| //===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This pass statically checks for common and easily-identified constructs | 
 | // which produce undefined or likely unintended behavior in LLVM IR. | 
 | // | 
 | // It is not a guarantee of correctness, in two ways. First, it isn't | 
 | // comprehensive. There are checks which could be done statically which are | 
 | // not yet implemented. Some of these are indicated by TODO comments, but | 
 | // those aren't comprehensive either. Second, many conditions cannot be | 
 | // checked statically. This pass does no dynamic instrumentation, so it | 
 | // can't check for all possible problems. | 
 | //  | 
 | // Another limitation is that it assumes all code will be executed. A store | 
 | // through a null pointer in a basic block which is never reached is harmless, | 
 | // but this pass will warn about it anyway. This is the main reason why most | 
 | // of these checks live here instead of in the Verifier pass. | 
 | // | 
 | // Optimization passes may make conditions that this pass checks for more or | 
 | // less obvious. If an optimization pass appears to be introducing a warning, | 
 | // it may be that the optimization pass is merely exposing an existing | 
 | // condition in the code. | 
 | //  | 
 | // This code may be run before instcombine. In many cases, instcombine checks | 
 | // for the same kinds of things and turns instructions with undefined behavior | 
 | // into unreachable (or equivalent). Because of this, this pass makes some | 
 | // effort to look through bitcasts and so on. | 
 | //  | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/Passes.h" | 
 | #include "llvm/Analysis/AliasAnalysis.h" | 
 | #include "llvm/Analysis/InstructionSimplify.h" | 
 | #include "llvm/Analysis/ConstantFolding.h" | 
 | #include "llvm/Analysis/Dominators.h" | 
 | #include "llvm/Analysis/Lint.h" | 
 | #include "llvm/Analysis/Loads.h" | 
 | #include "llvm/Analysis/ValueTracking.h" | 
 | #include "llvm/Assembly/Writer.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Pass.h" | 
 | #include "llvm/PassManager.h" | 
 | #include "llvm/IntrinsicInst.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/Support/CallSite.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/InstVisitor.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | using namespace llvm; | 
 |  | 
 | namespace { | 
 |   namespace MemRef { | 
 |     static unsigned Read     = 1; | 
 |     static unsigned Write    = 2; | 
 |     static unsigned Callee   = 4; | 
 |     static unsigned Branchee = 8; | 
 |   } | 
 |  | 
 |   class Lint : public FunctionPass, public InstVisitor<Lint> { | 
 |     friend class InstVisitor<Lint>; | 
 |  | 
 |     void visitFunction(Function &F); | 
 |  | 
 |     void visitCallSite(CallSite CS); | 
 |     void visitMemoryReference(Instruction &I, Value *Ptr, | 
 |                               unsigned Size, unsigned Align, | 
 |                               const Type *Ty, unsigned Flags); | 
 |  | 
 |     void visitCallInst(CallInst &I); | 
 |     void visitInvokeInst(InvokeInst &I); | 
 |     void visitReturnInst(ReturnInst &I); | 
 |     void visitLoadInst(LoadInst &I); | 
 |     void visitStoreInst(StoreInst &I); | 
 |     void visitXor(BinaryOperator &I); | 
 |     void visitSub(BinaryOperator &I); | 
 |     void visitLShr(BinaryOperator &I); | 
 |     void visitAShr(BinaryOperator &I); | 
 |     void visitShl(BinaryOperator &I); | 
 |     void visitSDiv(BinaryOperator &I); | 
 |     void visitUDiv(BinaryOperator &I); | 
 |     void visitSRem(BinaryOperator &I); | 
 |     void visitURem(BinaryOperator &I); | 
 |     void visitAllocaInst(AllocaInst &I); | 
 |     void visitVAArgInst(VAArgInst &I); | 
 |     void visitIndirectBrInst(IndirectBrInst &I); | 
 |     void visitExtractElementInst(ExtractElementInst &I); | 
 |     void visitInsertElementInst(InsertElementInst &I); | 
 |     void visitUnreachableInst(UnreachableInst &I); | 
 |  | 
 |     Value *findValue(Value *V, bool OffsetOk) const; | 
 |     Value *findValueImpl(Value *V, bool OffsetOk, | 
 |                          SmallPtrSet<Value *, 4> &Visited) const; | 
 |  | 
 |   public: | 
 |     Module *Mod; | 
 |     AliasAnalysis *AA; | 
 |     DominatorTree *DT; | 
 |     TargetData *TD; | 
 |  | 
 |     std::string Messages; | 
 |     raw_string_ostream MessagesStr; | 
 |  | 
 |     static char ID; // Pass identification, replacement for typeid | 
 |     Lint() : FunctionPass(&ID), MessagesStr(Messages) {} | 
 |  | 
 |     virtual bool runOnFunction(Function &F); | 
 |  | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.setPreservesAll(); | 
 |       AU.addRequired<AliasAnalysis>(); | 
 |       AU.addRequired<DominatorTree>(); | 
 |     } | 
 |     virtual void print(raw_ostream &O, const Module *M) const {} | 
 |  | 
 |     void WriteValue(const Value *V) { | 
 |       if (!V) return; | 
 |       if (isa<Instruction>(V)) { | 
 |         MessagesStr << *V << '\n'; | 
 |       } else { | 
 |         WriteAsOperand(MessagesStr, V, true, Mod); | 
 |         MessagesStr << '\n'; | 
 |       } | 
 |     } | 
 |  | 
 |     void WriteType(const Type *T) { | 
 |       if (!T) return; | 
 |       MessagesStr << ' '; | 
 |       WriteTypeSymbolic(MessagesStr, T, Mod); | 
 |     } | 
 |  | 
 |     // CheckFailed - A check failed, so print out the condition and the message | 
 |     // that failed.  This provides a nice place to put a breakpoint if you want | 
 |     // to see why something is not correct. | 
 |     void CheckFailed(const Twine &Message, | 
 |                      const Value *V1 = 0, const Value *V2 = 0, | 
 |                      const Value *V3 = 0, const Value *V4 = 0) { | 
 |       MessagesStr << Message.str() << "\n"; | 
 |       WriteValue(V1); | 
 |       WriteValue(V2); | 
 |       WriteValue(V3); | 
 |       WriteValue(V4); | 
 |     } | 
 |  | 
 |     void CheckFailed(const Twine &Message, const Value *V1, | 
 |                      const Type *T2, const Value *V3 = 0) { | 
 |       MessagesStr << Message.str() << "\n"; | 
 |       WriteValue(V1); | 
 |       WriteType(T2); | 
 |       WriteValue(V3); | 
 |     } | 
 |  | 
 |     void CheckFailed(const Twine &Message, const Type *T1, | 
 |                      const Type *T2 = 0, const Type *T3 = 0) { | 
 |       MessagesStr << Message.str() << "\n"; | 
 |       WriteType(T1); | 
 |       WriteType(T2); | 
 |       WriteType(T3); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | char Lint::ID = 0; | 
 | INITIALIZE_PASS(Lint, "lint", "Statically lint-checks LLVM IR", false, true); | 
 |  | 
 | // Assert - We know that cond should be true, if not print an error message. | 
 | #define Assert(C, M) \ | 
 |     do { if (!(C)) { CheckFailed(M); return; } } while (0) | 
 | #define Assert1(C, M, V1) \ | 
 |     do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) | 
 | #define Assert2(C, M, V1, V2) \ | 
 |     do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) | 
 | #define Assert3(C, M, V1, V2, V3) \ | 
 |     do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) | 
 | #define Assert4(C, M, V1, V2, V3, V4) \ | 
 |     do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) | 
 |  | 
 | // Lint::run - This is the main Analysis entry point for a | 
 | // function. | 
 | // | 
 | bool Lint::runOnFunction(Function &F) { | 
 |   Mod = F.getParent(); | 
 |   AA = &getAnalysis<AliasAnalysis>(); | 
 |   DT = &getAnalysis<DominatorTree>(); | 
 |   TD = getAnalysisIfAvailable<TargetData>(); | 
 |   visit(F); | 
 |   dbgs() << MessagesStr.str(); | 
 |   Messages.clear(); | 
 |   return false; | 
 | } | 
 |  | 
 | void Lint::visitFunction(Function &F) { | 
 |   // This isn't undefined behavior, it's just a little unusual, and it's a | 
 |   // fairly common mistake to neglect to name a function. | 
 |   Assert1(F.hasName() || F.hasLocalLinkage(), | 
 |           "Unusual: Unnamed function with non-local linkage", &F); | 
 |  | 
 |   // TODO: Check for irreducible control flow. | 
 | } | 
 |  | 
 | void Lint::visitCallSite(CallSite CS) { | 
 |   Instruction &I = *CS.getInstruction(); | 
 |   Value *Callee = CS.getCalledValue(); | 
 |  | 
 |   visitMemoryReference(I, Callee, ~0u, 0, 0, MemRef::Callee); | 
 |  | 
 |   if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) { | 
 |     Assert1(CS.getCallingConv() == F->getCallingConv(), | 
 |             "Undefined behavior: Caller and callee calling convention differ", | 
 |             &I); | 
 |  | 
 |     const FunctionType *FT = F->getFunctionType(); | 
 |     unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); | 
 |  | 
 |     Assert1(FT->isVarArg() ? | 
 |               FT->getNumParams() <= NumActualArgs : | 
 |               FT->getNumParams() == NumActualArgs, | 
 |             "Undefined behavior: Call argument count mismatches callee " | 
 |             "argument count", &I); | 
 |  | 
 |     Assert1(FT->getReturnType() == I.getType(), | 
 |             "Undefined behavior: Call return type mismatches " | 
 |             "callee return type", &I); | 
 |  | 
 |     // Check argument types (in case the callee was casted) and attributes. | 
 |     // TODO: Verify that caller and callee attributes are compatible. | 
 |     Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end(); | 
 |     CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); | 
 |     for (; AI != AE; ++AI) { | 
 |       Value *Actual = *AI; | 
 |       if (PI != PE) { | 
 |         Argument *Formal = PI++; | 
 |         Assert1(Formal->getType() == Actual->getType(), | 
 |                 "Undefined behavior: Call argument type mismatches " | 
 |                 "callee parameter type", &I); | 
 |  | 
 |         // Check that noalias arguments don't alias other arguments. The | 
 |         // AliasAnalysis API isn't expressive enough for what we really want | 
 |         // to do. Known partial overlap is not distinguished from the case | 
 |         // where nothing is known. | 
 |         if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) | 
 |           for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI) { | 
 |             Assert1(AI == BI || AA->alias(*AI, *BI) != AliasAnalysis::MustAlias, | 
 |                     "Unusual: noalias argument aliases another argument", &I); | 
 |           } | 
 |  | 
 |         // Check that an sret argument points to valid memory. | 
 |         if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) { | 
 |           const Type *Ty = | 
 |             cast<PointerType>(Formal->getType())->getElementType(); | 
 |           visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty), | 
 |                                TD ? TD->getABITypeAlignment(Ty) : 0, | 
 |                                Ty, MemRef::Read | MemRef::Write); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall()) | 
 |     for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); | 
 |          AI != AE; ++AI) { | 
 |       Value *Obj = findValue(*AI, /*OffsetOk=*/true); | 
 |       Assert1(!isa<AllocaInst>(Obj), | 
 |               "Undefined behavior: Call with \"tail\" keyword references " | 
 |               "alloca", &I); | 
 |     } | 
 |  | 
 |  | 
 |   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) | 
 |     switch (II->getIntrinsicID()) { | 
 |     default: break; | 
 |  | 
 |     // TODO: Check more intrinsics | 
 |  | 
 |     case Intrinsic::memcpy: { | 
 |       MemCpyInst *MCI = cast<MemCpyInst>(&I); | 
 |       // TODO: If the size is known, use it. | 
 |       visitMemoryReference(I, MCI->getDest(), ~0u, MCI->getAlignment(), 0, | 
 |                            MemRef::Write); | 
 |       visitMemoryReference(I, MCI->getSource(), ~0u, MCI->getAlignment(), 0, | 
 |                            MemRef::Read); | 
 |  | 
 |       // Check that the memcpy arguments don't overlap. The AliasAnalysis API | 
 |       // isn't expressive enough for what we really want to do. Known partial | 
 |       // overlap is not distinguished from the case where nothing is known. | 
 |       unsigned Size = 0; | 
 |       if (const ConstantInt *Len = | 
 |             dyn_cast<ConstantInt>(findValue(MCI->getLength(), | 
 |                                             /*OffsetOk=*/false))) | 
 |         if (Len->getValue().isIntN(32)) | 
 |           Size = Len->getValue().getZExtValue(); | 
 |       Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != | 
 |               AliasAnalysis::MustAlias, | 
 |               "Undefined behavior: memcpy source and destination overlap", &I); | 
 |       break; | 
 |     } | 
 |     case Intrinsic::memmove: { | 
 |       MemMoveInst *MMI = cast<MemMoveInst>(&I); | 
 |       // TODO: If the size is known, use it. | 
 |       visitMemoryReference(I, MMI->getDest(), ~0u, MMI->getAlignment(), 0, | 
 |                            MemRef::Write); | 
 |       visitMemoryReference(I, MMI->getSource(), ~0u, MMI->getAlignment(), 0, | 
 |                            MemRef::Read); | 
 |       break; | 
 |     } | 
 |     case Intrinsic::memset: { | 
 |       MemSetInst *MSI = cast<MemSetInst>(&I); | 
 |       // TODO: If the size is known, use it. | 
 |       visitMemoryReference(I, MSI->getDest(), ~0u, MSI->getAlignment(), 0, | 
 |                            MemRef::Write); | 
 |       break; | 
 |     } | 
 |  | 
 |     case Intrinsic::vastart: | 
 |       Assert1(I.getParent()->getParent()->isVarArg(), | 
 |               "Undefined behavior: va_start called in a non-varargs function", | 
 |               &I); | 
 |  | 
 |       visitMemoryReference(I, CS.getArgument(0), ~0u, 0, 0, | 
 |                            MemRef::Read | MemRef::Write); | 
 |       break; | 
 |     case Intrinsic::vacopy: | 
 |       visitMemoryReference(I, CS.getArgument(0), ~0u, 0, 0, MemRef::Write); | 
 |       visitMemoryReference(I, CS.getArgument(1), ~0u, 0, 0, MemRef::Read); | 
 |       break; | 
 |     case Intrinsic::vaend: | 
 |       visitMemoryReference(I, CS.getArgument(0), ~0u, 0, 0, | 
 |                            MemRef::Read | MemRef::Write); | 
 |       break; | 
 |  | 
 |     case Intrinsic::stackrestore: | 
 |       // Stackrestore doesn't read or write memory, but it sets the | 
 |       // stack pointer, which the compiler may read from or write to | 
 |       // at any time, so check it for both readability and writeability. | 
 |       visitMemoryReference(I, CS.getArgument(0), ~0u, 0, 0, | 
 |                            MemRef::Read | MemRef::Write); | 
 |       break; | 
 |     } | 
 | } | 
 |  | 
 | void Lint::visitCallInst(CallInst &I) { | 
 |   return visitCallSite(&I); | 
 | } | 
 |  | 
 | void Lint::visitInvokeInst(InvokeInst &I) { | 
 |   return visitCallSite(&I); | 
 | } | 
 |  | 
 | void Lint::visitReturnInst(ReturnInst &I) { | 
 |   Function *F = I.getParent()->getParent(); | 
 |   Assert1(!F->doesNotReturn(), | 
 |           "Unusual: Return statement in function with noreturn attribute", | 
 |           &I); | 
 |  | 
 |   if (Value *V = I.getReturnValue()) { | 
 |     Value *Obj = findValue(V, /*OffsetOk=*/true); | 
 |     Assert1(!isa<AllocaInst>(Obj), | 
 |             "Unusual: Returning alloca value", &I); | 
 |   } | 
 | } | 
 |  | 
 | // TODO: Check that the reference is in bounds. | 
 | // TODO: Check readnone/readonly function attributes. | 
 | void Lint::visitMemoryReference(Instruction &I, | 
 |                                 Value *Ptr, unsigned Size, unsigned Align, | 
 |                                 const Type *Ty, unsigned Flags) { | 
 |   // If no memory is being referenced, it doesn't matter if the pointer | 
 |   // is valid. | 
 |   if (Size == 0) | 
 |     return; | 
 |  | 
 |   Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true); | 
 |   Assert1(!isa<ConstantPointerNull>(UnderlyingObject), | 
 |           "Undefined behavior: Null pointer dereference", &I); | 
 |   Assert1(!isa<UndefValue>(UnderlyingObject), | 
 |           "Undefined behavior: Undef pointer dereference", &I); | 
 |   Assert1(!isa<ConstantInt>(UnderlyingObject) || | 
 |           !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(), | 
 |           "Unusual: All-ones pointer dereference", &I); | 
 |   Assert1(!isa<ConstantInt>(UnderlyingObject) || | 
 |           !cast<ConstantInt>(UnderlyingObject)->isOne(), | 
 |           "Unusual: Address one pointer dereference", &I); | 
 |  | 
 |   if (Flags & MemRef::Write) { | 
 |     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject)) | 
 |       Assert1(!GV->isConstant(), | 
 |               "Undefined behavior: Write to read-only memory", &I); | 
 |     Assert1(!isa<Function>(UnderlyingObject) && | 
 |             !isa<BlockAddress>(UnderlyingObject), | 
 |             "Undefined behavior: Write to text section", &I); | 
 |   } | 
 |   if (Flags & MemRef::Read) { | 
 |     Assert1(!isa<Function>(UnderlyingObject), | 
 |             "Unusual: Load from function body", &I); | 
 |     Assert1(!isa<BlockAddress>(UnderlyingObject), | 
 |             "Undefined behavior: Load from block address", &I); | 
 |   } | 
 |   if (Flags & MemRef::Callee) { | 
 |     Assert1(!isa<BlockAddress>(UnderlyingObject), | 
 |             "Undefined behavior: Call to block address", &I); | 
 |   } | 
 |   if (Flags & MemRef::Branchee) { | 
 |     Assert1(!isa<Constant>(UnderlyingObject) || | 
 |             isa<BlockAddress>(UnderlyingObject), | 
 |             "Undefined behavior: Branch to non-blockaddress", &I); | 
 |   } | 
 |  | 
 |   if (TD) { | 
 |     if (Align == 0 && Ty) Align = TD->getABITypeAlignment(Ty); | 
 |  | 
 |     if (Align != 0) { | 
 |       unsigned BitWidth = TD->getTypeSizeInBits(Ptr->getType()); | 
 |       APInt Mask = APInt::getAllOnesValue(BitWidth), | 
 |                    KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); | 
 |       ComputeMaskedBits(Ptr, Mask, KnownZero, KnownOne, TD); | 
 |       Assert1(!(KnownOne & APInt::getLowBitsSet(BitWidth, Log2_32(Align))), | 
 |               "Undefined behavior: Memory reference address is misaligned", &I); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void Lint::visitLoadInst(LoadInst &I) { | 
 |   visitMemoryReference(I, I.getPointerOperand(), | 
 |                        AA->getTypeStoreSize(I.getType()), I.getAlignment(), | 
 |                        I.getType(), MemRef::Read); | 
 | } | 
 |  | 
 | void Lint::visitStoreInst(StoreInst &I) { | 
 |   visitMemoryReference(I, I.getPointerOperand(), | 
 |                        AA->getTypeStoreSize(I.getOperand(0)->getType()), | 
 |                        I.getAlignment(), | 
 |                        I.getOperand(0)->getType(), MemRef::Write); | 
 | } | 
 |  | 
 | void Lint::visitXor(BinaryOperator &I) { | 
 |   Assert1(!isa<UndefValue>(I.getOperand(0)) || | 
 |           !isa<UndefValue>(I.getOperand(1)), | 
 |           "Undefined result: xor(undef, undef)", &I); | 
 | } | 
 |  | 
 | void Lint::visitSub(BinaryOperator &I) { | 
 |   Assert1(!isa<UndefValue>(I.getOperand(0)) || | 
 |           !isa<UndefValue>(I.getOperand(1)), | 
 |           "Undefined result: sub(undef, undef)", &I); | 
 | } | 
 |  | 
 | void Lint::visitLShr(BinaryOperator &I) { | 
 |   if (ConstantInt *CI = | 
 |         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) | 
 |     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), | 
 |             "Undefined result: Shift count out of range", &I); | 
 | } | 
 |  | 
 | void Lint::visitAShr(BinaryOperator &I) { | 
 |   if (ConstantInt *CI = | 
 |         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) | 
 |     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), | 
 |             "Undefined result: Shift count out of range", &I); | 
 | } | 
 |  | 
 | void Lint::visitShl(BinaryOperator &I) { | 
 |   if (ConstantInt *CI = | 
 |         dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) | 
 |     Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), | 
 |             "Undefined result: Shift count out of range", &I); | 
 | } | 
 |  | 
 | static bool isZero(Value *V, TargetData *TD) { | 
 |   // Assume undef could be zero. | 
 |   if (isa<UndefValue>(V)) return true; | 
 |  | 
 |   unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); | 
 |   APInt Mask = APInt::getAllOnesValue(BitWidth), | 
 |                KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); | 
 |   ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD); | 
 |   return KnownZero.isAllOnesValue(); | 
 | } | 
 |  | 
 | void Lint::visitSDiv(BinaryOperator &I) { | 
 |   Assert1(!isZero(I.getOperand(1), TD), | 
 |           "Undefined behavior: Division by zero", &I); | 
 | } | 
 |  | 
 | void Lint::visitUDiv(BinaryOperator &I) { | 
 |   Assert1(!isZero(I.getOperand(1), TD), | 
 |           "Undefined behavior: Division by zero", &I); | 
 | } | 
 |  | 
 | void Lint::visitSRem(BinaryOperator &I) { | 
 |   Assert1(!isZero(I.getOperand(1), TD), | 
 |           "Undefined behavior: Division by zero", &I); | 
 | } | 
 |  | 
 | void Lint::visitURem(BinaryOperator &I) { | 
 |   Assert1(!isZero(I.getOperand(1), TD), | 
 |           "Undefined behavior: Division by zero", &I); | 
 | } | 
 |  | 
 | void Lint::visitAllocaInst(AllocaInst &I) { | 
 |   if (isa<ConstantInt>(I.getArraySize())) | 
 |     // This isn't undefined behavior, it's just an obvious pessimization. | 
 |     Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), | 
 |             "Pessimization: Static alloca outside of entry block", &I); | 
 |  | 
 |   // TODO: Check for an unusual size (MSB set?) | 
 | } | 
 |  | 
 | void Lint::visitVAArgInst(VAArgInst &I) { | 
 |   visitMemoryReference(I, I.getOperand(0), ~0u, 0, 0, | 
 |                        MemRef::Read | MemRef::Write); | 
 | } | 
 |  | 
 | void Lint::visitIndirectBrInst(IndirectBrInst &I) { | 
 |   visitMemoryReference(I, I.getAddress(), ~0u, 0, 0, MemRef::Branchee); | 
 |  | 
 |   Assert1(I.getNumDestinations() != 0, | 
 |           "Undefined behavior: indirectbr with no destinations", &I); | 
 | } | 
 |  | 
 | void Lint::visitExtractElementInst(ExtractElementInst &I) { | 
 |   if (ConstantInt *CI = | 
 |         dyn_cast<ConstantInt>(findValue(I.getIndexOperand(), | 
 |                                         /*OffsetOk=*/false))) | 
 |     Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()), | 
 |             "Undefined result: extractelement index out of range", &I); | 
 | } | 
 |  | 
 | void Lint::visitInsertElementInst(InsertElementInst &I) { | 
 |   if (ConstantInt *CI = | 
 |         dyn_cast<ConstantInt>(findValue(I.getOperand(2), | 
 |                                         /*OffsetOk=*/false))) | 
 |     Assert1(CI->getValue().ult(I.getType()->getNumElements()), | 
 |             "Undefined result: insertelement index out of range", &I); | 
 | } | 
 |  | 
 | void Lint::visitUnreachableInst(UnreachableInst &I) { | 
 |   // This isn't undefined behavior, it's merely suspicious. | 
 |   Assert1(&I == I.getParent()->begin() || | 
 |           prior(BasicBlock::iterator(&I))->mayHaveSideEffects(), | 
 |           "Unusual: unreachable immediately preceded by instruction without " | 
 |           "side effects", &I); | 
 | } | 
 |  | 
 | /// findValue - Look through bitcasts and simple memory reference patterns | 
 | /// to identify an equivalent, but more informative, value.  If OffsetOk | 
 | /// is true, look through getelementptrs with non-zero offsets too. | 
 | /// | 
 | /// Most analysis passes don't require this logic, because instcombine | 
 | /// will simplify most of these kinds of things away. But it's a goal of | 
 | /// this Lint pass to be useful even on non-optimized IR. | 
 | Value *Lint::findValue(Value *V, bool OffsetOk) const { | 
 |   SmallPtrSet<Value *, 4> Visited; | 
 |   return findValueImpl(V, OffsetOk, Visited); | 
 | } | 
 |  | 
 | /// findValueImpl - Implementation helper for findValue. | 
 | Value *Lint::findValueImpl(Value *V, bool OffsetOk, | 
 |                            SmallPtrSet<Value *, 4> &Visited) const { | 
 |   // Detect self-referential values. | 
 |   if (!Visited.insert(V)) | 
 |     return UndefValue::get(V->getType()); | 
 |  | 
 |   // TODO: Look through sext or zext cast, when the result is known to | 
 |   // be interpreted as signed or unsigned, respectively. | 
 |   // TODO: Look through eliminable cast pairs. | 
 |   // TODO: Look through calls with unique return values. | 
 |   // TODO: Look through vector insert/extract/shuffle. | 
 |   V = OffsetOk ? V->getUnderlyingObject() : V->stripPointerCasts(); | 
 |   if (LoadInst *L = dyn_cast<LoadInst>(V)) { | 
 |     BasicBlock::iterator BBI = L; | 
 |     BasicBlock *BB = L->getParent(); | 
 |     SmallPtrSet<BasicBlock *, 4> VisitedBlocks; | 
 |     for (;;) { | 
 |       if (!VisitedBlocks.insert(BB)) break; | 
 |       if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(), | 
 |                                               BB, BBI, 6, AA)) | 
 |         return findValueImpl(U, OffsetOk, Visited); | 
 |       if (BBI != BB->begin()) break; | 
 |       BB = BB->getUniquePredecessor(); | 
 |       if (!BB) break; | 
 |       BBI = BB->end(); | 
 |     } | 
 |   } else if (PHINode *PN = dyn_cast<PHINode>(V)) { | 
 |     if (Value *W = PN->hasConstantValue(DT)) | 
 |       return findValueImpl(W, OffsetOk, Visited); | 
 |   } else if (CastInst *CI = dyn_cast<CastInst>(V)) { | 
 |     if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) : | 
 |                             Type::getInt64Ty(V->getContext()))) | 
 |       return findValueImpl(CI->getOperand(0), OffsetOk, Visited); | 
 |   } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) { | 
 |     if (Value *W = FindInsertedValue(Ex->getAggregateOperand(), | 
 |                                      Ex->idx_begin(), | 
 |                                      Ex->idx_end())) | 
 |       if (W != V) | 
 |         return findValueImpl(W, OffsetOk, Visited); | 
 |   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
 |     // Same as above, but for ConstantExpr instead of Instruction. | 
 |     if (Instruction::isCast(CE->getOpcode())) { | 
 |       if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()), | 
 |                                CE->getOperand(0)->getType(), | 
 |                                CE->getType(), | 
 |                                TD ? TD->getIntPtrType(V->getContext()) : | 
 |                                     Type::getInt64Ty(V->getContext()))) | 
 |         return findValueImpl(CE->getOperand(0), OffsetOk, Visited); | 
 |     } else if (CE->getOpcode() == Instruction::ExtractValue) { | 
 |       const SmallVector<unsigned, 4> &Indices = CE->getIndices(); | 
 |       if (Value *W = FindInsertedValue(CE->getOperand(0), | 
 |                                        Indices.begin(), | 
 |                                        Indices.end())) | 
 |         if (W != V) | 
 |           return findValueImpl(W, OffsetOk, Visited); | 
 |     } | 
 |   } | 
 |  | 
 |   // As a last resort, try SimplifyInstruction or constant folding. | 
 |   if (Instruction *Inst = dyn_cast<Instruction>(V)) { | 
 |     if (Value *W = SimplifyInstruction(Inst, TD)) | 
 |       if (W != Inst) | 
 |         return findValueImpl(W, OffsetOk, Visited); | 
 |   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
 |     if (Value *W = ConstantFoldConstantExpression(CE, TD)) | 
 |       if (W != V) | 
 |         return findValueImpl(W, OffsetOk, Visited); | 
 |   } | 
 |  | 
 |   return V; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Implement the public interfaces to this file... | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | FunctionPass *llvm::createLintPass() { | 
 |   return new Lint(); | 
 | } | 
 |  | 
 | /// lintFunction - Check a function for errors, printing messages on stderr. | 
 | /// | 
 | void llvm::lintFunction(const Function &f) { | 
 |   Function &F = const_cast<Function&>(f); | 
 |   assert(!F.isDeclaration() && "Cannot lint external functions"); | 
 |  | 
 |   FunctionPassManager FPM(F.getParent()); | 
 |   Lint *V = new Lint(); | 
 |   FPM.add(V); | 
 |   FPM.run(F); | 
 | } | 
 |  | 
 | /// lintModule - Check a module for errors, printing messages on stderr. | 
 | /// | 
 | void llvm::lintModule(const Module &M) { | 
 |   PassManager PM; | 
 |   Lint *V = new Lint(); | 
 |   PM.add(V); | 
 |   PM.run(const_cast<Module&>(M)); | 
 | } |