| //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements the PHITransAddr class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Analysis/PHITransAddr.h" | 
 | #include "llvm/Analysis/Dominators.h" | 
 | #include "llvm/Analysis/InstructionSimplify.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | using namespace llvm; | 
 |  | 
 | static bool CanPHITrans(Instruction *Inst) { | 
 |   if (isa<PHINode>(Inst) || | 
 |       isa<BitCastInst>(Inst) || | 
 |       isa<GetElementPtrInst>(Inst)) | 
 |     return true; | 
 |    | 
 |   if (Inst->getOpcode() == Instruction::Add && | 
 |       isa<ConstantInt>(Inst->getOperand(1))) | 
 |     return true; | 
 |    | 
 |   //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer; | 
 |   //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst)) | 
 |   //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0); | 
 |   return false; | 
 | } | 
 |  | 
 | void PHITransAddr::dump() const { | 
 |   if (Addr == 0) { | 
 |     dbgs() << "PHITransAddr: null\n"; | 
 |     return; | 
 |   } | 
 |   dbgs() << "PHITransAddr: " << *Addr << "\n"; | 
 |   for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) | 
 |     dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n"; | 
 | } | 
 |  | 
 |  | 
 | static bool VerifySubExpr(Value *Expr, | 
 |                           SmallVectorImpl<Instruction*> &InstInputs) { | 
 |   // If this is a non-instruction value, there is nothing to do. | 
 |   Instruction *I = dyn_cast<Instruction>(Expr); | 
 |   if (I == 0) return true; | 
 |    | 
 |   // If it's an instruction, it is either in Tmp or its operands recursively | 
 |   // are. | 
 |   SmallVectorImpl<Instruction*>::iterator Entry = | 
 |     std::find(InstInputs.begin(), InstInputs.end(), I); | 
 |   if (Entry != InstInputs.end()) { | 
 |     InstInputs.erase(Entry); | 
 |     return true; | 
 |   } | 
 |    | 
 |   // If it isn't in the InstInputs list it is a subexpr incorporated into the | 
 |   // address.  Sanity check that it is phi translatable. | 
 |   if (!CanPHITrans(I)) { | 
 |     errs() << "Non phi translatable instruction found in PHITransAddr, either " | 
 |               "something is missing from InstInputs or CanPHITrans is wrong:\n"; | 
 |     errs() << *I << '\n'; | 
 |     return false; | 
 |   } | 
 |    | 
 |   // Validate the operands of the instruction. | 
 |   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) | 
 |     if (!VerifySubExpr(I->getOperand(i), InstInputs)) | 
 |       return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// Verify - Check internal consistency of this data structure.  If the | 
 | /// structure is valid, it returns true.  If invalid, it prints errors and | 
 | /// returns false. | 
 | bool PHITransAddr::Verify() const { | 
 |   if (Addr == 0) return true; | 
 |    | 
 |   SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());   | 
 |    | 
 |   if (!VerifySubExpr(Addr, Tmp)) | 
 |     return false; | 
 |    | 
 |   if (!Tmp.empty()) { | 
 |     errs() << "PHITransAddr inconsistent, contains extra instructions:\n"; | 
 |     for (unsigned i = 0, e = InstInputs.size(); i != e; ++i) | 
 |       errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n"; | 
 |     return false; | 
 |   } | 
 |    | 
 |   // a-ok. | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true | 
 | /// if we have some hope of doing it.  This should be used as a filter to | 
 | /// avoid calling PHITranslateValue in hopeless situations. | 
 | bool PHITransAddr::IsPotentiallyPHITranslatable() const { | 
 |   // If the input value is not an instruction, or if it is not defined in CurBB, | 
 |   // then we don't need to phi translate it. | 
 |   Instruction *Inst = dyn_cast<Instruction>(Addr); | 
 |   return Inst == 0 || CanPHITrans(Inst); | 
 | } | 
 |  | 
 |  | 
 | static void RemoveInstInputs(Value *V,  | 
 |                              SmallVectorImpl<Instruction*> &InstInputs) { | 
 |   Instruction *I = dyn_cast<Instruction>(V); | 
 |   if (I == 0) return; | 
 |    | 
 |   // If the instruction is in the InstInputs list, remove it. | 
 |   SmallVectorImpl<Instruction*>::iterator Entry = | 
 |     std::find(InstInputs.begin(), InstInputs.end(), I); | 
 |   if (Entry != InstInputs.end()) { | 
 |     InstInputs.erase(Entry); | 
 |     return; | 
 |   } | 
 |    | 
 |   assert(!isa<PHINode>(I) && "Error, removing something that isn't an input"); | 
 |    | 
 |   // Otherwise, it must have instruction inputs itself.  Zap them recursively. | 
 |   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { | 
 |     if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i))) | 
 |       RemoveInstInputs(Op, InstInputs); | 
 |   } | 
 | } | 
 |  | 
 | Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB, | 
 |                                          BasicBlock *PredBB, | 
 |                                          const DominatorTree *DT) { | 
 |   // If this is a non-instruction value, it can't require PHI translation. | 
 |   Instruction *Inst = dyn_cast<Instruction>(V); | 
 |   if (Inst == 0) return V; | 
 |    | 
 |   // Determine whether 'Inst' is an input to our PHI translatable expression. | 
 |   bool isInput = std::count(InstInputs.begin(), InstInputs.end(), Inst); | 
 |  | 
 |   // Handle inputs instructions if needed. | 
 |   if (isInput) { | 
 |     if (Inst->getParent() != CurBB) { | 
 |       // If it is an input defined in a different block, then it remains an | 
 |       // input. | 
 |       return Inst; | 
 |     } | 
 |  | 
 |     // If 'Inst' is defined in this block and is an input that needs to be phi | 
 |     // translated, we need to incorporate the value into the expression or fail. | 
 |  | 
 |     // In either case, the instruction itself isn't an input any longer. | 
 |     InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst)); | 
 |      | 
 |     // If this is a PHI, go ahead and translate it. | 
 |     if (PHINode *PN = dyn_cast<PHINode>(Inst)) | 
 |       return AddAsInput(PN->getIncomingValueForBlock(PredBB)); | 
 |      | 
 |     // If this is a non-phi value, and it is analyzable, we can incorporate it | 
 |     // into the expression by making all instruction operands be inputs. | 
 |     if (!CanPHITrans(Inst)) | 
 |       return 0; | 
 |     | 
 |     // All instruction operands are now inputs (and of course, they may also be | 
 |     // defined in this block, so they may need to be phi translated themselves. | 
 |     for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) | 
 |       if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i))) | 
 |         InstInputs.push_back(Op); | 
 |   } | 
 |  | 
 |   // Ok, it must be an intermediate result (either because it started that way | 
 |   // or because we just incorporated it into the expression).  See if its | 
 |   // operands need to be phi translated, and if so, reconstruct it. | 
 |    | 
 |   if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) { | 
 |     Value *PHIIn = PHITranslateSubExpr(BC->getOperand(0), CurBB, PredBB, DT); | 
 |     if (PHIIn == 0) return 0; | 
 |     if (PHIIn == BC->getOperand(0)) | 
 |       return BC; | 
 |      | 
 |     // Find an available version of this cast. | 
 |      | 
 |     // Constants are trivial to find. | 
 |     if (Constant *C = dyn_cast<Constant>(PHIIn)) | 
 |       return AddAsInput(ConstantExpr::getBitCast(C, BC->getType())); | 
 |      | 
 |     // Otherwise we have to see if a bitcasted version of the incoming pointer | 
 |     // is available.  If so, we can use it, otherwise we have to fail. | 
 |     for (Value::use_iterator UI = PHIIn->use_begin(), E = PHIIn->use_end(); | 
 |          UI != E; ++UI) { | 
 |       if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) | 
 |         if (BCI->getType() == BC->getType() && | 
 |             (!DT || DT->dominates(BCI->getParent(), PredBB))) | 
 |           return BCI; | 
 |     } | 
 |     return 0; | 
 |   } | 
 |    | 
 |   // Handle getelementptr with at least one PHI translatable operand. | 
 |   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { | 
 |     SmallVector<Value*, 8> GEPOps; | 
 |     bool AnyChanged = false; | 
 |     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { | 
 |       Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT); | 
 |       if (GEPOp == 0) return 0; | 
 |        | 
 |       AnyChanged |= GEPOp != GEP->getOperand(i); | 
 |       GEPOps.push_back(GEPOp); | 
 |     } | 
 |      | 
 |     if (!AnyChanged) | 
 |       return GEP; | 
 |      | 
 |     // Simplify the GEP to handle 'gep x, 0' -> x etc. | 
 |     if (Value *V = SimplifyGEPInst(&GEPOps[0], GEPOps.size(), TD)) { | 
 |       for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) | 
 |         RemoveInstInputs(GEPOps[i], InstInputs); | 
 |        | 
 |       return AddAsInput(V); | 
 |     } | 
 |      | 
 |     // Scan to see if we have this GEP available. | 
 |     Value *APHIOp = GEPOps[0]; | 
 |     for (Value::use_iterator UI = APHIOp->use_begin(), E = APHIOp->use_end(); | 
 |          UI != E; ++UI) { | 
 |       if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(*UI)) | 
 |         if (GEPI->getType() == GEP->getType() && | 
 |             GEPI->getNumOperands() == GEPOps.size() && | 
 |             GEPI->getParent()->getParent() == CurBB->getParent() && | 
 |             (!DT || DT->dominates(GEPI->getParent(), PredBB))) { | 
 |           bool Mismatch = false; | 
 |           for (unsigned i = 0, e = GEPOps.size(); i != e; ++i) | 
 |             if (GEPI->getOperand(i) != GEPOps[i]) { | 
 |               Mismatch = true; | 
 |               break; | 
 |             } | 
 |           if (!Mismatch) | 
 |             return GEPI; | 
 |         } | 
 |     } | 
 |     return 0; | 
 |   } | 
 |    | 
 |   // Handle add with a constant RHS. | 
 |   if (Inst->getOpcode() == Instruction::Add && | 
 |       isa<ConstantInt>(Inst->getOperand(1))) { | 
 |     // PHI translate the LHS. | 
 |     Constant *RHS = cast<ConstantInt>(Inst->getOperand(1)); | 
 |     bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap(); | 
 |     bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap(); | 
 |      | 
 |     Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT); | 
 |     if (LHS == 0) return 0; | 
 |      | 
 |     // If the PHI translated LHS is an add of a constant, fold the immediates. | 
 |     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS)) | 
 |       if (BOp->getOpcode() == Instruction::Add) | 
 |         if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) { | 
 |           LHS = BOp->getOperand(0); | 
 |           RHS = ConstantExpr::getAdd(RHS, CI); | 
 |           isNSW = isNUW = false; | 
 |            | 
 |           // If the old 'LHS' was an input, add the new 'LHS' as an input. | 
 |           if (std::count(InstInputs.begin(), InstInputs.end(), BOp)) { | 
 |             RemoveInstInputs(BOp, InstInputs); | 
 |             AddAsInput(LHS); | 
 |           } | 
 |         } | 
 |      | 
 |     // See if the add simplifies away. | 
 |     if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, TD)) { | 
 |       // If we simplified the operands, the LHS is no longer an input, but Res | 
 |       // is. | 
 |       RemoveInstInputs(LHS, InstInputs); | 
 |       return AddAsInput(Res); | 
 |     } | 
 |  | 
 |     // If we didn't modify the add, just return it. | 
 |     if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1)) | 
 |       return Inst; | 
 |      | 
 |     // Otherwise, see if we have this add available somewhere. | 
 |     for (Value::use_iterator UI = LHS->use_begin(), E = LHS->use_end(); | 
 |          UI != E; ++UI) { | 
 |       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(*UI)) | 
 |         if (BO->getOpcode() == Instruction::Add && | 
 |             BO->getOperand(0) == LHS && BO->getOperand(1) == RHS && | 
 |             BO->getParent()->getParent() == CurBB->getParent() && | 
 |             (!DT || DT->dominates(BO->getParent(), PredBB))) | 
 |           return BO; | 
 |     } | 
 |      | 
 |     return 0; | 
 |   } | 
 |    | 
 |   // Otherwise, we failed. | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | /// PHITranslateValue - PHI translate the current address up the CFG from | 
 | /// CurBB to Pred, updating our state to reflect any needed changes.  If the | 
 | /// dominator tree DT is non-null, the translated value must dominate | 
 | /// PredBB.  This returns true on failure and sets Addr to null. | 
 | bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB, | 
 |                                      const DominatorTree *DT) { | 
 |   assert(Verify() && "Invalid PHITransAddr!"); | 
 |   Addr = PHITranslateSubExpr(Addr, CurBB, PredBB, DT); | 
 |   assert(Verify() && "Invalid PHITransAddr!"); | 
 |  | 
 |   if (DT) { | 
 |     // Make sure the value is live in the predecessor. | 
 |     if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr)) | 
 |       if (!DT->dominates(Inst->getParent(), PredBB)) | 
 |         Addr = 0; | 
 |   } | 
 |  | 
 |   return Addr == 0; | 
 | } | 
 |  | 
 | /// PHITranslateWithInsertion - PHI translate this value into the specified | 
 | /// predecessor block, inserting a computation of the value if it is | 
 | /// unavailable. | 
 | /// | 
 | /// All newly created instructions are added to the NewInsts list.  This | 
 | /// returns null on failure. | 
 | /// | 
 | Value *PHITransAddr:: | 
 | PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB, | 
 |                           const DominatorTree &DT, | 
 |                           SmallVectorImpl<Instruction*> &NewInsts) { | 
 |   unsigned NISize = NewInsts.size(); | 
 |    | 
 |   // Attempt to PHI translate with insertion. | 
 |   Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts); | 
 |    | 
 |   // If successful, return the new value. | 
 |   if (Addr) return Addr; | 
 |    | 
 |   // If not, destroy any intermediate instructions inserted. | 
 |   while (NewInsts.size() != NISize) | 
 |     NewInsts.pop_back_val()->eraseFromParent(); | 
 |   return 0; | 
 | } | 
 |  | 
 |  | 
 | /// InsertPHITranslatedPointer - Insert a computation of the PHI translated | 
 | /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB | 
 | /// block.  All newly created instructions are added to the NewInsts list. | 
 | /// This returns null on failure. | 
 | /// | 
 | Value *PHITransAddr:: | 
 | InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB, | 
 |                            BasicBlock *PredBB, const DominatorTree &DT, | 
 |                            SmallVectorImpl<Instruction*> &NewInsts) { | 
 |   // See if we have a version of this value already available and dominating | 
 |   // PredBB.  If so, there is no need to insert a new instance of it. | 
 |   PHITransAddr Tmp(InVal, TD); | 
 |   if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT)) | 
 |     return Tmp.getAddr(); | 
 |  | 
 |   // If we don't have an available version of this value, it must be an | 
 |   // instruction. | 
 |   Instruction *Inst = cast<Instruction>(InVal); | 
 |    | 
 |   // Handle bitcast of PHI translatable value. | 
 |   if (BitCastInst *BC = dyn_cast<BitCastInst>(Inst)) { | 
 |     Value *OpVal = InsertPHITranslatedSubExpr(BC->getOperand(0), | 
 |                                               CurBB, PredBB, DT, NewInsts); | 
 |     if (OpVal == 0) return 0; | 
 |      | 
 |     // Otherwise insert a bitcast at the end of PredBB. | 
 |     BitCastInst *New = new BitCastInst(OpVal, InVal->getType(), | 
 |                                        InVal->getName()+".phi.trans.insert", | 
 |                                        PredBB->getTerminator()); | 
 |     NewInsts.push_back(New); | 
 |     return New; | 
 |   } | 
 |    | 
 |   // Handle getelementptr with at least one PHI operand. | 
 |   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) { | 
 |     SmallVector<Value*, 8> GEPOps; | 
 |     BasicBlock *CurBB = GEP->getParent(); | 
 |     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) { | 
 |       Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i), | 
 |                                                 CurBB, PredBB, DT, NewInsts); | 
 |       if (OpVal == 0) return 0; | 
 |       GEPOps.push_back(OpVal); | 
 |     } | 
 |      | 
 |     GetElementPtrInst *Result =  | 
 |     GetElementPtrInst::Create(GEPOps[0], GEPOps.begin()+1, GEPOps.end(), | 
 |                               InVal->getName()+".phi.trans.insert", | 
 |                               PredBB->getTerminator()); | 
 |     Result->setIsInBounds(GEP->isInBounds()); | 
 |     NewInsts.push_back(Result); | 
 |     return Result; | 
 |   } | 
 |    | 
 | #if 0 | 
 |   // FIXME: This code works, but it is unclear that we actually want to insert | 
 |   // a big chain of computation in order to make a value available in a block. | 
 |   // This needs to be evaluated carefully to consider its cost trade offs. | 
 |    | 
 |   // Handle add with a constant RHS. | 
 |   if (Inst->getOpcode() == Instruction::Add && | 
 |       isa<ConstantInt>(Inst->getOperand(1))) { | 
 |     // PHI translate the LHS. | 
 |     Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0), | 
 |                                               CurBB, PredBB, DT, NewInsts); | 
 |     if (OpVal == 0) return 0; | 
 |      | 
 |     BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1), | 
 |                                            InVal->getName()+".phi.trans.insert", | 
 |                                                     PredBB->getTerminator()); | 
 |     Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap()); | 
 |     Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap()); | 
 |     NewInsts.push_back(Res); | 
 |     return Res; | 
 |   } | 
 | #endif | 
 |    | 
 |   return 0; | 
 | } |