intrinsic function, please see the |
| <a href="ExtendingLLVM.html">Extending LLVM Guide</a>. |
| </p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="int_varargs">Variable Argument Handling Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p>Variable argument support is defined in LLVM with the <a |
| href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three |
| intrinsic functions. These functions are related to the similarly |
| named macros defined in the <tt><stdarg.h></tt> header file.</p> |
| |
| <p>All of these functions operate on arguments that use a |
| target-specific value type "<tt>va_list</tt>". The LLVM assembly |
| language reference manual does not define what this type is, so all |
| transformations should be prepared to handle these functions regardless of |
| the type used.</p> |
| |
| <p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a> |
| instruction and the variable argument handling intrinsic functions are |
| used.</p> |
| |
| <div class="doc_code"> |
| <pre> |
| define i32 @test(i32 %X, ...) { |
| ; Initialize variable argument processing |
| %ap = alloca i8* |
| %ap2 = bitcast i8** %ap to i8* |
| call void @llvm.va_start(i8* %ap2) |
| |
| ; Read a single integer argument |
| %tmp = va_arg i8** %ap, i32 |
| |
| ; Demonstrate usage of llvm.va_copy and llvm.va_end |
| %aq = alloca i8* |
| %aq2 = bitcast i8** %aq to i8* |
| call void @llvm.va_copy(i8* %aq2, i8* %ap2) |
| call void @llvm.va_end(i8* %aq2) |
| |
| ; Stop processing of arguments. |
| call void @llvm.va_end(i8* %ap2) |
| ret i32 %tmp |
| } |
| |
| declare void @llvm.va_start(i8*) |
| declare void @llvm.va_copy(i8*, i8*) |
| declare void @llvm.va_end(i8*) |
| </pre> |
| </div> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a> |
| </div> |
| |
| |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> declare void %llvm.va_start(i8* <arglist>)<br></pre> |
| <h5>Overview:</h5> |
| <p>The '<tt>llvm.va_start</tt>' intrinsic initializes |
| <tt>*<arglist></tt> for subsequent use by <tt><a |
| href="#i_va_arg">va_arg</a></tt>.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt> |
| macro available in C. In a target-dependent way, it initializes the |
| <tt>va_list</tt> element to which the argument points, so that the next call to |
| <tt>va_arg</tt> will produce the first variable argument passed to the function. |
| Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the |
| last argument of the function as the compiler can figure that out.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> declare void @llvm.va_end(i8* <arglist>)<br></pre> |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*<arglist></tt>, |
| which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt> |
| or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt> |
| macro available in C. In a target-dependent way, it destroys the |
| <tt>va_list</tt> element to which the argument points. Calls to <a |
| href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy"> |
| <tt>llvm.va_copy</tt></a> must be matched exactly with calls to |
| <tt>llvm.va_end</tt>.</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position |
| from the source argument list to the destination argument list.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The first argument is a pointer to a <tt>va_list</tt> element to initialize. |
| The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p> |
| |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> |
| macro available in C. In a target-dependent way, it copies the source |
| <tt>va_list</tt> element into the destination <tt>va_list</tt> element. This |
| intrinsic is necessary because the <tt><a href="#int_va_start"> |
| llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for |
| example, memory allocation.</p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="int_gc">Accurate Garbage Collection Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <p> |
| LLVM support for <a href="GarbageCollection.html">Accurate Garbage |
| Collection</a> (GC) requires the implementation and generation of these |
| intrinsics. |
| These intrinsics allow identification of <a href="#int_gcroot">GC roots on the |
| stack</a>, as well as garbage collector implementations that require <a |
| href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers. |
| Front-ends for type-safe garbage collected languages should generate these |
| intrinsics to make use of the LLVM garbage collectors. For more details, see <a |
| href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>. |
| </p> |
| |
| <p>The garbage collection intrinsics only operate on objects in the generic |
| address space (address space zero).</p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to |
| the code generator, and allows some metadata to be associated with it.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The first argument specifies the address of a stack object that contains the |
| root pointer. The second pointer (which must be either a constant or a global |
| value address) contains the meta-data to be associated with the root.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>At runtime, a call to this intrinsic stores a null pointer into the "ptrloc" |
| location. At compile-time, the code generator generates information to allow |
| the runtime to find the pointer at GC safe points. The '<tt>llvm.gcroot</tt>' |
| intrinsic may only be used in a function which <a href="#gc">specifies a GC |
| algorithm</a>.</p> |
| |
| </div> |
| |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap |
| locations, allowing garbage collector implementations that require read |
| barriers.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The second argument is the address to read from, which should be an address |
| allocated from the garbage collector. The first object is a pointer to the |
| start of the referenced object, if needed by the language runtime (otherwise |
| null).</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load |
| instruction, but may be replaced with substantially more complex code by the |
| garbage collector runtime, as needed. The '<tt>llvm.gcread</tt>' intrinsic |
| may only be used in a function which <a href="#gc">specifies a GC |
| algorithm</a>.</p> |
| |
| </div> |
| |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <pre> |
| declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap |
| locations, allowing garbage collector implementations that require write |
| barriers (such as generational or reference counting collectors).</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The first argument is the reference to store, the second is the start of the |
| object to store it to, and the third is the address of the field of Obj to |
| store to. If the runtime does not require a pointer to the object, Obj may be |
| null.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store |
| instruction, but may be replaced with substantially more complex code by the |
| garbage collector runtime, as needed. The '<tt>llvm.gcwrite</tt>' intrinsic |
| may only be used in a function which <a href="#gc">specifies a GC |
| algorithm</a>.</p> |
| |
| </div> |
| |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="int_codegen">Code Generator Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p> |
| These intrinsics are provided by LLVM to expose special features that may only |
| be implemented with code generator support. |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| declare i8 *@llvm.returnaddress(i32 <level>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a |
| target-specific value indicating the return address of the current function |
| or one of its callers. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The argument to this intrinsic indicates which function to return the address |
| for. Zero indicates the calling function, one indicates its caller, etc. The |
| argument is <b>required</b> to be a constant integer value. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating |
| the return address of the specified call frame, or zero if it cannot be |
| identified. The value returned by this intrinsic is likely to be incorrect or 0 |
| for arguments other than zero, so it should only be used for debugging purposes. |
| </p> |
| |
| <p> |
| Note that calling this intrinsic does not prevent function inlining or other |
| aggressive transformations, so the value returned may not be that of the obvious |
| source-language caller. |
| </p> |
| </div> |
| |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| declare i8 *@llvm.frameaddress(i32 <level>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the |
| target-specific frame pointer value for the specified stack frame. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The argument to this intrinsic indicates which function to return the frame |
| pointer for. Zero indicates the calling function, one indicates its caller, |
| etc. The argument is <b>required</b> to be a constant integer value. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating |
| the frame address of the specified call frame, or zero if it cannot be |
| identified. The value returned by this intrinsic is likely to be incorrect or 0 |
| for arguments other than zero, so it should only be used for debugging purposes. |
| </p> |
| |
| <p> |
| Note that calling this intrinsic does not prevent function inlining or other |
| aggressive transformations, so the value returned may not be that of the obvious |
| source-language caller. |
| </p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| declare i8 *@llvm.stacksave() |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of |
| the function stack, for use with <a href="#int_stackrestore"> |
| <tt>llvm.stackrestore</tt></a>. This is useful for implementing language |
| features like scoped automatic variable sized arrays in C99. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| This intrinsic returns a opaque pointer value that can be passed to <a |
| href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an |
| <tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from |
| <tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the |
| state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In |
| practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack |
| that were allocated after the <tt>llvm.stacksave</tt> was executed. |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| declare void @llvm.stackrestore(i8 * %ptr) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of |
| the function stack to the state it was in when the corresponding <a |
| href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is |
| useful for implementing language features like scoped automatic variable sized |
| arrays in C99. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>. |
| </p> |
| |
| </div> |
| |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| |
| <p> |
| The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert |
| a prefetch instruction if supported; otherwise, it is a noop. Prefetches have |
| no |
| effect on the behavior of the program but can change its performance |
| characteristics. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| <tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier |
| determining if the fetch should be for a read (0) or write (1), and |
| <tt>locality</tt> is a temporal locality specifier ranging from (0) - no |
| locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and |
| <tt>locality</tt> arguments must be constant integers. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| This intrinsic does not modify the behavior of the program. In particular, |
| prefetches cannot trap and do not produce a value. On targets that support this |
| intrinsic, the prefetch can provide hints to the processor cache for better |
| performance. |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| declare void @llvm.pcmarker(i32 <id>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| |
| <p> |
| The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter |
| (PC) in a region of |
| code to simulators and other tools. The method is target specific, but it is |
| expected that the marker will use exported symbols to transmit the PC of the |
| marker. |
| The marker makes no guarantees that it will remain with any specific instruction |
| after optimizations. It is possible that the presence of a marker will inhibit |
| optimizations. The intended use is to be inserted after optimizations to allow |
| correlations of simulation runs. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| <tt>id</tt> is a numerical id identifying the marker. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| This intrinsic does not modify the behavior of the program. Backends that do not |
| support this intrinisic may ignore it. |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| declare i64 @llvm.readcyclecounter( ) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| |
| <p> |
| The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle |
| counter register (or similar low latency, high accuracy clocks) on those targets |
| that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC. |
| As the backing counters overflow quickly (on the order of 9 seconds on alpha), this |
| should only be used for small timings. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| When directly supported, reading the cycle counter should not modify any memory. |
| Implementations are allowed to either return a application specific value or a |
| system wide value. On backends without support, this is lowered to a constant 0. |
| </p> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="int_libc">Standard C Library Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p> |
| LLVM provides intrinsics for a few important standard C library functions. |
| These intrinsics allow source-language front-ends to pass information about the |
| alignment of the pointer arguments to the code generator, providing opportunity |
| for more efficient code generation. |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use llvm.memcpy on any integer bit |
| width. Not all targets support all bit widths however.</p> |
| <pre> |
| declare void @llvm.memcpy.i8(i8 * <dest>, i8 * <src>, |
| i8 <len>, i32 <align>) |
| declare void @llvm.memcpy.i16(i8 * <dest>, i8 * <src>, |
| i16 <len>, i32 <align>) |
| declare void @llvm.memcpy.i32(i8 * <dest>, i8 * <src>, |
| i32 <len>, i32 <align>) |
| declare void @llvm.memcpy.i64(i8 * <dest>, i8 * <src>, |
| i64 <len>, i32 <align>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source |
| location to the destination location. |
| </p> |
| |
| <p> |
| Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt> |
| intrinsics do not return a value, and takes an extra alignment argument. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The first argument is a pointer to the destination, the second is a pointer to |
| the source. The third argument is an integer argument |
| specifying the number of bytes to copy, and the fourth argument is the alignment |
| of the source and destination locations. |
| </p> |
| |
| <p> |
| If the call to this intrinisic has an alignment value that is not 0 or 1, then |
| the caller guarantees that both the source and destination pointers are aligned |
| to that boundary. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source |
| location to the destination location, which are not allowed to overlap. It |
| copies "len" bytes of memory over. If the argument is known to be aligned to |
| some boundary, this can be specified as the fourth argument, otherwise it should |
| be set to 0 or 1. |
| </p> |
| </div> |
| |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use llvm.memmove on any integer bit |
| width. Not all targets support all bit widths however.</p> |
| <pre> |
| declare void @llvm.memmove.i8(i8 * <dest>, i8 * <src>, |
| i8 <len>, i32 <align>) |
| declare void @llvm.memmove.i16(i8 * <dest>, i8 * <src>, |
| i16 <len>, i32 <align>) |
| declare void @llvm.memmove.i32(i8 * <dest>, i8 * <src>, |
| i32 <len>, i32 <align>) |
| declare void @llvm.memmove.i64(i8 * <dest>, i8 * <src>, |
| i64 <len>, i32 <align>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source |
| location to the destination location. It is similar to the |
| '<tt>llvm.memcpy</tt>' intrinsic but allows the two memory locations to overlap. |
| </p> |
| |
| <p> |
| Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt> |
| intrinsics do not return a value, and takes an extra alignment argument. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The first argument is a pointer to the destination, the second is a pointer to |
| the source. The third argument is an integer argument |
| specifying the number of bytes to copy, and the fourth argument is the alignment |
| of the source and destination locations. |
| </p> |
| |
| <p> |
| If the call to this intrinisic has an alignment value that is not 0 or 1, then |
| the caller guarantees that the source and destination pointers are aligned to |
| that boundary. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source |
| location to the destination location, which may overlap. It |
| copies "len" bytes of memory over. If the argument is known to be aligned to |
| some boundary, this can be specified as the fourth argument, otherwise it should |
| be set to 0 or 1. |
| </p> |
| </div> |
| |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use llvm.memset on any integer bit |
| width. Not all targets support all bit widths however.</p> |
| <pre> |
| declare void @llvm.memset.i8(i8 * <dest>, i8 <val>, |
| i8 <len>, i32 <align>) |
| declare void @llvm.memset.i16(i8 * <dest>, i8 <val>, |
| i16 <len>, i32 <align>) |
| declare void @llvm.memset.i32(i8 * <dest>, i8 <val>, |
| i32 <len>, i32 <align>) |
| declare void @llvm.memset.i64(i8 * <dest>, i8 <val>, |
| i64 <len>, i32 <align>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular |
| byte value. |
| </p> |
| |
| <p> |
| Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic |
| does not return a value, and takes an extra alignment argument. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The first argument is a pointer to the destination to fill, the second is the |
| byte value to fill it with, the third argument is an integer |
| argument specifying the number of bytes to fill, and the fourth argument is the |
| known alignment of destination location. |
| </p> |
| |
| <p> |
| If the call to this intrinisic has an alignment value that is not 0 or 1, then |
| the caller guarantees that the destination pointer is aligned to that boundary. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at |
| the |
| destination location. If the argument is known to be aligned to some boundary, |
| this can be specified as the fourth argument, otherwise it should be set to 0 or |
| 1. |
| </p> |
| </div> |
| |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any |
| floating point or vector of floating point type. Not all targets support all |
| types however.</p> |
| <pre> |
| declare float @llvm.sqrt.f32(float %Val) |
| declare double @llvm.sqrt.f64(double %Val) |
| declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val) |
| declare fp128 @llvm.sqrt.f128(fp128 %Val) |
| declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand, |
| returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike |
| <tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for |
| negative numbers other than -0.0 (which allows for better optimization, because |
| there is no need to worry about errno being set). <tt>llvm.sqrt(-0.0)</tt> is |
| defined to return -0.0 like IEEE sqrt. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The argument and return value are floating point numbers of the same type. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| This function returns the sqrt of the specified operand if it is a nonnegative |
| floating point number. |
| </p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any |
| floating point or vector of floating point type. Not all targets support all |
| types however.</p> |
| <pre> |
| declare float @llvm.powi.f32(float %Val, i32 %power) |
| declare double @llvm.powi.f64(double %Val, i32 %power) |
| declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power) |
| declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power) |
| declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the |
| specified (positive or negative) power. The order of evaluation of |
| multiplications is not defined. When a vector of floating point type is |
| used, the second argument remains a scalar integer value. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The second argument is an integer power, and the first is a value to raise to |
| that power. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| This function returns the first value raised to the second power with an |
| unspecified sequence of rounding operations.</p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any |
| floating point or vector of floating point type. Not all targets support all |
| types however.</p> |
| <pre> |
| declare float @llvm.sin.f32(float %Val) |
| declare double @llvm.sin.f64(double %Val) |
| declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val) |
| declare fp128 @llvm.sin.f128(fp128 %Val) |
| declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The argument and return value are floating point numbers of the same type. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| This function returns the sine of the specified operand, returning the |
| same values as the libm <tt>sin</tt> functions would, and handles error |
| conditions in the same way.</p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any |
| floating point or vector of floating point type. Not all targets support all |
| types however.</p> |
| <pre> |
| declare float @llvm.cos.f32(float %Val) |
| declare double @llvm.cos.f64(double %Val) |
| declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val) |
| declare fp128 @llvm.cos.f128(fp128 %Val) |
| declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The argument and return value are floating point numbers of the same type. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| This function returns the cosine of the specified operand, returning the |
| same values as the libm <tt>cos</tt> functions would, and handles error |
| conditions in the same way.</p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any |
| floating point or vector of floating point type. Not all targets support all |
| types however.</p> |
| <pre> |
| declare float @llvm.pow.f32(float %Val, float %Power) |
| declare double @llvm.pow.f64(double %Val, double %Power) |
| declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power) |
| declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power) |
| declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the |
| specified (positive or negative) power. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The second argument is a floating point power, and the first is a value to |
| raise to that power. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| This function returns the first value raised to the second power, |
| returning the |
| same values as the libm <tt>pow</tt> functions would, and handles error |
| conditions in the same way.</p> |
| </div> |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="int_manip">Bit Manipulation Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p> |
| LLVM provides intrinsics for a few important bit manipulation operations. |
| These allow efficient code generation for some algorithms. |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic function. You can use bswap on any integer |
| type that is an even number of bytes (i.e. BitWidth % 16 == 0).</p> |
| <pre> |
| declare i16 @llvm.bswap.i16(i16 <id>) |
| declare i32 @llvm.bswap.i32(i32 <id>) |
| declare i64 @llvm.bswap.i64(i64 <id>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer |
| values with an even number of bytes (positive multiple of 16 bits). These are |
| useful for performing operations on data that is not in the target's native |
| byte order. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high |
| and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt> |
| intrinsic returns an i32 value that has the four bytes of the input i32 |
| swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned |
| i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>, |
| <tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to |
| additional even-byte lengths (6 bytes, 8 bytes and more, respectively). |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit |
| width. Not all targets support all bit widths however.</p> |
| <pre> |
| declare i8 @llvm.ctpop.i8(i8 <src>) |
| declare i16 @llvm.ctpop.i16(i16 <src>) |
| declare i32 @llvm.ctpop.i32(i32 <src>) |
| declare i64 @llvm.ctpop.i64(i64 <src>) |
| declare i256 @llvm.ctpop.i256(i256 <src>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a |
| value. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The only argument is the value to be counted. The argument may be of any |
| integer type. The return type must match the argument type. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable. |
| </p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any |
| integer bit width. Not all targets support all bit widths however.</p> |
| <pre> |
| declare i8 @llvm.ctlz.i8 (i8 <src>) |
| declare i16 @llvm.ctlz.i16(i16 <src>) |
| declare i32 @llvm.ctlz.i32(i32 <src>) |
| declare i64 @llvm.ctlz.i64(i64 <src>) |
| declare i256 @llvm.ctlz.i256(i256 <src>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of |
| leading zeros in a variable. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The only argument is the value to be counted. The argument may be of any |
| integer type. The return type must match the argument type. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros |
| in a variable. If the src == 0 then the result is the size in bits of the type |
| of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>. |
| </p> |
| </div> |
| |
| |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any |
| integer bit width. Not all targets support all bit widths however.</p> |
| <pre> |
| declare i8 @llvm.cttz.i8 (i8 <src>) |
| declare i16 @llvm.cttz.i16(i16 <src>) |
| declare i32 @llvm.cttz.i32(i32 <src>) |
| declare i64 @llvm.cttz.i64(i64 <src>) |
| declare i256 @llvm.cttz.i256(i256 <src>) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of |
| trailing zeros. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The only argument is the value to be counted. The argument may be of any |
| integer type. The return type must match the argument type. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros |
| in a variable. If the src == 0 then the result is the size in bits of the type |
| of src. For example, <tt>llvm.cttz(2) = 1</tt>. |
| </p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt> |
| on any integer bit width.</p> |
| <pre> |
| declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit) |
| declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit) |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a |
| range of bits from an integer value and returns them in the same bit width as |
| the original value.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The first argument, <tt>%val</tt> and the result may be integer types of |
| any bit width but they must have the same bit width. The second and third |
| arguments must be <tt>i32</tt> type since they specify only a bit index.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes |
| of operation: forwards and reverse. If <tt>%loBit</tt> is greater than |
| <tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it |
| operates in forward mode.</p> |
| <p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt> |
| right by <tt>%loBit</tt> bits and then ANDing it with a mask with |
| only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p> |
| <ol> |
| <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified |
| by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li> |
| <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value |
| to determine the number of bits to retain.</li> |
| <li>A mask of the retained bits is created by shifting a -1 value.</li> |
| <li>The mask is ANDed with <tt>%val</tt> to produce the result.</li> |
| </ol> |
| <p>In reverse mode, a similar computation is made except that the bits are |
| returned in the reverse order. So, for example, if <tt>X</tt> has the value |
| <tt>i16 0x0ACF (101011001111)</tt> and we apply |
| <tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value |
| <tt>i16 0x0026 (000000100110)</tt>.</p> |
| </div> |
| |
| <div class="doc_subsubsection"> |
| <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt> |
| on any integer bit width.</p> |
| <pre> |
| declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi) |
| declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi) |
| </pre> |
| |
| <h5>Overview:</h5> |
| <p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range |
| of bits in an integer value with another integer value. It returns the integer |
| with the replaced bits.</p> |
| |
| <h5>Arguments:</h5> |
| <p>The first argument, <tt>%val</tt>, and the result may be integer types of |
| any bit width, but they must have the same bit width. <tt>%val</tt> is the value |
| whose bits will be replaced. The second argument, <tt>%repl</tt> may be an |
| integer of any bit width. The third and fourth arguments must be <tt>i32</tt> |
| type since they specify only a bit index.</p> |
| |
| <h5>Semantics:</h5> |
| <p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes |
| of operation: forwards and reverse. If <tt>%lo</tt> is greater than |
| <tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it |
| operates in forward mode.</p> |
| |
| <p>For both modes, the <tt>%repl</tt> value is prepared for use by either |
| truncating it down to the size of the replacement area or zero extending it |
| up to that size.</p> |
| |
| <p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive) |
| are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit |
| in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up |
| to the <tt>%hi</tt>th bit.</p> |
| |
| <p>In reverse mode, a similar computation is made except that the bits are |
| reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the |
| <tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.</p> |
| |
| <h5>Examples:</h5> |
| |
| <pre> |
| llvm.part.set(0xFFFF, 0, 4, 7) -> 0xFF0F |
| llvm.part.set(0xFFFF, 0, 7, 4) -> 0xFF0F |
| llvm.part.set(0xFFFF, 1, 7, 4) -> 0xFF8F |
| llvm.part.set(0xFFFF, F, 8, 3) -> 0xFFE7 |
| llvm.part.set(0xFFFF, 0, 3, 8) -> 0xFE07 |
| </pre> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="int_overflow">Arithmetic with Overflow Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p> |
| LLVM provides intrinsics for some arithmetic with overflow operations. |
| </p> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_sadd_overflow">'<tt>llvm.sadd.with.overflow.*</tt>' Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.sadd.with.overflow</tt> |
| on any integer bit width.</p> |
| |
| <pre> |
| declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b) |
| declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) |
| declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform |
| a signed addition of the two arguments, and indicate whether an overflow |
| occurred during the signed summation.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The arguments (%a and %b) and the first element of the result structure may |
| be of integer types of any bit width, but they must have the same bit width. The |
| second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt> |
| and <tt>%b</tt> are the two values that will undergo signed addition.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.sadd.with.overflow</tt>' family of intrinsic functions perform |
| a signed addition of the two variables. They return a structure — the |
| first element of which is the signed summation, and the second element of which |
| is a bit specifying if the signed summation resulted in an overflow.</p> |
| |
| <h5>Examples:</h5> |
| <pre> |
| %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b) |
| %sum = extractvalue {i32, i1} %res, 0 |
| %obit = extractvalue {i32, i1} %res, 1 |
| br i1 %obit, label %overflow, label %normal |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_uadd_overflow">'<tt>llvm.uadd.with.overflow.*</tt>' Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.uadd.with.overflow</tt> |
| on any integer bit width.</p> |
| |
| <pre> |
| declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b) |
| declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) |
| declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform |
| an unsigned addition of the two arguments, and indicate whether a carry occurred |
| during the unsigned summation.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The arguments (%a and %b) and the first element of the result structure may |
| be of integer types of any bit width, but they must have the same bit width. The |
| second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt> |
| and <tt>%b</tt> are the two values that will undergo unsigned addition.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.uadd.with.overflow</tt>' family of intrinsic functions perform |
| an unsigned addition of the two arguments. They return a structure — the |
| first element of which is the sum, and the second element of which is a bit |
| specifying if the unsigned summation resulted in a carry.</p> |
| |
| <h5>Examples:</h5> |
| <pre> |
| %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b) |
| %sum = extractvalue {i32, i1} %res, 0 |
| %obit = extractvalue {i32, i1} %res, 1 |
| br i1 %obit, label %carry, label %normal |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_ssub_overflow">'<tt>llvm.ssub.with.overflow.*</tt>' Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.ssub.with.overflow</tt> |
| on any integer bit width.</p> |
| |
| <pre> |
| declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b) |
| declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b) |
| declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform |
| a signed subtraction of the two arguments, and indicate whether an overflow |
| occurred during the signed subtraction.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The arguments (%a and %b) and the first element of the result structure may |
| be of integer types of any bit width, but they must have the same bit width. The |
| second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt> |
| and <tt>%b</tt> are the two values that will undergo signed subtraction.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.ssub.with.overflow</tt>' family of intrinsic functions perform |
| a signed subtraction of the two arguments. They return a structure — the |
| first element of which is the subtraction, and the second element of which is a bit |
| specifying if the signed subtraction resulted in an overflow.</p> |
| |
| <h5>Examples:</h5> |
| <pre> |
| %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b) |
| %sum = extractvalue {i32, i1} %res, 0 |
| %obit = extractvalue {i32, i1} %res, 1 |
| br i1 %obit, label %overflow, label %normal |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_usub_overflow">'<tt>llvm.usub.with.overflow.*</tt>' Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.usub.with.overflow</tt> |
| on any integer bit width.</p> |
| |
| <pre> |
| declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b) |
| declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b) |
| declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform |
| an unsigned subtraction of the two arguments, and indicate whether an overflow |
| occurred during the unsigned subtraction.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The arguments (%a and %b) and the first element of the result structure may |
| be of integer types of any bit width, but they must have the same bit width. The |
| second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt> |
| and <tt>%b</tt> are the two values that will undergo unsigned subtraction.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.usub.with.overflow</tt>' family of intrinsic functions perform |
| an unsigned subtraction of the two arguments. They return a structure — the |
| first element of which is the subtraction, and the second element of which is a bit |
| specifying if the unsigned subtraction resulted in an overflow.</p> |
| |
| <h5>Examples:</h5> |
| <pre> |
| %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b) |
| %sum = extractvalue {i32, i1} %res, 0 |
| %obit = extractvalue {i32, i1} %res, 1 |
| br i1 %obit, label %overflow, label %normal |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_smul_overflow">'<tt>llvm.smul.with.overflow.*</tt>' Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.smul.with.overflow</tt> |
| on any integer bit width.</p> |
| |
| <pre> |
| declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b) |
| declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b) |
| declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform |
| a signed multiplication of the two arguments, and indicate whether an overflow |
| occurred during the signed multiplication.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The arguments (%a and %b) and the first element of the result structure may |
| be of integer types of any bit width, but they must have the same bit width. The |
| second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt> |
| and <tt>%b</tt> are the two values that will undergo signed multiplication.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.smul.with.overflow</tt>' family of intrinsic functions perform |
| a signed multiplication of the two arguments. They return a structure — |
| the first element of which is the multiplication, and the second element of |
| which is a bit specifying if the signed multiplication resulted in an |
| overflow.</p> |
| |
| <h5>Examples:</h5> |
| <pre> |
| %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b) |
| %sum = extractvalue {i32, i1} %res, 0 |
| %obit = extractvalue {i32, i1} %res, 1 |
| br i1 %obit, label %overflow, label %normal |
| </pre> |
| |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_umul_overflow">'<tt>llvm.umul.with.overflow.*</tt>' Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| |
| <p>This is an overloaded intrinsic. You can use <tt>llvm.umul.with.overflow</tt> |
| on any integer bit width.</p> |
| |
| <pre> |
| declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b) |
| declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b) |
| declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p><i><b>Warning:</b> '<tt>llvm.umul.with.overflow</tt>' is badly broken. It is |
| actively being fixed, but it should not currently be used!</i></p> |
| |
| <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform |
| a unsigned multiplication of the two arguments, and indicate whether an overflow |
| occurred during the unsigned multiplication.</p> |
| |
| <h5>Arguments:</h5> |
| |
| <p>The arguments (%a and %b) and the first element of the result structure may |
| be of integer types of any bit width, but they must have the same bit width. The |
| second element of the result structure must be of type <tt>i1</tt>. <tt>%a</tt> |
| and <tt>%b</tt> are the two values that will undergo unsigned |
| multiplication.</p> |
| |
| <h5>Semantics:</h5> |
| |
| <p>The '<tt>llvm.umul.with.overflow</tt>' family of intrinsic functions perform |
| an unsigned multiplication of the two arguments. They return a structure — |
| the first element of which is the multiplication, and the second element of |
| which is a bit specifying if the unsigned multiplication resulted in an |
| overflow.</p> |
| |
| <h5>Examples:</h5> |
| <pre> |
| %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b) |
| %sum = extractvalue {i32, i1} %res, 0 |
| %obit = extractvalue {i32, i1} %res, 1 |
| br i1 %obit, label %overflow, label %normal |
| </pre> |
| |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="int_debugger">Debugger Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p> |
| The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix), |
| are described in the <a |
| href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level |
| Debugging</a> document. |
| </p> |
| </div> |
| |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="int_eh">Exception Handling Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p> The LLVM exception handling intrinsics (which all start with |
| <tt>llvm.eh.</tt> prefix), are described in the <a |
| href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception |
| Handling</a> document. </p> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="int_trampoline">Trampoline Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p> |
| This intrinsic makes it possible to excise one parameter, marked with |
| the <tt>nest</tt> attribute, from a function. The result is a callable |
| function pointer lacking the nest parameter - the caller does not need |
| to provide a value for it. Instead, the value to use is stored in |
| advance in a "trampoline", a block of memory usually allocated |
| on the stack, which also contains code to splice the nest value into the |
| argument list. This is used to implement the GCC nested function address |
| extension. |
| </p> |
| <p> |
| For example, if the function is |
| <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function |
| pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p> |
| <pre> |
| %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86 |
| %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0 |
| %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval ) |
| %fp = bitcast i8* %p to i32 (i32, i32)* |
| </pre> |
| <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent |
| to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a> |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> |
| declare i8* @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>) |
| </pre> |
| <h5>Overview:</h5> |
| <p> |
| This fills the memory pointed to by <tt>tramp</tt> with code |
| and returns a function pointer suitable for executing it. |
| </p> |
| <h5>Arguments:</h5> |
| <p> |
| The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all |
| pointers. The <tt>tramp</tt> argument must point to a sufficiently large |
| and sufficiently aligned block of memory; this memory is written to by the |
| intrinsic. Note that the size and the alignment are target-specific - LLVM |
| currently provides no portable way of determining them, so a front-end that |
| generates this intrinsic needs to have some target-specific knowledge. |
| The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>. |
| </p> |
| <h5>Semantics:</h5> |
| <p> |
| The block of memory pointed to by <tt>tramp</tt> is filled with target |
| dependent code, turning it into a function. A pointer to this function is |
| returned, but needs to be bitcast to an |
| <a href="#int_trampoline">appropriate function pointer type</a> |
| before being called. The new function's signature is the same as that of |
| <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute |
| removed. At most one such <tt>nest</tt> argument is allowed, and it must be |
| of pointer type. Calling the new function is equivalent to calling |
| <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the |
| missing <tt>nest</tt> argument. If, after calling |
| <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is |
| modified, then the effect of any later call to the returned function pointer is |
| undefined. |
| </p> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="int_atomics">Atomic Operations and Synchronization Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p> |
| These intrinsic functions expand the "universal IR" of LLVM to represent |
| hardware constructs for atomic operations and memory synchronization. This |
| provides an interface to the hardware, not an interface to the programmer. It |
| is aimed at a low enough level to allow any programming models or APIs |
| (Application Programming Interfaces) which |
| need atomic behaviors to map cleanly onto it. It is also modeled primarily on |
| hardware behavior. Just as hardware provides a "universal IR" for source |
| languages, it also provides a starting point for developing a "universal" |
| atomic operation and synchronization IR. |
| </p> |
| <p> |
| These do <em>not</em> form an API such as high-level threading libraries, |
| software transaction memory systems, atomic primitives, and intrinsic |
| functions as found in BSD, GNU libc, atomic_ops, APR, and other system and |
| application libraries. The hardware interface provided by LLVM should allow |
| a clean implementation of all of these APIs and parallel programming models. |
| No one model or paradigm should be selected above others unless the hardware |
| itself ubiquitously does so. |
| |
| </p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_memory_barrier">'<tt>llvm.memory.barrier</tt>' Intrinsic</a> |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> |
| declare void @llvm.memory.barrier( i1 <ll>, i1 <ls>, i1 <sl>, i1 <ss>, |
| i1 <device> ) |
| |
| </pre> |
| <h5>Overview:</h5> |
| <p> |
| The <tt>llvm.memory.barrier</tt> intrinsic guarantees ordering between |
| specific pairs of memory access types. |
| </p> |
| <h5>Arguments:</h5> |
| <p> |
| The <tt>llvm.memory.barrier</tt> intrinsic requires five boolean arguments. |
| The first four arguments enables a specific barrier as listed below. The fith |
| argument specifies that the barrier applies to io or device or uncached memory. |
| |
| </p> |
| <ul> |
| <li><tt>ll</tt>: load-load barrier</li> |
| <li><tt>ls</tt>: load-store barrier</li> |
| <li><tt>sl</tt>: store-load barrier</li> |
| <li><tt>ss</tt>: store-store barrier</li> |
| <li><tt>device</tt>: barrier applies to device and uncached memory also.</li> |
| </ul> |
| <h5>Semantics:</h5> |
| <p> |
| This intrinsic causes the system to enforce some ordering constraints upon |
| the loads and stores of the program. This barrier does not indicate |
| <em>when</em> any events will occur, it only enforces an <em>order</em> in |
| which they occur. For any of the specified pairs of load and store operations |
| (f.ex. load-load, or store-load), all of the first operations preceding the |
| barrier will complete before any of the second operations succeeding the |
| barrier begin. Specifically the semantics for each pairing is as follows: |
| </p> |
| <ul> |
| <li><tt>ll</tt>: All loads before the barrier must complete before any load |
| after the barrier begins.</li> |
| |
| <li><tt>ls</tt>: All loads before the barrier must complete before any |
| store after the barrier begins.</li> |
| <li><tt>ss</tt>: All stores before the barrier must complete before any |
| store after the barrier begins.</li> |
| <li><tt>sl</tt>: All stores before the barrier must complete before any |
| load after the barrier begins.</li> |
| </ul> |
| <p> |
| These semantics are applied with a logical "and" behavior when more than one |
| is enabled in a single memory barrier intrinsic. |
| </p> |
| <p> |
| Backends may implement stronger barriers than those requested when they do not |
| support as fine grained a barrier as requested. Some architectures do not |
| need all types of barriers and on such architectures, these become noops. |
| </p> |
| <h5>Example:</h5> |
| <pre> |
| %ptr = malloc i32 |
| store i32 4, %ptr |
| |
| %result1 = load i32* %ptr <i>; yields {i32}:result1 = 4</i> |
| call void @llvm.memory.barrier( i1 false, i1 true, i1 false, i1 false ) |
| <i>; guarantee the above finishes</i> |
| store i32 8, %ptr <i>; before this begins</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_atomic_cmp_swap">'<tt>llvm.atomic.cmp.swap.*</tt>' Intrinsic</a> |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <p> |
| This is an overloaded intrinsic. You can use <tt>llvm.atomic.cmp.swap</tt> on |
| any integer bit width and for different address spaces. Not all targets |
| support all bit widths however.</p> |
| |
| <pre> |
| declare i8 @llvm.atomic.cmp.swap.i8.p0i8( i8* <ptr>, i8 <cmp>, i8 <val> ) |
| declare i16 @llvm.atomic.cmp.swap.i16.p0i16( i16* <ptr>, i16 <cmp>, i16 <val> ) |
| declare i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* <ptr>, i32 <cmp>, i32 <val> ) |
| declare i64 @llvm.atomic.cmp.swap.i64.p0i64( i64* <ptr>, i64 <cmp>, i64 <val> ) |
| |
| </pre> |
| <h5>Overview:</h5> |
| <p> |
| This loads a value in memory and compares it to a given value. If they are |
| equal, it stores a new value into the memory. |
| </p> |
| <h5>Arguments:</h5> |
| <p> |
| The <tt>llvm.atomic.cmp.swap</tt> intrinsic takes three arguments. The result as |
| well as both <tt>cmp</tt> and <tt>val</tt> must be integer values with the |
| same bit width. The <tt>ptr</tt> argument must be a pointer to a value of |
| this integer type. While any bit width integer may be used, targets may only |
| lower representations they support in hardware. |
| |
| </p> |
| <h5>Semantics:</h5> |
| <p> |
| This entire intrinsic must be executed atomically. It first loads the value |
| in memory pointed to by <tt>ptr</tt> and compares it with the value |
| <tt>cmp</tt>. If they are equal, <tt>val</tt> is stored into the memory. The |
| loaded value is yielded in all cases. This provides the equivalent of an |
| atomic compare-and-swap operation within the SSA framework. |
| </p> |
| <h5>Examples:</h5> |
| |
| <pre> |
| %ptr = malloc i32 |
| store i32 4, %ptr |
| |
| %val1 = add i32 4, 4 |
| %result1 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 4, %val1 ) |
| <i>; yields {i32}:result1 = 4</i> |
| %stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i> |
| %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i> |
| |
| %val2 = add i32 1, 1 |
| %result2 = call i32 @llvm.atomic.cmp.swap.i32.p0i32( i32* %ptr, i32 5, %val2 ) |
| <i>; yields {i32}:result2 = 8</i> |
| %stored2 = icmp eq i32 %result2, 5 <i>; yields {i1}:stored2 = false</i> |
| |
| %memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 8</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_atomic_swap">'<tt>llvm.atomic.swap.*</tt>' Intrinsic</a> |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| |
| <p> |
| This is an overloaded intrinsic. You can use <tt>llvm.atomic.swap</tt> on any |
| integer bit width. Not all targets support all bit widths however.</p> |
| <pre> |
| declare i8 @llvm.atomic.swap.i8.p0i8( i8* <ptr>, i8 <val> ) |
| declare i16 @llvm.atomic.swap.i16.p0i16( i16* <ptr>, i16 <val> ) |
| declare i32 @llvm.atomic.swap.i32.p0i32( i32* <ptr>, i32 <val> ) |
| declare i64 @llvm.atomic.swap.i64.p0i64( i64* <ptr>, i64 <val> ) |
| |
| </pre> |
| <h5>Overview:</h5> |
| <p> |
| This intrinsic loads the value stored in memory at <tt>ptr</tt> and yields |
| the value from memory. It then stores the value in <tt>val</tt> in the memory |
| at <tt>ptr</tt>. |
| </p> |
| <h5>Arguments:</h5> |
| |
| <p> |
| The <tt>llvm.atomic.swap</tt> intrinsic takes two arguments. Both the |
| <tt>val</tt> argument and the result must be integers of the same bit width. |
| The first argument, <tt>ptr</tt>, must be a pointer to a value of this |
| integer type. The targets may only lower integer representations they |
| support. |
| </p> |
| <h5>Semantics:</h5> |
| <p> |
| This intrinsic loads the value pointed to by <tt>ptr</tt>, yields it, and |
| stores <tt>val</tt> back into <tt>ptr</tt> atomically. This provides the |
| equivalent of an atomic swap operation within the SSA framework. |
| |
| </p> |
| <h5>Examples:</h5> |
| <pre> |
| %ptr = malloc i32 |
| store i32 4, %ptr |
| |
| %val1 = add i32 4, 4 |
| %result1 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val1 ) |
| <i>; yields {i32}:result1 = 4</i> |
| %stored1 = icmp eq i32 %result1, 4 <i>; yields {i1}:stored1 = true</i> |
| %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 8</i> |
| |
| %val2 = add i32 1, 1 |
| %result2 = call i32 @llvm.atomic.swap.i32.p0i32( i32* %ptr, i32 %val2 ) |
| <i>; yields {i32}:result2 = 8</i> |
| |
| %stored2 = icmp eq i32 %result2, 8 <i>; yields {i1}:stored2 = true</i> |
| %memval2 = load i32* %ptr <i>; yields {i32}:memval2 = 2</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_atomic_load_add">'<tt>llvm.atomic.load.add.*</tt>' Intrinsic</a> |
| |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <p> |
| This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.add</tt> on any |
| integer bit width. Not all targets support all bit widths however.</p> |
| <pre> |
| declare i8 @llvm.atomic.load.add.i8..p0i8( i8* <ptr>, i8 <delta> ) |
| declare i16 @llvm.atomic.load.add.i16..p0i16( i16* <ptr>, i16 <delta> ) |
| declare i32 @llvm.atomic.load.add.i32..p0i32( i32* <ptr>, i32 <delta> ) |
| declare i64 @llvm.atomic.load.add.i64..p0i64( i64* <ptr>, i64 <delta> ) |
| |
| </pre> |
| <h5>Overview:</h5> |
| <p> |
| This intrinsic adds <tt>delta</tt> to the value stored in memory at |
| <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>. |
| </p> |
| <h5>Arguments:</h5> |
| <p> |
| |
| The intrinsic takes two arguments, the first a pointer to an integer value |
| and the second an integer value. The result is also an integer value. These |
| integer types can have any bit width, but they must all have the same bit |
| width. The targets may only lower integer representations they support. |
| </p> |
| <h5>Semantics:</h5> |
| <p> |
| This intrinsic does a series of operations atomically. It first loads the |
| value stored at <tt>ptr</tt>. It then adds <tt>delta</tt>, stores the result |
| to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>. |
| </p> |
| |
| <h5>Examples:</h5> |
| <pre> |
| %ptr = malloc i32 |
| store i32 4, %ptr |
| %result1 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 4 ) |
| <i>; yields {i32}:result1 = 4</i> |
| %result2 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 2 ) |
| <i>; yields {i32}:result2 = 8</i> |
| %result3 = call i32 @llvm.atomic.load.add.i32.p0i32( i32* %ptr, i32 5 ) |
| <i>; yields {i32}:result3 = 10</i> |
| %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 15</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_atomic_load_sub">'<tt>llvm.atomic.load.sub.*</tt>' Intrinsic</a> |
| |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <p> |
| This is an overloaded intrinsic. You can use <tt>llvm.atomic.load.sub</tt> on |
| any integer bit width and for different address spaces. Not all targets |
| support all bit widths however.</p> |
| <pre> |
| declare i8 @llvm.atomic.load.sub.i8.p0i32( i8* <ptr>, i8 <delta> ) |
| declare i16 @llvm.atomic.load.sub.i16.p0i32( i16* <ptr>, i16 <delta> ) |
| declare i32 @llvm.atomic.load.sub.i32.p0i32( i32* <ptr>, i32 <delta> ) |
| declare i64 @llvm.atomic.load.sub.i64.p0i32( i64* <ptr>, i64 <delta> ) |
| |
| </pre> |
| <h5>Overview:</h5> |
| <p> |
| This intrinsic subtracts <tt>delta</tt> to the value stored in memory at |
| <tt>ptr</tt>. It yields the original value at <tt>ptr</tt>. |
| </p> |
| <h5>Arguments:</h5> |
| <p> |
| |
| The intrinsic takes two arguments, the first a pointer to an integer value |
| and the second an integer value. The result is also an integer value. These |
| integer types can have any bit width, but they must all have the same bit |
| width. The targets may only lower integer representations they support. |
| </p> |
| <h5>Semantics:</h5> |
| <p> |
| This intrinsic does a series of operations atomically. It first loads the |
| value stored at <tt>ptr</tt>. It then subtracts <tt>delta</tt>, stores the |
| result to <tt>ptr</tt>. It yields the original value stored at <tt>ptr</tt>. |
| </p> |
| |
| <h5>Examples:</h5> |
| <pre> |
| %ptr = malloc i32 |
| store i32 8, %ptr |
| %result1 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 4 ) |
| <i>; yields {i32}:result1 = 8</i> |
| %result2 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 2 ) |
| <i>; yields {i32}:result2 = 4</i> |
| %result3 = call i32 @llvm.atomic.load.sub.i32.p0i32( i32* %ptr, i32 5 ) |
| <i>; yields {i32}:result3 = 2</i> |
| %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = -3</i> |
| </pre> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_atomic_load_and">'<tt>llvm.atomic.load.and.*</tt>' Intrinsic</a><br> |
| <a name="int_atomic_load_nand">'<tt>llvm.atomic.load.nand.*</tt>' Intrinsic</a><br> |
| <a name="int_atomic_load_or">'<tt>llvm.atomic.load.or.*</tt>' Intrinsic</a><br> |
| <a name="int_atomic_load_xor">'<tt>llvm.atomic.load.xor.*</tt>' Intrinsic</a><br> |
| |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <p> |
| These are overloaded intrinsics. You can use <tt>llvm.atomic.load_and</tt>, |
| <tt>llvm.atomic.load_nand</tt>, <tt>llvm.atomic.load_or</tt>, and |
| <tt>llvm.atomic.load_xor</tt> on any integer bit width and for different |
| address spaces. Not all targets support all bit widths however.</p> |
| <pre> |
| declare i8 @llvm.atomic.load.and.i8.p0i8( i8* <ptr>, i8 <delta> ) |
| declare i16 @llvm.atomic.load.and.i16.p0i16( i16* <ptr>, i16 <delta> ) |
| declare i32 @llvm.atomic.load.and.i32.p0i32( i32* <ptr>, i32 <delta> ) |
| declare i64 @llvm.atomic.load.and.i64.p0i64( i64* <ptr>, i64 <delta> ) |
| |
| </pre> |
| |
| <pre> |
| declare i8 @llvm.atomic.load.or.i8.p0i8( i8* <ptr>, i8 <delta> ) |
| declare i16 @llvm.atomic.load.or.i16.p0i16( i16* <ptr>, i16 <delta> ) |
| declare i32 @llvm.atomic.load.or.i32.p0i32( i32* <ptr>, i32 <delta> ) |
| declare i64 @llvm.atomic.load.or.i64.p0i64( i64* <ptr>, i64 <delta> ) |
| |
| </pre> |
| |
| <pre> |
| declare i8 @llvm.atomic.load.nand.i8.p0i32( i8* <ptr>, i8 <delta> ) |
| declare i16 @llvm.atomic.load.nand.i16.p0i32( i16* <ptr>, i16 <delta> ) |
| declare i32 @llvm.atomic.load.nand.i32.p0i32( i32* <ptr>, i32 <delta> ) |
| declare i64 @llvm.atomic.load.nand.i64.p0i32( i64* <ptr>, i64 <delta> ) |
| |
| </pre> |
| |
| <pre> |
| declare i8 @llvm.atomic.load.xor.i8.p0i32( i8* <ptr>, i8 <delta> ) |
| declare i16 @llvm.atomic.load.xor.i16.p0i32( i16* <ptr>, i16 <delta> ) |
| declare i32 @llvm.atomic.load.xor.i32.p0i32( i32* <ptr>, i32 <delta> ) |
| declare i64 @llvm.atomic.load.xor.i64.p0i32( i64* <ptr>, i64 <delta> ) |
| |
| </pre> |
| <h5>Overview:</h5> |
| <p> |
| These intrinsics bitwise the operation (and, nand, or, xor) <tt>delta</tt> to |
| the value stored in memory at <tt>ptr</tt>. It yields the original value |
| at <tt>ptr</tt>. |
| </p> |
| <h5>Arguments:</h5> |
| <p> |
| |
| These intrinsics take two arguments, the first a pointer to an integer value |
| and the second an integer value. The result is also an integer value. These |
| integer types can have any bit width, but they must all have the same bit |
| width. The targets may only lower integer representations they support. |
| </p> |
| <h5>Semantics:</h5> |
| <p> |
| These intrinsics does a series of operations atomically. They first load the |
| value stored at <tt>ptr</tt>. They then do the bitwise operation |
| <tt>delta</tt>, store the result to <tt>ptr</tt>. They yield the original |
| value stored at <tt>ptr</tt>. |
| </p> |
| |
| <h5>Examples:</h5> |
| <pre> |
| %ptr = malloc i32 |
| store i32 0x0F0F, %ptr |
| %result0 = call i32 @llvm.atomic.load.nand.i32.p0i32( i32* %ptr, i32 0xFF ) |
| <i>; yields {i32}:result0 = 0x0F0F</i> |
| %result1 = call i32 @llvm.atomic.load.and.i32.p0i32( i32* %ptr, i32 0xFF ) |
| <i>; yields {i32}:result1 = 0xFFFFFFF0</i> |
| %result2 = call i32 @llvm.atomic.load.or.i32.p0i32( i32* %ptr, i32 0F ) |
| <i>; yields {i32}:result2 = 0xF0</i> |
| %result3 = call i32 @llvm.atomic.load.xor.i32.p0i32( i32* %ptr, i32 0F ) |
| <i>; yields {i32}:result3 = FF</i> |
| %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = F0</i> |
| </pre> |
| </div> |
| |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_atomic_load_max">'<tt>llvm.atomic.load.max.*</tt>' Intrinsic</a><br> |
| <a name="int_atomic_load_min">'<tt>llvm.atomic.load.min.*</tt>' Intrinsic</a><br> |
| <a name="int_atomic_load_umax">'<tt>llvm.atomic.load.umax.*</tt>' Intrinsic</a><br> |
| <a name="int_atomic_load_umin">'<tt>llvm.atomic.load.umin.*</tt>' Intrinsic</a><br> |
| |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <p> |
| These are overloaded intrinsics. You can use <tt>llvm.atomic.load_max</tt>, |
| <tt>llvm.atomic.load_min</tt>, <tt>llvm.atomic.load_umax</tt>, and |
| <tt>llvm.atomic.load_umin</tt> on any integer bit width and for different |
| address spaces. Not all targets |
| support all bit widths however.</p> |
| <pre> |
| declare i8 @llvm.atomic.load.max.i8.p0i8( i8* <ptr>, i8 <delta> ) |
| declare i16 @llvm.atomic.load.max.i16.p0i16( i16* <ptr>, i16 <delta> ) |
| declare i32 @llvm.atomic.load.max.i32.p0i32( i32* <ptr>, i32 <delta> ) |
| declare i64 @llvm.atomic.load.max.i64.p0i64( i64* <ptr>, i64 <delta> ) |
| |
| </pre> |
| |
| <pre> |
| declare i8 @llvm.atomic.load.min.i8.p0i8( i8* <ptr>, i8 <delta> ) |
| declare i16 @llvm.atomic.load.min.i16.p0i16( i16* <ptr>, i16 <delta> ) |
| declare i32 @llvm.atomic.load.min.i32..p0i32( i32* <ptr>, i32 <delta> ) |
| declare i64 @llvm.atomic.load.min.i64..p0i64( i64* <ptr>, i64 <delta> ) |
| |
| </pre> |
| |
| <pre> |
| declare i8 @llvm.atomic.load.umax.i8.p0i8( i8* <ptr>, i8 <delta> ) |
| declare i16 @llvm.atomic.load.umax.i16.p0i16( i16* <ptr>, i16 <delta> ) |
| declare i32 @llvm.atomic.load.umax.i32.p0i32( i32* <ptr>, i32 <delta> ) |
| declare i64 @llvm.atomic.load.umax.i64.p0i64( i64* <ptr>, i64 <delta> ) |
| |
| </pre> |
| |
| <pre> |
| declare i8 @llvm.atomic.load.umin.i8..p0i8( i8* <ptr>, i8 <delta> ) |
| declare i16 @llvm.atomic.load.umin.i16.p0i16( i16* <ptr>, i16 <delta> ) |
| declare i32 @llvm.atomic.load.umin.i32..p0i32( i32* <ptr>, i32 <delta> ) |
| declare i64 @llvm.atomic.load.umin.i64..p0i64( i64* <ptr>, i64 <delta> ) |
| |
| </pre> |
| <h5>Overview:</h5> |
| <p> |
| These intrinsics takes the signed or unsigned minimum or maximum of |
| <tt>delta</tt> and the value stored in memory at <tt>ptr</tt>. It yields the |
| original value at <tt>ptr</tt>. |
| </p> |
| <h5>Arguments:</h5> |
| <p> |
| |
| These intrinsics take two arguments, the first a pointer to an integer value |
| and the second an integer value. The result is also an integer value. These |
| integer types can have any bit width, but they must all have the same bit |
| width. The targets may only lower integer representations they support. |
| </p> |
| <h5>Semantics:</h5> |
| <p> |
| These intrinsics does a series of operations atomically. They first load the |
| value stored at <tt>ptr</tt>. They then do the signed or unsigned min or max |
| <tt>delta</tt> and the value, store the result to <tt>ptr</tt>. They yield |
| the original value stored at <tt>ptr</tt>. |
| </p> |
| |
| <h5>Examples:</h5> |
| <pre> |
| %ptr = malloc i32 |
| store i32 7, %ptr |
| %result0 = call i32 @llvm.atomic.load.min.i32.p0i32( i32* %ptr, i32 -2 ) |
| <i>; yields {i32}:result0 = 7</i> |
| %result1 = call i32 @llvm.atomic.load.max.i32.p0i32( i32* %ptr, i32 8 ) |
| <i>; yields {i32}:result1 = -2</i> |
| %result2 = call i32 @llvm.atomic.load.umin.i32.p0i32( i32* %ptr, i32 10 ) |
| <i>; yields {i32}:result2 = 8</i> |
| %result3 = call i32 @llvm.atomic.load.umax.i32.p0i32( i32* %ptr, i32 30 ) |
| <i>; yields {i32}:result3 = 8</i> |
| %memval1 = load i32* %ptr <i>; yields {i32}:memval1 = 30</i> |
| </pre> |
| </div> |
| |
| <!-- ======================================================================= --> |
| <div class="doc_subsection"> |
| <a name="int_general">General Intrinsics</a> |
| </div> |
| |
| <div class="doc_text"> |
| <p> This class of intrinsics is designed to be generic and has |
| no specific purpose. </p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int> ) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.var.annotation</tt>' intrinsic |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The first argument is a pointer to a value, the second is a pointer to a |
| global string, the third is a pointer to a global string which is the source |
| file name, and the last argument is the line number. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| This intrinsic allows annotation of local variables with arbitrary strings. |
| This can be useful for special purpose optimizations that want to look for these |
| annotations. These have no other defined use, they are ignored by code |
| generation and optimization. |
| </p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on |
| any integer bit width. |
| </p> |
| <pre> |
| declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int> ) |
| declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int> ) |
| declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int> ) |
| declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int> ) |
| declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int> ) |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.annotation</tt>' intrinsic. |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| The first argument is an integer value (result of some expression), |
| the second is a pointer to a global string, the third is a pointer to a global |
| string which is the source file name, and the last argument is the line number. |
| It returns the value of the first argument. |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| This intrinsic allows annotations to be put on arbitrary expressions |
| with arbitrary strings. This can be useful for special purpose optimizations |
| that want to look for these annotations. These have no other defined use, they |
| are ignored by code generation and optimization. |
| </p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_trap">'<tt>llvm.trap</tt>' Intrinsic</a> |
| </div> |
| |
| <div class="doc_text"> |
| |
| <h5>Syntax:</h5> |
| <pre> |
| declare void @llvm.trap() |
| </pre> |
| |
| <h5>Overview:</h5> |
| |
| <p> |
| The '<tt>llvm.trap</tt>' intrinsic |
| </p> |
| |
| <h5>Arguments:</h5> |
| |
| <p> |
| None |
| </p> |
| |
| <h5>Semantics:</h5> |
| |
| <p> |
| This intrinsics is lowered to the target dependent trap instruction. If the |
| target does not have a trap instruction, this intrinsic will be lowered to the |
| call of the abort() function. |
| </p> |
| </div> |
| |
| <!-- _______________________________________________________________________ --> |
| <div class="doc_subsubsection"> |
| <a name="int_stackprotector">'<tt>llvm.stackprotector</tt>' Intrinsic</a> |
| </div> |
| <div class="doc_text"> |
| <h5>Syntax:</h5> |
| <pre> |
| declare void @llvm.stackprotector( i8* <guard>, i8** <slot> ) |
| |
| </pre> |
| <h5>Overview:</h5> |
| <p> |
| The <tt>llvm.stackprotector</tt> intrinsic takes the <tt>guard</tt> and stores |
| it onto the stack at <tt>slot</tt>. The stack slot is adjusted to ensure that |
| it is placed on the stack before local variables. |
| </p> |
| <h5>Arguments:</h5> |
| <p> |
| The <tt>llvm.stackprotector</tt> intrinsic requires two pointer arguments. The |
| first argument is the value loaded from the stack guard |
| <tt>@__stack_chk_guard</tt>. The second variable is an <tt>alloca</tt> that |
| has enough space to hold the value of the guard. |
| </p> |
| <h5>Semantics:</h5> |
| <p> |
| This intrinsic causes the prologue/epilogue inserter to force the position of |
| the <tt>AllocaInst</tt> stack slot to be before local variables on the |
| stack. This is to ensure that if a local variable on the stack is overwritten, |
| it will destroy the value of the guard. When the function exits, the guard on |
| the stack is checked against the original guard. If they're different, then |
| the program aborts by calling the <tt>__stack_chk_fail()</tt> function. |
| </p> |
| </div> |
| |
| <!-- *********************************************************************** --> |
| <hr> |
| <address> |
| <a href="http://jigsaw.w3.org/css-validator/check/referer"><img |
| src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a> |
| <a href="http://validator.w3.org/check/referer"><img |
| src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a> |
| |
| <a href="mailto:sabre@nondot.org">Chris Lattner</a><br> |
| <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br> |
| Last modified: $Date$ |
| </address> |
| |
| </body> |
| </html> |