| <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" | 
 |                       "http://www.w3.org/TR/html4/strict.dtd"> | 
 | <html> | 
 | <head> | 
 |   <meta http-equiv="Content-Type" content="text/html; charset=utf-8"> | 
 |   <title>Writing an LLVM Compiler Backend</title> | 
 |   <link rel="stylesheet" href="llvm.css" type="text/css"> | 
 | </head> | 
 |  | 
 | <body> | 
 |  | 
 | <div class="doc_title"> | 
 |   Writing an LLVM Compiler Backend | 
 | </div> | 
 |  | 
 | <ol> | 
 |   <li><a href="#intro">Introduction</a> | 
 |   <ul> | 
 |     <li><a href="#Audience">Audience</a></li> | 
 |     <li><a href="#Prerequisite">Prerequisite Reading</a></li> | 
 |     <li><a href="#Basic">Basic Steps</a></li> | 
 |     <li><a href="#Preliminaries">Preliminaries</a></li> | 
 |   </ul> | 
 |   <li><a href="#TargetMachine">Target Machine</a></li> | 
 |   <li><a href="#TargetRegistration">Target Registration</a></li> | 
 |   <li><a href="#RegisterSet">Register Set and Register Classes</a> | 
 |   <ul> | 
 |     <li><a href="#RegisterDef">Defining a Register</a></li> | 
 |     <li><a href="#RegisterClassDef">Defining a Register Class</a></li> | 
 |     <li><a href="#implementRegister">Implement a subclass of TargetRegisterInfo</a></li> | 
 |   </ul></li> | 
 |   <li><a href="#InstructionSet">Instruction Set</a> | 
 |   <ul>   | 
 |     <li><a href="#operandMapping">Instruction Operand Mapping</a></li> | 
 |     <li><a href="#implementInstr">Implement a subclass of TargetInstrInfo</a></li> | 
 |     <li><a href="#branchFolding">Branch Folding and If Conversion</a></li> | 
 |   </ul></li> | 
 |   <li><a href="#InstructionSelector">Instruction Selector</a> | 
 |   <ul> | 
 |     <li><a href="#LegalizePhase">The SelectionDAG Legalize Phase</a> | 
 |     <ul> | 
 |       <li><a href="#promote">Promote</a></li>  | 
 |       <li><a href="#expand">Expand</a></li>  | 
 |       <li><a href="#custom">Custom</a></li>  | 
 |       <li><a href="#legal">Legal</a></li>        | 
 |     </ul></li> | 
 |     <li><a href="#callingConventions">Calling Conventions</a></li>      | 
 |   </ul></li> | 
 |   <li><a href="#assemblyPrinter">Assembly Printer</a></li>  | 
 |   <li><a href="#subtargetSupport">Subtarget Support</a></li>  | 
 |   <li><a href="#jitSupport">JIT Support</a> | 
 |   <ul>   | 
 |     <li><a href="#mce">Machine Code Emitter</a></li>    | 
 |     <li><a href="#targetJITInfo">Target JIT Info</a></li>    | 
 |   </ul></li> | 
 | </ol> | 
 |  | 
 | <div class="doc_author">     | 
 |   <p>Written by <a href="http://www.woo.com">Mason Woo</a> and | 
 |                 <a href="http://misha.brukman.net">Misha Brukman</a></p> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="intro">Introduction</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | This document describes techniques for writing compiler backends that convert | 
 | the LLVM Intermediate Representation (IR) to code for a specified machine or | 
 | other languages. Code intended for a specific machine can take the form of | 
 | either assembly code or binary code (usable for a JIT compiler). | 
 | </p> | 
 |  | 
 | <p> | 
 | The backend of LLVM features a target-independent code generator that may create | 
 | output for several types of target CPUs — including X86, PowerPC, Alpha, | 
 | and SPARC. The backend may also be used to generate code targeted at SPUs of the | 
 | Cell processor or GPUs to support the execution of compute kernels. | 
 | </p> | 
 |  | 
 | <p> | 
 | The document focuses on existing examples found in subdirectories | 
 | of <tt>llvm/lib/Target</tt> in a downloaded LLVM release. In particular, this | 
 | document focuses on the example of creating a static compiler (one that emits | 
 | text assembly) for a SPARC target, because SPARC has fairly standard | 
 | characteristics, such as a RISC instruction set and straightforward calling | 
 | conventions. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <div class="doc_subsection"> | 
 |   <a name="Audience">Audience</a> | 
 | </div>   | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | The audience for this document is anyone who needs to write an LLVM backend to | 
 | generate code for a specific hardware or software target. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <div class="doc_subsection"> | 
 |   <a name="Prerequisite">Prerequisite Reading</a> | 
 | </div>   | 
 |  | 
 | <div class="doc_text">   | 
 |  | 
 | <p> | 
 | These essential documents must be read before reading this document: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li><i><a href="http://www.llvm.org/docs/LangRef.html">LLVM Language Reference | 
 |     Manual</a></i> — a reference manual for the LLVM assembly language.</li> | 
 |  | 
 | <li><i><a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM | 
 |     Target-Independent Code Generator</a></i> — a guide to the components | 
 |     (classes and code generation algorithms) for translating the LLVM internal | 
 |     representation into machine code for a specified target.  Pay particular | 
 |     attention to the descriptions of code generation stages: Instruction | 
 |     Selection, Scheduling and Formation, SSA-based Optimization, Register | 
 |     Allocation, Prolog/Epilog Code Insertion, Late Machine Code Optimizations, | 
 |     and Code Emission.</li> | 
 |  | 
 | <li><i><a href="http://www.llvm.org/docs/TableGenFundamentals.html">TableGen | 
 |     Fundamentals</a></i> —a document that describes the TableGen | 
 |     (<tt>tblgen</tt>) application that manages domain-specific information to | 
 |     support LLVM code generation. TableGen processes input from a target | 
 |     description file (<tt>.td</tt> suffix) and generates C++ code that can be | 
 |     used for code generation.</li> | 
 |  | 
 | <li><i><a href="http://www.llvm.org/docs/WritingAnLLVMPass.html">Writing an LLVM | 
 |     Pass</a></i> — The assembly printer is a <tt>FunctionPass</tt>, as are | 
 |     several SelectionDAG processing steps.</li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | To follow the SPARC examples in this document, have a copy of | 
 | <i><a href="http://www.sparc.org/standards/V8.pdf">The SPARC Architecture | 
 | Manual, Version 8</a></i> for reference. For details about the ARM instruction | 
 | set, refer to the <i><a href="http://infocenter.arm.com/">ARM Architecture | 
 | Reference Manual</a></i>. For more about the GNU Assembler format | 
 | (<tt>GAS</tt>), see | 
 | <i><a href="http://sourceware.org/binutils/docs/as/index.html">Using As</a></i>, | 
 | especially for the assembly printer. <i>Using As</i> contains a list of target | 
 | machine dependent features. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <div class="doc_subsection"> | 
 |   <a name="Basic">Basic Steps</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | To write a compiler backend for LLVM that converts the LLVM IR to code for a | 
 | specified target (machine or other language), follow these steps: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li>Create a subclass of the TargetMachine class that describes characteristics | 
 |     of your target machine. Copy existing examples of specific TargetMachine | 
 |     class and header files; for example, start with | 
 |     <tt>SparcTargetMachine.cpp</tt> and <tt>SparcTargetMachine.h</tt>, but | 
 |     change the file names for your target. Similarly, change code that | 
 |     references "Sparc" to reference your target. </li> | 
 |  | 
 | <li>Describe the register set of the target. Use TableGen to generate code for | 
 |     register definition, register aliases, and register classes from a | 
 |     target-specific <tt>RegisterInfo.td</tt> input file. You should also write | 
 |     additional code for a subclass of the TargetRegisterInfo class that | 
 |     represents the class register file data used for register allocation and | 
 |     also describes the interactions between registers.</li> | 
 |  | 
 | <li>Describe the instruction set of the target. Use TableGen to generate code | 
 |     for target-specific instructions from target-specific versions of | 
 |     <tt>TargetInstrFormats.td</tt> and <tt>TargetInstrInfo.td</tt>. You should | 
 |     write additional code for a subclass of the TargetInstrInfo class to | 
 |     represent machine instructions supported by the target machine. </li> | 
 |  | 
 | <li>Describe the selection and conversion of the LLVM IR from a Directed Acyclic | 
 |     Graph (DAG) representation of instructions to native target-specific | 
 |     instructions. Use TableGen to generate code that matches patterns and | 
 |     selects instructions based on additional information in a target-specific | 
 |     version of <tt>TargetInstrInfo.td</tt>. Write code | 
 |     for <tt>XXXISelDAGToDAG.cpp</tt>, where XXX identifies the specific target, | 
 |     to perform pattern matching and DAG-to-DAG instruction selection. Also write | 
 |     code in <tt>XXXISelLowering.cpp</tt> to replace or remove operations and | 
 |     data types that are not supported natively in a SelectionDAG. </li> | 
 |  | 
 | <li>Write code for an assembly printer that converts LLVM IR to a GAS format for | 
 |     your target machine.  You should add assembly strings to the instructions | 
 |     defined in your target-specific version of <tt>TargetInstrInfo.td</tt>. You | 
 |     should also write code for a subclass of AsmPrinter that performs the | 
 |     LLVM-to-assembly conversion and a trivial subclass of TargetAsmInfo.</li> | 
 |  | 
 | <li>Optionally, add support for subtargets (i.e., variants with different | 
 |     capabilities). You should also write code for a subclass of the | 
 |     TargetSubtarget class, which allows you to use the <tt>-mcpu=</tt> | 
 |     and <tt>-mattr=</tt> command-line options.</li> | 
 |  | 
 | <li>Optionally, add JIT support and create a machine code emitter (subclass of | 
 |     TargetJITInfo) that is used to emit binary code directly into memory. </li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | In the <tt>.cpp</tt> and <tt>.h</tt>. files, initially stub up these methods and | 
 | then implement them later. Initially, you may not know which private members | 
 | that the class will need and which components will need to be subclassed. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <div class="doc_subsection"> | 
 |   <a name="Preliminaries">Preliminaries</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | To actually create your compiler backend, you need to create and modify a few | 
 | files. The absolute minimum is discussed here. But to actually use the LLVM | 
 | target-independent code generator, you must perform the steps described in | 
 | the <a href="http://www.llvm.org/docs/CodeGenerator.html">LLVM | 
 | Target-Independent Code Generator</a> document. | 
 | </p> | 
 |  | 
 | <p> | 
 | First, you should create a subdirectory under <tt>lib/Target</tt> to hold all | 
 | the files related to your target. If your target is called "Dummy," create the | 
 | directory <tt>lib/Target/Dummy</tt>. | 
 | </p> | 
 |  | 
 | <p> | 
 | In this new | 
 | directory, create a <tt>Makefile</tt>. It is easiest to copy a | 
 | <tt>Makefile</tt> of another target and modify it. It should at least contain | 
 | the <tt>LEVEL</tt>, <tt>LIBRARYNAME</tt> and <tt>TARGET</tt> variables, and then | 
 | include <tt>$(LEVEL)/Makefile.common</tt>. The library can be | 
 | named <tt>LLVMDummy</tt> (for example, see the MIPS target). Alternatively, you | 
 | can split the library into <tt>LLVMDummyCodeGen</tt> | 
 | and <tt>LLVMDummyAsmPrinter</tt>, the latter of which should be implemented in a | 
 | subdirectory below <tt>lib/Target/Dummy</tt> (for example, see the PowerPC | 
 | target). | 
 | </p> | 
 |  | 
 | <p> | 
 | Note that these two naming schemes are hardcoded into <tt>llvm-config</tt>. | 
 | Using any other naming scheme will confuse <tt>llvm-config</tt> and produce a | 
 | lot of (seemingly unrelated) linker errors when linking <tt>llc</tt>. | 
 | </p> | 
 |  | 
 | <p> | 
 | To make your target actually do something, you need to implement a subclass of | 
 | <tt>TargetMachine</tt>. This implementation should typically be in the file | 
 | <tt>lib/Target/DummyTargetMachine.cpp</tt>, but any file in | 
 | the <tt>lib/Target</tt> directory will be built and should work. To use LLVM's | 
 | target independent code generator, you should do what all current machine | 
 | backends do: create a subclass of <tt>LLVMTargetMachine</tt>. (To create a | 
 | target from scratch, create a subclass of <tt>TargetMachine</tt>.) | 
 | </p> | 
 |  | 
 | <p> | 
 | To get LLVM to actually build and link your target, you need to add it to | 
 | the <tt>TARGETS_TO_BUILD</tt> variable. To do this, you modify the configure | 
 | script to know about your target when parsing the <tt>--enable-targets</tt> | 
 | option. Search the configure script for <tt>TARGETS_TO_BUILD</tt>, add your | 
 | target to the lists there (some creativity required), and then | 
 | reconfigure. Alternatively, you can change <tt>autotools/configure.ac</tt> and | 
 | regenerate configure by running <tt>./autoconf/AutoRegen.sh</tt>. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="TargetMachine">Target Machine</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | <tt>LLVMTargetMachine</tt> is designed as a base class for targets implemented | 
 | with the LLVM target-independent code generator. The <tt>LLVMTargetMachine</tt> | 
 | class should be specialized by a concrete target class that implements the | 
 | various virtual methods. <tt>LLVMTargetMachine</tt> is defined as a subclass of | 
 | <tt>TargetMachine</tt> in <tt>include/llvm/Target/TargetMachine.h</tt>. The | 
 | <tt>TargetMachine</tt> class implementation (<tt>TargetMachine.cpp</tt>) also | 
 | processes numerous command-line options. | 
 | </p> | 
 |  | 
 | <p> | 
 | To create a concrete target-specific subclass of <tt>LLVMTargetMachine</tt>, | 
 | start by copying an existing <tt>TargetMachine</tt> class and header.  You | 
 | should name the files that you create to reflect your specific target. For | 
 | instance, for the SPARC target, name the files <tt>SparcTargetMachine.h</tt> and | 
 | <tt>SparcTargetMachine.cpp</tt>. | 
 | </p> | 
 |  | 
 | <p> | 
 | For a target machine <tt>XXX</tt>, the implementation of | 
 | <tt>XXXTargetMachine</tt> must have access methods to obtain objects that | 
 | represent target components.  These methods are named <tt>get*Info</tt>, and are | 
 | intended to obtain the instruction set (<tt>getInstrInfo</tt>), register set | 
 | (<tt>getRegisterInfo</tt>), stack frame layout (<tt>getFrameInfo</tt>), and | 
 | similar information. <tt>XXXTargetMachine</tt> must also implement the | 
 | <tt>getTargetData</tt> method to access an object with target-specific data | 
 | characteristics, such as data type size and alignment requirements. | 
 | </p> | 
 |  | 
 | <p> | 
 | For instance, for the SPARC target, the header file | 
 | <tt>SparcTargetMachine.h</tt> declares prototypes for several <tt>get*Info</tt> | 
 | and <tt>getTargetData</tt> methods that simply return a class member. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | namespace llvm { | 
 |  | 
 | class Module; | 
 |  | 
 | class SparcTargetMachine : public LLVMTargetMachine { | 
 |   const TargetData DataLayout;       // Calculates type size & alignment | 
 |   SparcSubtarget Subtarget; | 
 |   SparcInstrInfo InstrInfo; | 
 |   TargetFrameInfo FrameInfo; | 
 |    | 
 | protected: | 
 |   virtual const TargetAsmInfo *createTargetAsmInfo() const; | 
 |    | 
 | public: | 
 |   SparcTargetMachine(const Module &M, const std::string &FS); | 
 |  | 
 |   virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; } | 
 |   virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; } | 
 |   virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; } | 
 |   virtual const TargetRegisterInfo *getRegisterInfo() const { | 
 |     return &InstrInfo.getRegisterInfo(); | 
 |   } | 
 |   virtual const TargetData *getTargetData() const { return &DataLayout; } | 
 |   static unsigned getModuleMatchQuality(const Module &M); | 
 |  | 
 |   // Pass Pipeline Configuration | 
 |   virtual bool addInstSelector(PassManagerBase &PM, bool Fast); | 
 |   virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast); | 
 | }; | 
 |  | 
 | } // end namespace llvm | 
 | </pre> | 
 | </div> | 
 |  | 
 | </div> | 
 |  | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <ul> | 
 | <li><tt>getInstrInfo()</tt></li> | 
 | <li><tt>getRegisterInfo()</tt></li> | 
 | <li><tt>getFrameInfo()</tt></li> | 
 | <li><tt>getTargetData()</tt></li> | 
 | <li><tt>getSubtargetImpl()</tt></li> | 
 | </ul> | 
 |  | 
 | <p>For some targets, you also need to support the following methods:</p> | 
 |  | 
 | <ul> | 
 | <li><tt>getTargetLowering()</tt></li> | 
 | <li><tt>getJITInfo()</tt></li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | In addition, the <tt>XXXTargetMachine</tt> constructor should specify a | 
 | <tt>TargetDescription</tt> string that determines the data layout for the target | 
 | machine, including characteristics such as pointer size, alignment, and | 
 | endianness. For example, the constructor for SparcTargetMachine contains the | 
 | following: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS) | 
 |   : DataLayout("E-p:32:32-f128:128:128"), | 
 |     Subtarget(M, FS), InstrInfo(Subtarget), | 
 |     FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) { | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p>Hyphens separate portions of the <tt>TargetDescription</tt> string.</p> | 
 |  | 
 | <ul> | 
 | <li>An upper-case "<tt>E</tt>" in the string indicates a big-endian target data | 
 |     model. a lower-case "<tt>e</tt>" indicates little-endian.</li> | 
 |  | 
 | <li>"<tt>p:</tt>" is followed by pointer information: size, ABI alignment, and | 
 |     preferred alignment. If only two figures follow "<tt>p:</tt>", then the | 
 |     first value is pointer size, and the second value is both ABI and preferred | 
 |     alignment.</li> | 
 |  | 
 | <li>Then a letter for numeric type alignment: "<tt>i</tt>", "<tt>f</tt>", | 
 |     "<tt>v</tt>", or "<tt>a</tt>" (corresponding to integer, floating point, | 
 |     vector, or aggregate). "<tt>i</tt>", "<tt>v</tt>", or "<tt>a</tt>" are | 
 |     followed by ABI alignment and preferred alignment. "<tt>f</tt>" is followed | 
 |     by three values: the first indicates the size of a long double, then ABI | 
 |     alignment, and then ABI preferred alignment.</li> | 
 | </ul> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="TargetRegistration">Target Registration</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | You must also register your target with the <tt>TargetRegistry</tt>, which is | 
 | what other LLVM tools use to be able to lookup and use your target at | 
 | runtime. The <tt>TargetRegistry</tt> can be used directly, but for most targets | 
 | there are helper templates which should take care of the work for you.</p> | 
 |  | 
 | <p> | 
 | All targets should declare a global <tt>Target</tt> object which is used to | 
 | represent the target during registration. Then, in the target's TargetInfo | 
 | library, the target should define that object and use | 
 | the <tt>RegisterTarget</tt> template to register the target. For example, the Sparc registration code looks like this: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | Target llvm::TheSparcTarget; | 
 |  | 
 | extern "C" void LLVMInitializeSparcTargetInfo() {  | 
 |   RegisterTarget<Triple::sparc, /*HasJIT=*/false> | 
 |     X(TheSparcTarget, "sparc", "Sparc"); | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | This allows the <tt>TargetRegistry</tt> to look up the target by name or by | 
 | target triple. In addition, most targets will also register additional features | 
 | which are available in separate libraries. These registration steps are | 
 | separate, because some clients may wish to only link in some parts of the target | 
 | -- the JIT code generator does not require the use of the assembler printer, for | 
 | example. Here is an example of registering the Sparc assembly printer: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | extern "C" void LLVMInitializeSparcAsmPrinter() {  | 
 |   RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget); | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | For more information, see | 
 | "<a href="/doxygen/TargetRegistry_8h-source.html">llvm/Target/TargetRegistry.h</a>". | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="RegisterSet">Register Set and Register Classes</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | You should describe a concrete target-specific class that represents the | 
 | register file of a target machine. This class is called <tt>XXXRegisterInfo</tt> | 
 | (where <tt>XXX</tt> identifies the target) and represents the class register | 
 | file data that is used for register allocation. It also describes the | 
 | interactions between registers. | 
 | </p> | 
 |  | 
 | <p> | 
 | You also need to define register classes to categorize related registers. A | 
 | register class should be added for groups of registers that are all treated the | 
 | same way for some instruction. Typical examples are register classes for | 
 | integer, floating-point, or vector registers. A register allocator allows an | 
 | instruction to use any register in a specified register class to perform the | 
 | instruction in a similar manner. Register classes allocate virtual registers to | 
 | instructions from these sets, and register classes let the target-independent | 
 | register allocator automatically choose the actual registers. | 
 | </p> | 
 |  | 
 | <p> | 
 | Much of the code for registers, including register definition, register aliases, | 
 | and register classes, is generated by TableGen from <tt>XXXRegisterInfo.td</tt> | 
 | input files and placed in <tt>XXXGenRegisterInfo.h.inc</tt> and | 
 | <tt>XXXGenRegisterInfo.inc</tt> output files. Some of the code in the | 
 | implementation of <tt>XXXRegisterInfo</tt> requires hand-coding. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="RegisterDef">Defining a Register</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | The <tt>XXXRegisterInfo.td</tt> file typically starts with register definitions | 
 | for a target machine. The <tt>Register</tt> class (specified | 
 | in <tt>Target.td</tt>) is used to define an object for each register. The | 
 | specified string <tt>n</tt> becomes the <tt>Name</tt> of the register. The | 
 | basic <tt>Register</tt> object does not have any subregisters and does not | 
 | specify any aliases. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | class Register<string n> { | 
 |   string Namespace = ""; | 
 |   string AsmName = n; | 
 |   string Name = n; | 
 |   int SpillSize = 0; | 
 |   int SpillAlignment = 0; | 
 |   list<Register> Aliases = []; | 
 |   list<Register> SubRegs = []; | 
 |   list<int> DwarfNumbers = []; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | For example, in the <tt>X86RegisterInfo.td</tt> file, there are register | 
 | definitions that utilize the Register class, such as: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | This defines the register <tt>AL</tt> and assigns it values (with | 
 | <tt>DwarfRegNum</tt>) that are used by <tt>gcc</tt>, <tt>gdb</tt>, or a debug | 
 | information writer to identify a register. For register | 
 | <tt>AL</tt>, <tt>DwarfRegNum</tt> takes an array of 3 values representing 3 | 
 | different modes: the first element is for X86-64, the second for exception | 
 | handling (EH) on X86-32, and the third is generic. -1 is a special Dwarf number | 
 | that indicates the gcc number is undefined, and -2 indicates the register number | 
 | is invalid for this mode. | 
 | </p> | 
 |  | 
 | <p> | 
 | From the previously described line in the <tt>X86RegisterInfo.td</tt> file, | 
 | TableGen generates this code in the <tt>X86GenRegisterInfo.inc</tt> file: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | static const unsigned GR8[] = { X86::AL, ... }; | 
 |  | 
 | const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 }; | 
 |  | 
 | const TargetRegisterDesc RegisterDescriptors[] = {  | 
 |   ... | 
 | { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ... | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | From the register info file, TableGen generates a <tt>TargetRegisterDesc</tt> | 
 | object for each register. <tt>TargetRegisterDesc</tt> is defined in | 
 | <tt>include/llvm/Target/TargetRegisterInfo.h</tt> with the following fields: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | struct TargetRegisterDesc { | 
 |   const char     *AsmName;      // Assembly language name for the register | 
 |   const char     *Name;         // Printable name for the reg (for debugging) | 
 |   const unsigned *AliasSet;     // Register Alias Set | 
 |   const unsigned *SubRegs;      // Sub-register set | 
 |   const unsigned *ImmSubRegs;   // Immediate sub-register set | 
 |   const unsigned *SuperRegs;    // Super-register set | 
 | };</pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | TableGen uses the entire target description file (<tt>.td</tt>) to determine | 
 | text names for the register (in the <tt>AsmName</tt> and <tt>Name</tt> fields of | 
 | <tt>TargetRegisterDesc</tt>) and the relationships of other registers to the | 
 | defined register (in the other <tt>TargetRegisterDesc</tt> fields). In this | 
 | example, other definitions establish the registers "<tt>AX</tt>", | 
 | "<tt>EAX</tt>", and "<tt>RAX</tt>" as aliases for one another, so TableGen | 
 | generates a null-terminated array (<tt>AL_AliasSet</tt>) for this register alias | 
 | set. | 
 | </p> | 
 |  | 
 | <p> | 
 | The <tt>Register</tt> class is commonly used as a base class for more complex | 
 | classes. In <tt>Target.td</tt>, the <tt>Register</tt> class is the base for the | 
 | <tt>RegisterWithSubRegs</tt> class that is used to define registers that need to | 
 | specify subregisters in the <tt>SubRegs</tt> list, as shown here: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | class RegisterWithSubRegs<string n, | 
 | list<Register> subregs> : Register<n> { | 
 |   let SubRegs = subregs; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | In <tt>SparcRegisterInfo.td</tt>, additional register classes are defined for | 
 | SPARC: a Register subclass, SparcReg, and further subclasses: <tt>Ri</tt>, | 
 | <tt>Rf</tt>, and <tt>Rd</tt>. SPARC registers are identified by 5-bit ID | 
 | numbers, which is a feature common to these subclasses. Note the use of | 
 | '<tt>let</tt>' expressions to override values that are initially defined in a | 
 | superclass (such as <tt>SubRegs</tt> field in the <tt>Rd</tt> class). | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | class SparcReg<string n> : Register<n> { | 
 |   field bits<5> Num; | 
 |   let Namespace = "SP"; | 
 | } | 
 | // Ri - 32-bit integer registers | 
 | class Ri<bits<5> num, string n> : | 
 | SparcReg<n> { | 
 |   let Num = num; | 
 | } | 
 | // Rf - 32-bit floating-point registers | 
 | class Rf<bits<5> num, string n> : | 
 | SparcReg<n> { | 
 |   let Num = num; | 
 | } | 
 | // Rd - Slots in the FP register file for 64-bit | 
 | floating-point values. | 
 | class Rd<bits<5> num, string n, | 
 | list<Register> subregs> : SparcReg<n> { | 
 |   let Num = num; | 
 |   let SubRegs = subregs; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | In the <tt>SparcRegisterInfo.td</tt> file, there are register definitions that | 
 | utilize these subclasses of <tt>Register</tt>, such as: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def G0 : Ri< 0, "G0">, | 
 | DwarfRegNum<[0]>; | 
 | def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>; | 
 | ... | 
 | def F0 : Rf< 0, "F0">, | 
 | DwarfRegNum<[32]>; | 
 | def F1 : Rf< 1, "F1">, | 
 | DwarfRegNum<[33]>; | 
 | ... | 
 | def D0 : Rd< 0, "F0", [F0, F1]>, | 
 | DwarfRegNum<[32]>; | 
 | def D1 : Rd< 2, "F2", [F2, F3]>, | 
 | DwarfRegNum<[34]>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | The last two registers shown above (<tt>D0</tt> and <tt>D1</tt>) are | 
 | double-precision floating-point registers that are aliases for pairs of | 
 | single-precision floating-point sub-registers. In addition to aliases, the | 
 | sub-register and super-register relationships of the defined register are in | 
 | fields of a register's TargetRegisterDesc. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="RegisterClassDef">Defining a Register Class</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | The <tt>RegisterClass</tt> class (specified in <tt>Target.td</tt>) is used to | 
 | define an object that represents a group of related registers and also defines | 
 | the default allocation order of the registers. A target description file | 
 | <tt>XXXRegisterInfo.td</tt> that uses <tt>Target.td</tt> can construct register | 
 | classes using the following class: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | class RegisterClass<string namespace, | 
 | list<ValueType> regTypes, int alignment, | 
 |                     list<Register> regList> { | 
 |   string Namespace = namespace; | 
 |   list<ValueType> RegTypes = regTypes; | 
 |   int Size = 0;  // spill size, in bits; zero lets tblgen pick the size | 
 |   int Alignment = alignment; | 
 |  | 
 |   // CopyCost is the cost of copying a value between two registers | 
 |   // default value 1 means a single instruction | 
 |   // A negative value means copying is extremely expensive or impossible | 
 |   int CopyCost = 1;   | 
 |   list<Register> MemberList = regList; | 
 |    | 
 |   // for register classes that are subregisters of this class | 
 |   list<RegisterClass> SubRegClassList = [];   | 
 |    | 
 |   code MethodProtos = [{}];  // to insert arbitrary code | 
 |   code MethodBodies = [{}]; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>To define a RegisterClass, use the following 4 arguments:</p> | 
 |  | 
 | <ul> | 
 | <li>The first argument of the definition is the name of the namespace.</li> | 
 |  | 
 | <li>The second argument is a list of <tt>ValueType</tt> register type values | 
 |     that are defined in <tt>include/llvm/CodeGen/ValueTypes.td</tt>. Defined | 
 |     values include integer types (such as <tt>i16</tt>, <tt>i32</tt>, | 
 |     and <tt>i1</tt> for Boolean), floating-point types | 
 |     (<tt>f32</tt>, <tt>f64</tt>), and vector types (for example, <tt>v8i16</tt> | 
 |     for an <tt>8 x i16</tt> vector). All registers in a <tt>RegisterClass</tt> | 
 |     must have the same <tt>ValueType</tt>, but some registers may store vector | 
 |     data in different configurations. For example a register that can process a | 
 |     128-bit vector may be able to handle 16 8-bit integer elements, 8 16-bit | 
 |     integers, 4 32-bit integers, and so on. </li> | 
 |  | 
 | <li>The third argument of the <tt>RegisterClass</tt> definition specifies the | 
 |     alignment required of the registers when they are stored or loaded to | 
 |     memory.</li> | 
 |  | 
 | <li>The final argument, <tt>regList</tt>, specifies which registers are in this | 
 |     class.  If an <tt>allocation_order_*</tt> method is not specified, | 
 |     then <tt>regList</tt> also defines the order of allocation used by the | 
 |     register allocator.</li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | In <tt>SparcRegisterInfo.td</tt>, three RegisterClass objects are defined: | 
 | <tt>FPRegs</tt>, <tt>DFPRegs</tt>, and <tt>IntRegs</tt>. For all three register | 
 | classes, the first argument defines the namespace with the string | 
 | '<tt>SP</tt>'. <tt>FPRegs</tt> defines a group of 32 single-precision | 
 | floating-point registers (<tt>F0</tt> to <tt>F31</tt>); <tt>DFPRegs</tt> defines | 
 | a group of 16 double-precision registers | 
 | (<tt>D0-D15</tt>). For <tt>IntRegs</tt>, the <tt>MethodProtos</tt> | 
 | and <tt>MethodBodies</tt> methods are used by TableGen to insert the specified | 
 | code into generated output. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def FPRegs : RegisterClass<"SP", [f32], 32, | 
 |   [F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, | 
 |    F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F30, F31]>; | 
 |  | 
 | def DFPRegs : RegisterClass<"SP", [f64], 64, | 
 |   [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15]>; | 
 |   | 
 | def IntRegs : RegisterClass<"SP", [i32], 32, | 
 |     [L0, L1, L2, L3, L4, L5, L6, L7, | 
 |      I0, I1, I2, I3, I4, I5, | 
 |      O0, O1, O2, O3, O4, O5, O7, | 
 |      G1, | 
 |      // Non-allocatable regs: | 
 |      G2, G3, G4,  | 
 |      O6,        // stack ptr | 
 |     I6,        // frame ptr | 
 |      I7,        // return address | 
 |      G0,        // constant zero | 
 |      G5, G6, G7 // reserved for kernel | 
 |     ]> { | 
 |   let MethodProtos = [{ | 
 |     iterator allocation_order_end(const MachineFunction &MF) const; | 
 |   }]; | 
 |   let MethodBodies = [{ | 
 |     IntRegsClass::iterator | 
 |     IntRegsClass::allocation_order_end(const MachineFunction &MF) const { | 
 |       return end() - 10  // Don't allocate special registers | 
 |          -1; | 
 |     } | 
 |   }]; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | Using <tt>SparcRegisterInfo.td</tt> with TableGen generates several output files | 
 | that are intended for inclusion in other source code that you write. | 
 | <tt>SparcRegisterInfo.td</tt> generates <tt>SparcGenRegisterInfo.h.inc</tt>, | 
 | which should be included in the header file for the implementation of the SPARC | 
 | register implementation that you write (<tt>SparcRegisterInfo.h</tt>). In | 
 | <tt>SparcGenRegisterInfo.h.inc</tt> a new structure is defined called | 
 | <tt>SparcGenRegisterInfo</tt> that uses <tt>TargetRegisterInfo</tt> as its | 
 | base. It also specifies types, based upon the defined register | 
 | classes: <tt>DFPRegsClass</tt>, <tt>FPRegsClass</tt>, and <tt>IntRegsClass</tt>. | 
 | </p> | 
 |  | 
 | <p> | 
 | <tt>SparcRegisterInfo.td</tt> also generates <tt>SparcGenRegisterInfo.inc</tt>, | 
 | which is included at the bottom of <tt>SparcRegisterInfo.cpp</tt>, the SPARC | 
 | register implementation. The code below shows only the generated integer | 
 | registers and associated register classes. The order of registers | 
 | in <tt>IntRegs</tt> reflects the order in the definition of <tt>IntRegs</tt> in | 
 | the target description file. Take special note of the use | 
 | of <tt>MethodBodies</tt> in <tt>SparcRegisterInfo.td</tt> to create code in | 
 | <tt>SparcGenRegisterInfo.inc</tt>. <tt>MethodProtos</tt> generates similar code | 
 | in <tt>SparcGenRegisterInfo.h.inc</tt>. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre>  // IntRegs Register Class... | 
 |   static const unsigned IntRegs[] = { | 
 |     SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5, | 
 |     SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3, | 
 |     SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3, | 
 |     SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3, | 
 |     SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5, | 
 |     SP::G6, SP::G7,  | 
 |   }; | 
 |  | 
 |   // IntRegsVTs Register Class Value Types... | 
 |   static const MVT::ValueType IntRegsVTs[] = { | 
 |     MVT::i32, MVT::Other | 
 |   }; | 
 |  | 
 | namespace SP {   // Register class instances | 
 |   DFPRegsClass    DFPRegsRegClass; | 
 |   FPRegsClass     FPRegsRegClass; | 
 |   IntRegsClass    IntRegsRegClass; | 
 | ... | 
 |   // IntRegs Sub-register Classess... | 
 |   static const TargetRegisterClass* const IntRegsSubRegClasses [] = { | 
 |     NULL | 
 |   }; | 
 | ... | 
 |   // IntRegs Super-register Classess... | 
 |   static const TargetRegisterClass* const IntRegsSuperRegClasses [] = { | 
 |     NULL | 
 |   }; | 
 | ... | 
 |   // IntRegs Register Class sub-classes... | 
 |   static const TargetRegisterClass* const IntRegsSubclasses [] = { | 
 |     NULL | 
 |   }; | 
 | ... | 
 |   // IntRegs Register Class super-classes... | 
 |   static const TargetRegisterClass* const IntRegsSuperclasses [] = { | 
 |     NULL | 
 |   }; | 
 | ... | 
 |   IntRegsClass::iterator | 
 |   IntRegsClass::allocation_order_end(const MachineFunction &MF) const { | 
 |      return end()-10  // Don't allocate special registers | 
 |          -1; | 
 |   } | 
 |    | 
 |   IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,  | 
 |     IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,  | 
 |     IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {} | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="implementRegister">Implement a subclass of</a>  | 
 |   <a href="http://www.llvm.org/docs/CodeGenerator.html#targetregisterinfo">TargetRegisterInfo</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | The final step is to hand code portions of <tt>XXXRegisterInfo</tt>, which | 
 | implements the interface described in <tt>TargetRegisterInfo.h</tt>. These | 
 | functions return <tt>0</tt>, <tt>NULL</tt>, or <tt>false</tt>, unless | 
 | overridden. Here is a list of functions that are overridden for the SPARC | 
 | implementation in <tt>SparcRegisterInfo.cpp</tt>: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li><tt>getCalleeSavedRegs</tt> — Returns a list of callee-saved registers | 
 |     in the order of the desired callee-save stack frame offset.</li> | 
 |  | 
 | <li><tt>getReservedRegs</tt> — Returns a bitset indexed by physical | 
 |     register numbers, indicating if a particular register is unavailable.</li> | 
 |  | 
 | <li><tt>hasFP</tt> — Return a Boolean indicating if a function should have | 
 |     a dedicated frame pointer register.</li> | 
 |  | 
 | <li><tt>eliminateCallFramePseudoInstr</tt> — If call frame setup or | 
 |     destroy pseudo instructions are used, this can be called to eliminate | 
 |     them.</li> | 
 |  | 
 | <li><tt>eliminateFrameIndex</tt> — Eliminate abstract frame indices from | 
 |     instructions that may use them.</li> | 
 |  | 
 | <li><tt>emitPrologue</tt> — Insert prologue code into the function.</li> | 
 |  | 
 | <li><tt>emitEpilogue</tt> — Insert epilogue code into the function.</li> | 
 | </ul> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="InstructionSet">Instruction Set</a> | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | During the early stages of code generation, the LLVM IR code is converted to a | 
 | <tt>SelectionDAG</tt> with nodes that are instances of the <tt>SDNode</tt> class | 
 | containing target instructions. An <tt>SDNode</tt> has an opcode, operands, type | 
 | requirements, and operation properties. For example, is an operation | 
 | commutative, does an operation load from memory. The various operation node | 
 | types are described in the <tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt> | 
 | file (values of the <tt>NodeType</tt> enum in the <tt>ISD</tt> namespace). | 
 | </p> | 
 |  | 
 | <p> | 
 | TableGen uses the following target description (<tt>.td</tt>) input files to | 
 | generate much of the code for instruction definition: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li><tt>Target.td</tt> — Where the <tt>Instruction</tt>, <tt>Operand</tt>, | 
 |     <tt>InstrInfo</tt>, and other fundamental classes are defined.</li> | 
 |  | 
 | <li><tt>TargetSelectionDAG.td</tt>— Used by <tt>SelectionDAG</tt> | 
 |     instruction selection generators, contains <tt>SDTC*</tt> classes (selection | 
 |     DAG type constraint), definitions of <tt>SelectionDAG</tt> nodes (such as | 
 |     <tt>imm</tt>, <tt>cond</tt>, <tt>bb</tt>, <tt>add</tt>, <tt>fadd</tt>, | 
 |     <tt>sub</tt>), and pattern support (<tt>Pattern</tt>, <tt>Pat</tt>, | 
 |     <tt>PatFrag</tt>, <tt>PatLeaf</tt>, <tt>ComplexPattern</tt>.</li> | 
 |  | 
 | <li><tt>XXXInstrFormats.td</tt> — Patterns for definitions of | 
 |     target-specific instructions.</li> | 
 |  | 
 | <li><tt>XXXInstrInfo.td</tt> — Target-specific definitions of instruction | 
 |     templates, condition codes, and instructions of an instruction set. For | 
 |     architecture modifications, a different file name may be used. For example, | 
 |     for Pentium with SSE instruction, this file is <tt>X86InstrSSE.td</tt>, and | 
 |     for Pentium with MMX, this file is <tt>X86InstrMMX.td</tt>.</li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | There is also a target-specific <tt>XXX.td</tt> file, where <tt>XXX</tt> is the | 
 | name of the target. The <tt>XXX.td</tt> file includes the other <tt>.td</tt> | 
 | input files, but its contents are only directly important for subtargets. | 
 | </p> | 
 |  | 
 | <p> | 
 | You should describe a concrete target-specific class <tt>XXXInstrInfo</tt> that | 
 | represents machine instructions supported by a target machine. | 
 | <tt>XXXInstrInfo</tt> contains an array of <tt>XXXInstrDescriptor</tt> objects, | 
 | each of which describes one instruction. An instruction descriptor defines:</p> | 
 |  | 
 | <ul> | 
 | <li>Opcode mnemonic</li> | 
 |  | 
 | <li>Number of operands</li> | 
 |  | 
 | <li>List of implicit register definitions and uses</li> | 
 |  | 
 | <li>Target-independent properties (such as memory access, is commutable)</li> | 
 |  | 
 | <li>Target-specific flags </li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | The Instruction class (defined in <tt>Target.td</tt>) is mostly used as a base | 
 | for more complex instruction classes. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre>class Instruction { | 
 |   string Namespace = ""; | 
 |   dag OutOperandList;       // An dag containing the MI def operand list. | 
 |   dag InOperandList;        // An dag containing the MI use operand list. | 
 |   string AsmString = "";    // The .s format to print the instruction with. | 
 |   list<dag> Pattern;  // Set to the DAG pattern for this instruction | 
 |   list<Register> Uses = [];  | 
 |   list<Register> Defs = []; | 
 |   list<Predicate> Predicates = [];  // predicates turned into isel match code | 
 |   ... remainder not shown for space ... | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | A <tt>SelectionDAG</tt> node (<tt>SDNode</tt>) should contain an object | 
 | representing a target-specific instruction that is defined | 
 | in <tt>XXXInstrInfo.td</tt>. The instruction objects should represent | 
 | instructions from the architecture manual of the target machine (such as the | 
 | SPARC Architecture Manual for the SPARC target). | 
 | </p> | 
 |  | 
 | <p> | 
 | A single instruction from the architecture manual is often modeled as multiple | 
 | target instructions, depending upon its operands. For example, a manual might | 
 | describe an add instruction that takes a register or an immediate operand. An | 
 | LLVM target could model this with two instructions named <tt>ADDri</tt> and | 
 | <tt>ADDrr</tt>. | 
 | </p> | 
 |  | 
 | <p> | 
 | You should define a class for each instruction category and define each opcode | 
 | as a subclass of the category with appropriate parameters such as the fixed | 
 | binary encoding of opcodes and extended opcodes. You should map the register | 
 | bits to the bits of the instruction in which they are encoded (for the | 
 | JIT). Also you should specify how the instruction should be printed when the | 
 | automatic assembly printer is used. | 
 | </p> | 
 |  | 
 | <p> | 
 | As is described in the SPARC Architecture Manual, Version 8, there are three | 
 | major 32-bit formats for instructions. Format 1 is only for the <tt>CALL</tt> | 
 | instruction. Format 2 is for branch on condition codes and <tt>SETHI</tt> (set | 
 | high bits of a register) instructions.  Format 3 is for other instructions. | 
 | </p> | 
 |  | 
 | <p> | 
 | Each of these formats has corresponding classes in <tt>SparcInstrFormat.td</tt>. | 
 | <tt>InstSP</tt> is a base class for other instruction classes. Additional base | 
 | classes are specified for more precise formats: for example | 
 | in <tt>SparcInstrFormat.td</tt>, <tt>F2_1</tt> is for <tt>SETHI</tt>, | 
 | and <tt>F2_2</tt> is for branches. There are three other base | 
 | classes: <tt>F3_1</tt> for register/register operations, <tt>F3_2</tt> for | 
 | register/immediate operations, and <tt>F3_3</tt> for floating-point | 
 | operations. <tt>SparcInstrInfo.td</tt> also adds the base class Pseudo for | 
 | synthetic SPARC instructions. | 
 | </p> | 
 |  | 
 | <p> | 
 | <tt>SparcInstrInfo.td</tt> largely consists of operand and instruction | 
 | definitions for the SPARC target. In <tt>SparcInstrInfo.td</tt>, the following | 
 | target description file entry, <tt>LDrr</tt>, defines the Load Integer | 
 | instruction for a Word (the <tt>LD</tt> SPARC opcode) from a memory address to a | 
 | register. The first parameter, the value 3 (<tt>11<sub>2</sub></tt>), is the | 
 | operation value for this category of operation. The second parameter | 
 | (<tt>000000<sub>2</sub></tt>) is the specific operation value | 
 | for <tt>LD</tt>/Load Word. The third parameter is the output destination, which | 
 | is a register operand and defined in the <tt>Register</tt> target description | 
 | file (<tt>IntRegs</tt>). | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre>def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr), | 
 |                  "ld [$addr], $dst", | 
 |                  [(set IntRegs:$dst, (load ADDRrr:$addr))]>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | The fourth parameter is the input source, which uses the address | 
 | operand <tt>MEMrr</tt> that is defined earlier in <tt>SparcInstrInfo.td</tt>: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre>def MEMrr : Operand<i32> { | 
 |   let PrintMethod = "printMemOperand"; | 
 |   let MIOperandInfo = (ops IntRegs, IntRegs); | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | The fifth parameter is a string that is used by the assembly printer and can be | 
 | left as an empty string until the assembly printer interface is implemented. The | 
 | sixth and final parameter is the pattern used to match the instruction during | 
 | the SelectionDAG Select Phase described in | 
 | (<a href="http://www.llvm.org/docs/CodeGenerator.html">The LLVM | 
 | Target-Independent Code Generator</a>).  This parameter is detailed in the next | 
 | section, <a href="#InstructionSelector">Instruction Selector</a>. | 
 | </p> | 
 |  | 
 | <p> | 
 | Instruction class definitions are not overloaded for different operand types, so | 
 | separate versions of instructions are needed for register, memory, or immediate | 
 | value operands. For example, to perform a Load Integer instruction for a Word | 
 | from an immediate operand to a register, the following instruction class is | 
 | defined: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre>def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr), | 
 |                  "ld [$addr], $dst", | 
 |                  [(set IntRegs:$dst, (load ADDRri:$addr))]>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | Writing these definitions for so many similar instructions can involve a lot of | 
 | cut and paste. In td files, the <tt>multiclass</tt> directive enables the | 
 | creation of templates to define several instruction classes at once (using | 
 | the <tt>defm</tt> directive). For example in <tt>SparcInstrInfo.td</tt>, the | 
 | <tt>multiclass</tt> pattern <tt>F3_12</tt> is defined to create 2 instruction | 
 | classes each time <tt>F3_12</tt> is invoked: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre>multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> { | 
 |   def rr  : F3_1 <2, Op3Val,  | 
 |                  (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), | 
 |                  !strconcat(OpcStr, " $b, $c, $dst"), | 
 |                  [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>; | 
 |   def ri  : F3_2 <2, Op3Val, | 
 |                  (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), | 
 |                  !strconcat(OpcStr, " $b, $c, $dst"), | 
 |                  [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | So when the <tt>defm</tt> directive is used for the <tt>XOR</tt> | 
 | and <tt>ADD</tt> instructions, as seen below, it creates four instruction | 
 | objects: <tt>XORrr</tt>, <tt>XORri</tt>, <tt>ADDrr</tt>, and <tt>ADDri</tt>. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | defm XOR   : F3_12<"xor", 0b000011, xor>; | 
 | defm ADD   : F3_12<"add", 0b000000, add>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | <tt>SparcInstrInfo.td</tt> also includes definitions for condition codes that | 
 | are referenced by branch instructions. The following definitions | 
 | in <tt>SparcInstrInfo.td</tt> indicate the bit location of the SPARC condition | 
 | code. For example, the 10<sup>th</sup> bit represents the 'greater than' | 
 | condition for integers, and the 22<sup>nd</sup> bit represents the 'greater | 
 | than' condition for floats. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def ICC_NE  : ICC_VAL< 9>;  // Not Equal | 
 | def ICC_E   : ICC_VAL< 1>;  // Equal | 
 | def ICC_G   : ICC_VAL<10>;  // Greater | 
 | ... | 
 | def FCC_U   : FCC_VAL<23>;  // Unordered | 
 | def FCC_G   : FCC_VAL<22>;  // Greater | 
 | def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater | 
 | ... | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | (Note that <tt>Sparc.h</tt> also defines enums that correspond to the same SPARC | 
 | condition codes. Care must be taken to ensure the values in <tt>Sparc.h</tt> | 
 | correspond to the values in <tt>SparcInstrInfo.td</tt>. I.e., | 
 | <tt>SPCC::ICC_NE = 9</tt>, <tt>SPCC::FCC_U = 23</tt> and so on.) | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="operandMapping">Instruction Operand Mapping</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | The code generator backend maps instruction operands to fields in the | 
 | instruction.  Operands are assigned to unbound fields in the instruction in the | 
 | order they are defined. Fields are bound when they are assigned a value.  For | 
 | example, the Sparc target defines the <tt>XNORrr</tt> instruction as | 
 | a <tt>F3_1</tt> format instruction having three operands. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def XNORrr  : F3_1<2, 0b000111, | 
 |                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), | 
 |                    "xnor $b, $c, $dst", | 
 |                    [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | The instruction templates in <tt>SparcInstrFormats.td</tt> show the base class | 
 | for <tt>F3_1</tt> is <tt>InstSP</tt>. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction { | 
 |   field bits<32> Inst; | 
 |   let Namespace = "SP"; | 
 |   bits<2> op; | 
 |   let Inst{31-30} = op;        | 
 |   dag OutOperandList = outs; | 
 |   dag InOperandList = ins; | 
 |   let AsmString   = asmstr; | 
 |   let Pattern = pattern; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p><tt>InstSP</tt> leaves the <tt>op</tt> field unbound.</p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | class F3<dag outs, dag ins, string asmstr, list<dag> pattern> | 
 |     : InstSP<outs, ins, asmstr, pattern> { | 
 |   bits<5> rd; | 
 |   bits<6> op3; | 
 |   bits<5> rs1; | 
 |   let op{1} = 1;   // Op = 2 or 3 | 
 |   let Inst{29-25} = rd; | 
 |   let Inst{24-19} = op3; | 
 |   let Inst{18-14} = rs1; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | <tt>F3</tt> binds the <tt>op</tt> field and defines the <tt>rd</tt>, | 
 | <tt>op3</tt>, and <tt>rs1</tt> fields.  <tt>F3</tt> format instructions will | 
 | bind the operands <tt>rd</tt>, <tt>op3</tt>, and <tt>rs1</tt> fields. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins, | 
 |            string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> { | 
 |   bits<8> asi = 0; // asi not currently used | 
 |   bits<5> rs2; | 
 |   let op         = opVal; | 
 |   let op3        = op3val; | 
 |   let Inst{13}   = 0;     // i field = 0 | 
 |   let Inst{12-5} = asi;   // address space identifier | 
 |   let Inst{4-0}  = rs2; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | <tt>F3_1</tt> binds the <tt>op3</tt> field and defines the <tt>rs2</tt> | 
 | fields.  <tt>F3_1</tt> format instructions will bind the operands to the <tt>rd</tt>, | 
 | <tt>rs1</tt>, and <tt>rs2</tt> fields. This results in the <tt>XNORrr</tt> | 
 | instruction binding <tt>$dst</tt>, <tt>$b</tt>, and <tt>$c</tt> operands to | 
 | the <tt>rd</tt>, <tt>rs1</tt>, and <tt>rs2</tt> fields respectively. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="implementInstr">Implement a subclass of </a> | 
 |   <a href="http://www.llvm.org/docs/CodeGenerator.html#targetinstrinfo">TargetInstrInfo</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | The final step is to hand code portions of <tt>XXXInstrInfo</tt>, which | 
 | implements the interface described in <tt>TargetInstrInfo.h</tt>. These | 
 | functions return <tt>0</tt> or a Boolean or they assert, unless | 
 | overridden. Here's a list of functions that are overridden for the SPARC | 
 | implementation in <tt>SparcInstrInfo.cpp</tt>: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li><tt>isMoveInstr</tt> — Return true if the instruction is a register to | 
 |     register move; false, otherwise.</li> | 
 |  | 
 | <li><tt>isLoadFromStackSlot</tt> — If the specified machine instruction is | 
 |     a direct load from a stack slot, return the register number of the | 
 |     destination and the <tt>FrameIndex</tt> of the stack slot.</li> | 
 |  | 
 | <li><tt>isStoreToStackSlot</tt> — If the specified machine instruction is | 
 |     a direct store to a stack slot, return the register number of the | 
 |     destination and the <tt>FrameIndex</tt> of the stack slot.</li> | 
 |  | 
 | <li><tt>copyRegToReg</tt> — Copy values between a pair of registers.</li> | 
 |  | 
 | <li><tt>storeRegToStackSlot</tt> — Store a register value to a stack | 
 |     slot.</li> | 
 |  | 
 | <li><tt>loadRegFromStackSlot</tt> — Load a register value from a stack | 
 |     slot.</li> | 
 |  | 
 | <li><tt>storeRegToAddr</tt> — Store a register value to memory.</li> | 
 |  | 
 | <li><tt>loadRegFromAddr</tt> — Load a register value from memory.</li> | 
 |  | 
 | <li><tt>foldMemoryOperand</tt> — Attempt to combine instructions of any | 
 |     load or store instruction for the specified operand(s).</li> | 
 | </ul> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="branchFolding">Branch Folding and If Conversion</a> | 
 | </div> | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | Performance can be improved by combining instructions or by eliminating | 
 | instructions that are never reached. The <tt>AnalyzeBranch</tt> method | 
 | in <tt>XXXInstrInfo</tt> may be implemented to examine conditional instructions | 
 | and remove unnecessary instructions. <tt>AnalyzeBranch</tt> looks at the end of | 
 | a machine basic block (MBB) for opportunities for improvement, such as branch | 
 | folding and if conversion. The <tt>BranchFolder</tt> and <tt>IfConverter</tt> | 
 | machine function passes (see the source files <tt>BranchFolding.cpp</tt> and | 
 | <tt>IfConversion.cpp</tt> in the <tt>lib/CodeGen</tt> directory) call | 
 | <tt>AnalyzeBranch</tt> to improve the control flow graph that represents the | 
 | instructions. | 
 | </p> | 
 |  | 
 | <p> | 
 | Several implementations of <tt>AnalyzeBranch</tt> (for ARM, Alpha, and X86) can | 
 | be examined as models for your own <tt>AnalyzeBranch</tt> implementation. Since | 
 | SPARC does not implement a useful <tt>AnalyzeBranch</tt>, the ARM target | 
 | implementation is shown below. | 
 | </p> | 
 |  | 
 | <p><tt>AnalyzeBranch</tt> returns a Boolean value and takes four parameters:</p> | 
 |  | 
 | <ul> | 
 | <li><tt>MachineBasicBlock &MBB</tt> — The incoming block to be | 
 |     examined.</li> | 
 |  | 
 | <li><tt>MachineBasicBlock *&TBB</tt> — A destination block that is | 
 |     returned. For a conditional branch that evaluates to true, <tt>TBB</tt> is | 
 |     the destination.</li> | 
 |  | 
 | <li><tt>MachineBasicBlock *&FBB</tt> — For a conditional branch that | 
 |     evaluates to false, <tt>FBB</tt> is returned as the destination.</li> | 
 |  | 
 | <li><tt>std::vector<MachineOperand> &Cond</tt> — List of | 
 |     operands to evaluate a condition for a conditional branch.</li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | In the simplest case, if a block ends without a branch, then it falls through to | 
 | the successor block. No destination blocks are specified for either <tt>TBB</tt> | 
 | or <tt>FBB</tt>, so both parameters return <tt>NULL</tt>. The start of | 
 | the <tt>AnalyzeBranch</tt> (see code below for the ARM target) shows the | 
 | function parameters and the code for the simplest case. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre>bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, | 
 |         MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, | 
 |         std::vector<MachineOperand> &Cond) const | 
 | { | 
 |   MachineBasicBlock::iterator I = MBB.end(); | 
 |   if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) | 
 |     return false; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | If a block ends with a single unconditional branch instruction, then | 
 | <tt>AnalyzeBranch</tt> (shown below) should return the destination of that | 
 | branch in the <tt>TBB</tt> parameter. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 |   if (LastOpc == ARM::B || LastOpc == ARM::tB) { | 
 |     TBB = LastInst->getOperand(0).getMBB(); | 
 |     return false; | 
 |   } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | If a block ends with two unconditional branches, then the second branch is never | 
 | reached. In that situation, as shown below, remove the last branch instruction | 
 | and return the penultimate branch in the <tt>TBB</tt> parameter. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 |   if ((SecondLastOpc == ARM::B || SecondLastOpc==ARM::tB) && | 
 |       (LastOpc == ARM::B || LastOpc == ARM::tB)) { | 
 |     TBB = SecondLastInst->getOperand(0).getMBB(); | 
 |     I = LastInst; | 
 |     I->eraseFromParent(); | 
 |     return false; | 
 |   } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | A block may end with a single conditional branch instruction that falls through | 
 | to successor block if the condition evaluates to false. In that case, | 
 | <tt>AnalyzeBranch</tt> (shown below) should return the destination of that | 
 | conditional branch in the <tt>TBB</tt> parameter and a list of operands in | 
 | the <tt>Cond</tt> parameter to evaluate the condition. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 |   if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) { | 
 |     // Block ends with fall-through condbranch. | 
 |     TBB = LastInst->getOperand(0).getMBB(); | 
 |     Cond.push_back(LastInst->getOperand(1)); | 
 |     Cond.push_back(LastInst->getOperand(2)); | 
 |     return false; | 
 |   } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | If a block ends with both a conditional branch and an ensuing unconditional | 
 | branch, then <tt>AnalyzeBranch</tt> (shown below) should return the conditional | 
 | branch destination (assuming it corresponds to a conditional evaluation of | 
 | '<tt>true</tt>') in the <tt>TBB</tt> parameter and the unconditional branch | 
 | destination in the <tt>FBB</tt> (corresponding to a conditional evaluation of | 
 | '<tt>false</tt>').  A list of operands to evaluate the condition should be | 
 | returned in the <tt>Cond</tt> parameter. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 |   unsigned SecondLastOpc = SecondLastInst->getOpcode(); | 
 |  | 
 |   if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) || | 
 |       (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) { | 
 |     TBB =  SecondLastInst->getOperand(0).getMBB(); | 
 |     Cond.push_back(SecondLastInst->getOperand(1)); | 
 |     Cond.push_back(SecondLastInst->getOperand(2)); | 
 |     FBB = LastInst->getOperand(0).getMBB(); | 
 |     return false; | 
 |   } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | For the last two cases (ending with a single conditional branch or ending with | 
 | one conditional and one unconditional branch), the operands returned in | 
 | the <tt>Cond</tt> parameter can be passed to methods of other instructions to | 
 | create new branches or perform other operations. An implementation | 
 | of <tt>AnalyzeBranch</tt> requires the helper methods <tt>RemoveBranch</tt> | 
 | and <tt>InsertBranch</tt> to manage subsequent operations. | 
 | </p> | 
 |  | 
 | <p> | 
 | <tt>AnalyzeBranch</tt> should return false indicating success in most circumstances. | 
 | <tt>AnalyzeBranch</tt> should only return true when the method is stumped about what to | 
 | do, for example, if a block has three terminating branches. <tt>AnalyzeBranch</tt> may | 
 | return true if it encounters a terminator it cannot handle, such as an indirect | 
 | branch. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="InstructionSelector">Instruction Selector</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | LLVM uses a <tt>SelectionDAG</tt> to represent LLVM IR instructions, and nodes | 
 | of the <tt>SelectionDAG</tt> ideally represent native target | 
 | instructions. During code generation, instruction selection passes are performed | 
 | to convert non-native DAG instructions into native target-specific | 
 | instructions. The pass described in <tt>XXXISelDAGToDAG.cpp</tt> is used to | 
 | match patterns and perform DAG-to-DAG instruction selection. Optionally, a pass | 
 | may be defined (in <tt>XXXBranchSelector.cpp</tt>) to perform similar DAG-to-DAG | 
 | operations for branch instructions. Later, the code in | 
 | <tt>XXXISelLowering.cpp</tt> replaces or removes operations and data types not | 
 | supported natively (legalizes) in a <tt>SelectionDAG</tt>. | 
 | </p> | 
 |  | 
 | <p> | 
 | TableGen generates code for instruction selection using the following target | 
 | description input files: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li><tt>XXXInstrInfo.td</tt> — Contains definitions of instructions in a | 
 |     target-specific instruction set, generates <tt>XXXGenDAGISel.inc</tt>, which | 
 |     is included in <tt>XXXISelDAGToDAG.cpp</tt>.</li> | 
 |  | 
 | <li><tt>XXXCallingConv.td</tt> — Contains the calling and return value | 
 |     conventions for the target architecture, and it generates | 
 |     <tt>XXXGenCallingConv.inc</tt>, which is included in | 
 |     <tt>XXXISelLowering.cpp</tt>.</li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | The implementation of an instruction selection pass must include a header that | 
 | declares the <tt>FunctionPass</tt> class or a subclass of <tt>FunctionPass</tt>. In | 
 | <tt>XXXTargetMachine.cpp</tt>, a Pass Manager (PM) should add each instruction | 
 | selection pass into the queue of passes to run. | 
 | </p> | 
 |  | 
 | <p> | 
 | The LLVM static compiler (<tt>llc</tt>) is an excellent tool for visualizing the | 
 | contents of DAGs. To display the <tt>SelectionDAG</tt> before or after specific | 
 | processing phases, use the command line options for <tt>llc</tt>, described | 
 | at <a href="http://llvm.org/docs/CodeGenerator.html#selectiondag_process"> | 
 | SelectionDAG Instruction Selection Process</a>. | 
 | </p> | 
 |  | 
 | <p> | 
 | To describe instruction selector behavior, you should add patterns for lowering | 
 | LLVM code into a <tt>SelectionDAG</tt> as the last parameter of the instruction | 
 | definitions in <tt>XXXInstrInfo.td</tt>. For example, in | 
 | <tt>SparcInstrInfo.td</tt>, this entry defines a register store operation, and | 
 | the last parameter describes a pattern with the store DAG operator. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src), | 
 |                  "st $src, [$addr]", [(store IntRegs:$src, ADDRrr:$addr)]>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | <tt>ADDRrr</tt> is a memory mode that is also defined in | 
 | <tt>SparcInstrInfo.td</tt>: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | The definition of <tt>ADDRrr</tt> refers to <tt>SelectADDRrr</tt>, which is a | 
 | function defined in an implementation of the Instructor Selector (such | 
 | as <tt>SparcISelDAGToDAG.cpp</tt>). | 
 | </p> | 
 |  | 
 | <p> | 
 | In <tt>lib/Target/TargetSelectionDAG.td</tt>, the DAG operator for store is | 
 | defined below: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def store : PatFrag<(ops node:$val, node:$ptr), | 
 |                     (st node:$val, node:$ptr), [{ | 
 |   if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) | 
 |     return !ST->isTruncatingStore() &&  | 
 |            ST->getAddressingMode() == ISD::UNINDEXED; | 
 |   return false; | 
 | }]>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | <tt>XXXInstrInfo.td</tt> also generates (in <tt>XXXGenDAGISel.inc</tt>) the | 
 | <tt>SelectCode</tt> method that is used to call the appropriate processing | 
 | method for an instruction. In this example, <tt>SelectCode</tt> | 
 | calls <tt>Select_ISD_STORE</tt> for the <tt>ISD::STORE</tt> opcode. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | SDNode *SelectCode(SDValue N) { | 
 |   ...  | 
 |   MVT::ValueType NVT = N.getNode()->getValueType(0); | 
 |   switch (N.getOpcode()) { | 
 |   case ISD::STORE: { | 
 |     switch (NVT) { | 
 |     default: | 
 |       return Select_ISD_STORE(N); | 
 |       break; | 
 |     } | 
 |     break; | 
 |   } | 
 |   ... | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | The pattern for <tt>STrr</tt> is matched, so elsewhere in | 
 | <tt>XXXGenDAGISel.inc</tt>, code for <tt>STrr</tt> is created for | 
 | <tt>Select_ISD_STORE</tt>. The <tt>Emit_22</tt> method is also generated | 
 | in <tt>XXXGenDAGISel.inc</tt> to complete the processing of this | 
 | instruction. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | SDNode *Select_ISD_STORE(const SDValue &N) { | 
 |   SDValue Chain = N.getOperand(0); | 
 |   if (Predicate_store(N.getNode())) { | 
 |     SDValue N1 = N.getOperand(1); | 
 |     SDValue N2 = N.getOperand(2); | 
 |     SDValue CPTmp0; | 
 |     SDValue CPTmp1; | 
 |  | 
 |     // Pattern: (st:void IntRegs:i32:$src,  | 
 |     //           ADDRrr:i32:$addr)<<P:Predicate_store>> | 
 |     // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src) | 
 |     // Pattern complexity = 13  cost = 1  size = 0 | 
 |     if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) && | 
 |         N1.getNode()->getValueType(0) == MVT::i32 && | 
 |         N2.getNode()->getValueType(0) == MVT::i32) { | 
 |       return Emit_22(N, SP::STrr, CPTmp0, CPTmp1); | 
 |     } | 
 | ... | 
 | </pre> | 
 | </div> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="LegalizePhase">The SelectionDAG Legalize Phase</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | The Legalize phase converts a DAG to use types and operations that are natively | 
 | supported by the target. For natively unsupported types and operations, you need | 
 | to add code to the target-specific XXXTargetLowering implementation to convert | 
 | unsupported types and operations to supported ones. | 
 | </p> | 
 |  | 
 | <p> | 
 | In the constructor for the <tt>XXXTargetLowering</tt> class, first use the | 
 | <tt>addRegisterClass</tt> method to specify which types are supports and which | 
 | register classes are associated with them. The code for the register classes are | 
 | generated by TableGen from <tt>XXXRegisterInfo.td</tt> and placed | 
 | in <tt>XXXGenRegisterInfo.h.inc</tt>. For example, the implementation of the | 
 | constructor for the SparcTargetLowering class (in | 
 | <tt>SparcISelLowering.cpp</tt>) starts with the following code: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | addRegisterClass(MVT::i32, SP::IntRegsRegisterClass); | 
 | addRegisterClass(MVT::f32, SP::FPRegsRegisterClass); | 
 | addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);  | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | You should examine the node types in the <tt>ISD</tt> namespace | 
 | (<tt>include/llvm/CodeGen/SelectionDAGNodes.h</tt>) and determine which | 
 | operations the target natively supports. For operations that do <b>not</b> have | 
 | native support, add a callback to the constructor for the XXXTargetLowering | 
 | class, so the instruction selection process knows what to do. The TargetLowering | 
 | class callback methods (declared in <tt>llvm/Target/TargetLowering.h</tt>) are: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li><tt>setOperationAction</tt> — General operation.</li> | 
 |  | 
 | <li><tt>setLoadExtAction</tt> — Load with extension.</li> | 
 |  | 
 | <li><tt>setTruncStoreAction</tt> — Truncating store.</li> | 
 |  | 
 | <li><tt>setIndexedLoadAction</tt> — Indexed load.</li> | 
 |  | 
 | <li><tt>setIndexedStoreAction</tt> — Indexed store.</li> | 
 |  | 
 | <li><tt>setConvertAction</tt> — Type conversion.</li> | 
 |  | 
 | <li><tt>setCondCodeAction</tt> — Support for a given condition code.</li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | Note: on older releases, <tt>setLoadXAction</tt> is used instead | 
 | of <tt>setLoadExtAction</tt>.  Also, on older releases, | 
 | <tt>setCondCodeAction</tt> may not be supported. Examine your release | 
 | to see what methods are specifically supported. | 
 | </p> | 
 |  | 
 | <p> | 
 | These callbacks are used to determine that an operation does or does not work | 
 | with a specified type (or types). And in all cases, the third parameter is | 
 | a <tt>LegalAction</tt> type enum value: <tt>Promote</tt>, <tt>Expand</tt>, | 
 | <tt>Custom</tt>, or <tt>Legal</tt>. <tt>SparcISelLowering.cpp</tt> | 
 | contains examples of all four <tt>LegalAction</tt> values. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="promote">Promote</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | For an operation without native support for a given type, the specified type may | 
 | be promoted to a larger type that is supported. For example, SPARC does not | 
 | support a sign-extending load for Boolean values (<tt>i1</tt> type), so | 
 | in <tt>SparcISelLowering.cpp</tt> the third parameter below, <tt>Promote</tt>, | 
 | changes <tt>i1</tt> type values to a large type before loading. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); | 
 | </pre> | 
 | </div> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="expand">Expand</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | For a type without native support, a value may need to be broken down further, | 
 | rather than promoted. For an operation without native support, a combination of | 
 | other operations may be used to similar effect. In SPARC, the floating-point | 
 | sine and cosine trig operations are supported by expansion to other operations, | 
 | as indicated by the third parameter, <tt>Expand</tt>, to | 
 | <tt>setOperationAction</tt>: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | setOperationAction(ISD::FSIN, MVT::f32, Expand); | 
 | setOperationAction(ISD::FCOS, MVT::f32, Expand); | 
 | </pre> | 
 | </div> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="custom">Custom</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | For some operations, simple type promotion or operation expansion may be | 
 | insufficient. In some cases, a special intrinsic function must be implemented. | 
 | </p> | 
 |  | 
 | <p> | 
 | For example, a constant value may require special treatment, or an operation may | 
 | require spilling and restoring registers in the stack and working with register | 
 | allocators. | 
 | </p> | 
 |  | 
 | <p> | 
 | As seen in <tt>SparcISelLowering.cpp</tt> code below, to perform a type | 
 | conversion from a floating point value to a signed integer, first the | 
 | <tt>setOperationAction</tt> should be called with <tt>Custom</tt> as the third | 
 | parameter: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); | 
 | </pre> | 
 | </div>     | 
 |  | 
 | <p> | 
 | In the <tt>LowerOperation</tt> method, for each <tt>Custom</tt> operation, a | 
 | case statement should be added to indicate what function to call. In the | 
 | following code, an <tt>FP_TO_SINT</tt> opcode will call | 
 | the <tt>LowerFP_TO_SINT</tt> method: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) { | 
 |   switch (Op.getOpcode()) { | 
 |   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); | 
 |   ... | 
 |   } | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | Finally, the <tt>LowerFP_TO_SINT</tt> method is implemented, using an FP | 
 | register to convert the floating-point value to an integer. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) { | 
 |   assert(Op.getValueType() == MVT::i32); | 
 |   Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0)); | 
 |   return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op); | 
 | } | 
 | </pre> | 
 | </div>     | 
 |  | 
 | </div> | 
 |  | 
 | <!-- _______________________________________________________________________ --> | 
 | <div class="doc_subsubsection"> | 
 |   <a name="legal">Legal</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | The <tt>Legal</tt> LegalizeAction enum value simply indicates that an | 
 | operation <b>is</b> natively supported. <tt>Legal</tt> represents the default | 
 | condition, so it is rarely used. In <tt>SparcISelLowering.cpp</tt>, the action | 
 | for <tt>CTPOP</tt> (an operation to count the bits set in an integer) is | 
 | natively supported only for SPARC v9. The following code enables | 
 | the <tt>Expand</tt> conversion technique for non-v9 SPARC implementations. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | setOperationAction(ISD::CTPOP, MVT::i32, Expand); | 
 | ... | 
 | if (TM.getSubtarget<SparcSubtarget>().isV9()) | 
 |   setOperationAction(ISD::CTPOP, MVT::i32, Legal); | 
 |   case ISD::SETULT: return SPCC::ICC_CS; | 
 |   case ISD::SETULE: return SPCC::ICC_LEU; | 
 |   case ISD::SETUGT: return SPCC::ICC_GU; | 
 |   case ISD::SETUGE: return SPCC::ICC_CC; | 
 |   } | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="callingConventions">Calling Conventions</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | To support target-specific calling conventions, <tt>XXXGenCallingConv.td</tt> | 
 | uses interfaces (such as CCIfType and CCAssignToReg) that are defined in | 
 | <tt>lib/Target/TargetCallingConv.td</tt>. TableGen can take the target | 
 | descriptor file <tt>XXXGenCallingConv.td</tt> and generate the header | 
 | file <tt>XXXGenCallingConv.inc</tt>, which is typically included | 
 | in <tt>XXXISelLowering.cpp</tt>. You can use the interfaces in | 
 | <tt>TargetCallingConv.td</tt> to specify: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li>The order of parameter allocation.</li> | 
 |  | 
 | <li>Where parameters and return values are placed (that is, on the stack or in | 
 |     registers).</li> | 
 |  | 
 | <li>Which registers may be used.</li> | 
 |  | 
 | <li>Whether the caller or callee unwinds the stack.</li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | The following example demonstrates the use of the <tt>CCIfType</tt> and | 
 | <tt>CCAssignToReg</tt> interfaces. If the <tt>CCIfType</tt> predicate is true | 
 | (that is, if the current argument is of type <tt>f32</tt> or <tt>f64</tt>), then | 
 | the action is performed. In this case, the <tt>CCAssignToReg</tt> action assigns | 
 | the argument value to the first available register: either <tt>R0</tt> | 
 | or <tt>R1</tt>. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>> | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | <tt>SparcCallingConv.td</tt> contains definitions for a target-specific | 
 | return-value calling convention (RetCC_Sparc32) and a basic 32-bit C calling | 
 | convention (<tt>CC_Sparc32</tt>). The definition of <tt>RetCC_Sparc32</tt> | 
 | (shown below) indicates which registers are used for specified scalar return | 
 | types. A single-precision float is returned to register <tt>F0</tt>, and a | 
 | double-precision float goes to register <tt>D0</tt>. A 32-bit integer is | 
 | returned in register <tt>I0</tt> or <tt>I1</tt>. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def RetCC_Sparc32 : CallingConv<[ | 
 |   CCIfType<[i32], CCAssignToReg<[I0, I1]>>, | 
 |   CCIfType<[f32], CCAssignToReg<[F0]>>, | 
 |   CCIfType<[f64], CCAssignToReg<[D0]>> | 
 | ]>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | The definition of <tt>CC_Sparc32</tt> in <tt>SparcCallingConv.td</tt> introduces | 
 | <tt>CCAssignToStack</tt>, which assigns the value to a stack slot with the | 
 | specified size and alignment. In the example below, the first parameter, 4, | 
 | indicates the size of the slot, and the second parameter, also 4, indicates the | 
 | stack alignment along 4-byte units. (Special cases: if size is zero, then the | 
 | ABI size is used; if alignment is zero, then the ABI alignment is used.) | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def CC_Sparc32 : CallingConv<[ | 
 |   // All arguments get passed in integer registers if there is space. | 
 |   CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>, | 
 |   CCAssignToStack<4, 4> | 
 | ]>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | <tt>CCDelegateTo</tt> is another commonly used interface, which tries to find a | 
 | specified sub-calling convention, and, if a match is found, it is invoked. In | 
 | the following example (in <tt>X86CallingConv.td</tt>), the definition of | 
 | <tt>RetCC_X86_32_C</tt> ends with <tt>CCDelegateTo</tt>. After the current value | 
 | is assigned to the register <tt>ST0</tt> or <tt>ST1</tt>, | 
 | the <tt>RetCC_X86Common</tt> is invoked. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def RetCC_X86_32_C : CallingConv<[ | 
 |   CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>, | 
 |   CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>, | 
 |   CCDelegateTo<RetCC_X86Common> | 
 | ]>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | <tt>CCIfCC</tt> is an interface that attempts to match the given name to the | 
 | current calling convention. If the name identifies the current calling | 
 | convention, then a specified action is invoked. In the following example (in | 
 | <tt>X86CallingConv.td</tt>), if the <tt>Fast</tt> calling convention is in use, | 
 | then <tt>RetCC_X86_32_Fast</tt> is invoked. If the <tt>SSECall</tt> calling | 
 | convention is in use, then <tt>RetCC_X86_32_SSE</tt> is invoked. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def RetCC_X86_32 : CallingConv<[ | 
 |   CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>, | 
 |   CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>, | 
 |   CCDelegateTo<RetCC_X86_32_C> | 
 | ]>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p>Other calling convention interfaces include:</p> | 
 |  | 
 | <ul> | 
 | <li><tt>CCIf <predicate, action></tt> — If the predicate matches, | 
 |     apply the action.</li> | 
 |  | 
 | <li><tt>CCIfInReg <action></tt> — If the argument is marked with the | 
 |     '<tt>inreg</tt>' attribute, then apply the action.</li> | 
 |  | 
 | <li><tt>CCIfNest <action></tt> — Inf the argument is marked with the | 
 |     '<tt>nest</tt>' attribute, then apply the action.</li> | 
 |  | 
 | <li><tt>CCIfNotVarArg <action></tt> — If the current function does | 
 |     not take a variable number of arguments, apply the action.</li> | 
 |  | 
 | <li><tt>CCAssignToRegWithShadow <registerList, shadowList></tt> — | 
 |     similar to <tt>CCAssignToReg</tt>, but with a shadow list of registers.</li> | 
 |  | 
 | <li><tt>CCPassByVal <size, align></tt> — Assign value to a stack | 
 |     slot with the minimum specified size and alignment.</li> | 
 |  | 
 | <li><tt>CCPromoteToType <type></tt> — Promote the current value to | 
 |     the specified type.</li> | 
 |  | 
 | <li><tt>CallingConv <[actions]></tt> — Define each calling | 
 |     convention that is supported.</li> | 
 | </ul> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="assemblyPrinter">Assembly Printer</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | During the code emission stage, the code generator may utilize an LLVM pass to | 
 | produce assembly output. To do this, you want to implement the code for a | 
 | printer that converts LLVM IR to a GAS-format assembly language for your target | 
 | machine, using the following steps: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li>Define all the assembly strings for your target, adding them to the | 
 |     instructions defined in the <tt>XXXInstrInfo.td</tt> file. | 
 |     (See <a href="#InstructionSet">Instruction Set</a>.)  TableGen will produce | 
 |     an output file (<tt>XXXGenAsmWriter.inc</tt>) with an implementation of | 
 |     the <tt>printInstruction</tt> method for the XXXAsmPrinter class.</li> | 
 |  | 
 | <li>Write <tt>XXXTargetAsmInfo.h</tt>, which contains the bare-bones declaration | 
 |     of the <tt>XXXTargetAsmInfo</tt> class (a subclass | 
 |     of <tt>TargetAsmInfo</tt>).</li> | 
 |  | 
 | <li>Write <tt>XXXTargetAsmInfo.cpp</tt>, which contains target-specific values | 
 |     for <tt>TargetAsmInfo</tt> properties and sometimes new implementations for | 
 |     methods.</li> | 
 |  | 
 | <li>Write <tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt> | 
 |     class that performs the LLVM-to-assembly conversion.</li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | The code in <tt>XXXTargetAsmInfo.h</tt> is usually a trivial declaration of the | 
 | <tt>XXXTargetAsmInfo</tt> class for use in <tt>XXXTargetAsmInfo.cpp</tt>. | 
 | Similarly, <tt>XXXTargetAsmInfo.cpp</tt> usually has a few declarations of | 
 | <tt>XXXTargetAsmInfo</tt> replacement values that override the default values | 
 | in <tt>TargetAsmInfo.cpp</tt>. For example in <tt>SparcTargetAsmInfo.cpp</tt>: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) { | 
 |   Data16bitsDirective = "\t.half\t"; | 
 |   Data32bitsDirective = "\t.word\t"; | 
 |   Data64bitsDirective = 0;  // .xword is only supported by V9. | 
 |   ZeroDirective = "\t.skip\t"; | 
 |   CommentString = "!"; | 
 |   ConstantPoolSection = "\t.section \".rodata\",#alloc\n"; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | The X86 assembly printer implementation (<tt>X86TargetAsmInfo</tt>) is an | 
 | example where the target specific <tt>TargetAsmInfo</tt> class uses an  | 
 | overridden methods: <tt>ExpandInlineAsm</tt>. | 
 | </p> | 
 |  | 
 | <p> | 
 | A target-specific implementation of AsmPrinter is written in | 
 | <tt>XXXAsmPrinter.cpp</tt>, which implements the <tt>AsmPrinter</tt> class that | 
 | converts the LLVM to printable assembly. The implementation must include the | 
 | following headers that have declarations for the <tt>AsmPrinter</tt> and | 
 | <tt>MachineFunctionPass</tt> classes. The <tt>MachineFunctionPass</tt> is a | 
 | subclass of <tt>FunctionPass</tt>. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | #include "llvm/CodeGen/AsmPrinter.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h"  | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | As a <tt>FunctionPass</tt>, <tt>AsmPrinter</tt> first | 
 | calls <tt>doInitialization</tt> to set up the <tt>AsmPrinter</tt>. In | 
 | <tt>SparcAsmPrinter</tt>, a <tt>Mangler</tt> object is instantiated to process | 
 | variable names. | 
 | </p> | 
 |  | 
 | <p> | 
 | In <tt>XXXAsmPrinter.cpp</tt>, the <tt>runOnMachineFunction</tt> method | 
 | (declared in <tt>MachineFunctionPass</tt>) must be implemented | 
 | for <tt>XXXAsmPrinter</tt>. In <tt>MachineFunctionPass</tt>, | 
 | the <tt>runOnFunction</tt> method invokes <tt>runOnMachineFunction</tt>. | 
 | Target-specific implementations of <tt>runOnMachineFunction</tt> differ, but | 
 | generally do the following to process each machine function: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li>Call <tt>SetupMachineFunction</tt> to perform initialization.</li> | 
 |  | 
 | <li>Call <tt>EmitConstantPool</tt> to print out (to the output stream) constants | 
 |     which have been spilled to memory.</li> | 
 |  | 
 | <li>Call <tt>EmitJumpTableInfo</tt> to print out jump tables used by the current | 
 |     function.</li> | 
 |  | 
 | <li>Print out the label for the current function.</li> | 
 |  | 
 | <li>Print out the code for the function, including basic block labels and the | 
 |     assembly for the instruction (using <tt>printInstruction</tt>)</li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | The <tt>XXXAsmPrinter</tt> implementation must also include the code generated | 
 | by TableGen that is output in the <tt>XXXGenAsmWriter.inc</tt> file. The code | 
 | in <tt>XXXGenAsmWriter.inc</tt> contains an implementation of the | 
 | <tt>printInstruction</tt> method that may call these methods: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li><tt>printOperand</tt></li> | 
 |  | 
 | <li><tt>printMemOperand</tt></li> | 
 |  | 
 | <li><tt>printCCOperand (for conditional statements)</tt></li> | 
 |  | 
 | <li><tt>printDataDirective</tt></li> | 
 |  | 
 | <li><tt>printDeclare</tt></li> | 
 |  | 
 | <li><tt>printImplicitDef</tt></li> | 
 |  | 
 | <li><tt>printInlineAsm</tt></li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | The implementations of <tt>printDeclare</tt>, <tt>printImplicitDef</tt>, | 
 | <tt>printInlineAsm</tt>, and <tt>printLabel</tt> in <tt>AsmPrinter.cpp</tt> are | 
 | generally adequate for printing assembly and do not need to be | 
 | overridden. | 
 | </p> | 
 |  | 
 | <p> | 
 | The <tt>printOperand</tt> method is implemented with a long switch/case | 
 | statement for the type of operand: register, immediate, basic block, external | 
 | symbol, global address, constant pool index, or jump table index. For an | 
 | instruction with a memory address operand, the <tt>printMemOperand</tt> method | 
 | should be implemented to generate the proper output. Similarly, | 
 | <tt>printCCOperand</tt> should be used to print a conditional operand. | 
 | </p> | 
 |  | 
 | <p><tt>doFinalization</tt> should be overridden in <tt>XXXAsmPrinter</tt>, and | 
 | it should be called to shut down the assembly printer. During | 
 | <tt>doFinalization</tt>, global variables and constants are printed to | 
 | output. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="subtargetSupport">Subtarget Support</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | Subtarget support is used to inform the code generation process of instruction | 
 | set variations for a given chip set.  For example, the LLVM SPARC implementation | 
 | provided covers three major versions of the SPARC microprocessor architecture: | 
 | Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a 64-bit | 
 | architecture), and the UltraSPARC architecture. V8 has 16 double-precision | 
 | floating-point registers that are also usable as either 32 single-precision or 8 | 
 | quad-precision registers.  V8 is also purely big-endian. V9 has 32 | 
 | double-precision floating-point registers that are also usable as 16 | 
 | quad-precision registers, but cannot be used as single-precision registers. The | 
 | UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set | 
 | extensions. | 
 | </p> | 
 |  | 
 | <p> | 
 | If subtarget support is needed, you should implement a target-specific | 
 | XXXSubtarget class for your architecture. This class should process the | 
 | command-line options <tt>-mcpu=</tt> and <tt>-mattr=</tt>. | 
 | </p> | 
 |  | 
 | <p> | 
 | TableGen uses definitions in the <tt>Target.td</tt> and <tt>Sparc.td</tt> files | 
 | to generate code in <tt>SparcGenSubtarget.inc</tt>. In <tt>Target.td</tt>, shown | 
 | below, the <tt>SubtargetFeature</tt> interface is defined. The first 4 string | 
 | parameters of the <tt>SubtargetFeature</tt> interface are a feature name, an | 
 | attribute set by the feature, the value of the attribute, and a description of | 
 | the feature. (The fifth parameter is a list of features whose presence is | 
 | implied, and its default value is an empty array.) | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | class SubtargetFeature<string n, string a,  string v, string d, | 
 |                        list<SubtargetFeature> i = []> { | 
 |   string Name = n; | 
 |   string Attribute = a; | 
 |   string Value = v; | 
 |   string Desc = d; | 
 |   list<SubtargetFeature> Implies = i; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | In the <tt>Sparc.td</tt> file, the SubtargetFeature is used to define the | 
 | following features. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true", | 
 |                      "Enable SPARC-V9 instructions">; | 
 | def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",  | 
 |                      "V8DeprecatedInsts", "true", | 
 |                      "Enable deprecated V8 instructions in V9 mode">; | 
 | def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true", | 
 |                      "Enable UltraSPARC Visual Instruction Set extensions">; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | Elsewhere in <tt>Sparc.td</tt>, the Proc class is defined and then is used to | 
 | define particular SPARC processor subtypes that may have the previously | 
 | described features. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | class Proc<string Name, list<SubtargetFeature> Features> | 
 |   : Processor<Name, NoItineraries, Features>; | 
 |   | 
 | def : Proc<"generic",         []>; | 
 | def : Proc<"v8",              []>; | 
 | def : Proc<"supersparc",      []>; | 
 | def : Proc<"sparclite",       []>; | 
 | def : Proc<"f934",            []>; | 
 | def : Proc<"hypersparc",      []>; | 
 | def : Proc<"sparclite86x",    []>; | 
 | def : Proc<"sparclet",        []>; | 
 | def : Proc<"tsc701",          []>; | 
 | def : Proc<"v9",              [FeatureV9]>; | 
 | def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>; | 
 | def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>; | 
 | def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | From <tt>Target.td</tt> and <tt>Sparc.td</tt> files, the resulting | 
 | SparcGenSubtarget.inc specifies enum values to identify the features, arrays of | 
 | constants to represent the CPU features and CPU subtypes, and the | 
 | ParseSubtargetFeatures method that parses the features string that sets | 
 | specified subtarget options. The generated <tt>SparcGenSubtarget.inc</tt> file | 
 | should be included in the <tt>SparcSubtarget.cpp</tt>. The target-specific | 
 | implementation of the XXXSubtarget method should follow this pseudocode: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) { | 
 |   // Set the default features | 
 |   // Determine default and user specified characteristics of the CPU | 
 |   // Call ParseSubtargetFeatures(FS, CPU) to parse the features string | 
 |   // Perform any additional operations | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 | <div class="doc_section"> | 
 |   <a name="jitSupport">JIT Support</a> | 
 | </div> | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | The implementation of a target machine optionally includes a Just-In-Time (JIT) | 
 | code generator that emits machine code and auxiliary structures as binary output | 
 | that can be written directly to memory.  To do this, implement JIT code | 
 | generation by performing the following steps: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li>Write an <tt>XXXCodeEmitter.cpp</tt> file that contains a machine function | 
 |     pass that transforms target-machine instructions into relocatable machine | 
 |     code.</li> | 
 |  | 
 | <li>Write an <tt>XXXJITInfo.cpp</tt> file that implements the JIT interfaces for | 
 |     target-specific code-generation activities, such as emitting machine code | 
 |     and stubs.</li> | 
 |  | 
 | <li>Modify <tt>XXXTargetMachine</tt> so that it provides a | 
 |     <tt>TargetJITInfo</tt> object through its <tt>getJITInfo</tt> method.</li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | There are several different approaches to writing the JIT support code. For | 
 | instance, TableGen and target descriptor files may be used for creating a JIT | 
 | code generator, but are not mandatory. For the Alpha and PowerPC target | 
 | machines, TableGen is used to generate <tt>XXXGenCodeEmitter.inc</tt>, which | 
 | contains the binary coding of machine instructions and the | 
 | <tt>getBinaryCodeForInstr</tt> method to access those codes. Other JIT | 
 | implementations do not. | 
 | </p> | 
 |  | 
 | <p> | 
 | Both <tt>XXXJITInfo.cpp</tt> and <tt>XXXCodeEmitter.cpp</tt> must include the | 
 | <tt>llvm/CodeGen/MachineCodeEmitter.h</tt> header file that defines the | 
 | <tt>MachineCodeEmitter</tt> class containing code for several callback functions | 
 | that write data (in bytes, words, strings, etc.) to the output stream. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="mce">Machine Code Emitter</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | In <tt>XXXCodeEmitter.cpp</tt>, a target-specific of the <tt>Emitter</tt> class | 
 | is implemented as a function pass (subclass | 
 | of <tt>MachineFunctionPass</tt>). The target-specific implementation | 
 | of <tt>runOnMachineFunction</tt> (invoked by | 
 | <tt>runOnFunction</tt> in <tt>MachineFunctionPass</tt>) iterates through the | 
 | <tt>MachineBasicBlock</tt> calls <tt>emitInstruction</tt> to process each | 
 | instruction and emit binary code. <tt>emitInstruction</tt> is largely | 
 | implemented with case statements on the instruction types defined in | 
 | <tt>XXXInstrInfo.h</tt>. For example, in <tt>X86CodeEmitter.cpp</tt>, | 
 | the <tt>emitInstruction</tt> method is built around the following switch/case | 
 | statements: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | switch (Desc->TSFlags & X86::FormMask) { | 
 | case X86II::Pseudo:  // for not yet implemented instructions  | 
 |    ...               // or pseudo-instructions | 
 |    break; | 
 | case X86II::RawFrm:  // for instructions with a fixed opcode value | 
 |    ... | 
 |    break; | 
 | case X86II::AddRegFrm: // for instructions that have one register operand  | 
 |    ...                 // added to their opcode | 
 |    break; | 
 | case X86II::MRMDestReg:// for instructions that use the Mod/RM byte | 
 |    ...                 // to specify a destination (register) | 
 |    break; | 
 | case X86II::MRMDestMem:// for instructions that use the Mod/RM byte | 
 |    ...                 // to specify a destination (memory) | 
 |    break; | 
 | case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte | 
 |    ...                 // to specify a source (register) | 
 |    break; | 
 | case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte | 
 |    ...                 // to specify a source (memory) | 
 |    break; | 
 | case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on  | 
 | case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and | 
 | case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field | 
 | case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data | 
 |    ...   | 
 |    break; | 
 | case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on | 
 | case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and | 
 | case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field | 
 | case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data | 
 |    ...   | 
 |    break; | 
 | case X86II::MRMInitReg: // for instructions whose source and | 
 |    ...                  // destination are the same register | 
 |    break; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | The implementations of these case statements often first emit the opcode and | 
 | then get the operand(s). Then depending upon the operand, helper methods may be | 
 | called to process the operand(s). For example, in <tt>X86CodeEmitter.cpp</tt>, | 
 | for the <tt>X86II::AddRegFrm</tt> case, the first data emitted | 
 | (by <tt>emitByte</tt>) is the opcode added to the register operand. Then an | 
 | object representing the machine operand, <tt>MO1</tt>, is extracted. The helper | 
 | methods such as <tt>isImmediate</tt>, | 
 | <tt>isGlobalAddress</tt>, <tt>isExternalSymbol</tt>, <tt>isConstantPoolIndex</tt>, and  | 
 | <tt>isJumpTableIndex</tt> determine the operand | 
 | type. (<tt>X86CodeEmitter.cpp</tt> also has private methods such | 
 | as <tt>emitConstant</tt>, <tt>emitGlobalAddress</tt>, | 
 | <tt>emitExternalSymbolAddress</tt>, <tt>emitConstPoolAddress</tt>, | 
 | and <tt>emitJumpTableAddress</tt> that emit the data into the output stream.) | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | case X86II::AddRegFrm: | 
 |   MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); | 
 |    | 
 |   if (CurOp != NumOps) { | 
 |     const MachineOperand &MO1 = MI.getOperand(CurOp++); | 
 |     unsigned Size = X86InstrInfo::sizeOfImm(Desc); | 
 |     if (MO1.isImmediate()) | 
 |       emitConstant(MO1.getImm(), Size); | 
 |     else { | 
 |       unsigned rt = Is64BitMode ? X86::reloc_pcrel_word | 
 |         : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); | 
 |       if (Opcode == X86::MOV64ri)  | 
 |         rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag? | 
 |       if (MO1.isGlobalAddress()) { | 
 |         bool NeedStub = isa<Function>(MO1.getGlobal()); | 
 |         bool isLazy = gvNeedsLazyPtr(MO1.getGlobal()); | 
 |         emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, | 
 |                           NeedStub, isLazy); | 
 |       } else if (MO1.isExternalSymbol()) | 
 |         emitExternalSymbolAddress(MO1.getSymbolName(), rt); | 
 |       else if (MO1.isConstantPoolIndex()) | 
 |         emitConstPoolAddress(MO1.getIndex(), rt); | 
 |       else if (MO1.isJumpTableIndex()) | 
 |         emitJumpTableAddress(MO1.getIndex(), rt); | 
 |     } | 
 |   } | 
 |   break; | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | In the previous example, <tt>XXXCodeEmitter.cpp</tt> uses the | 
 | variable <tt>rt</tt>, which is a RelocationType enum that may be used to | 
 | relocate addresses (for example, a global address with a PIC base offset). The | 
 | <tt>RelocationType</tt> enum for that target is defined in the short | 
 | target-specific <tt>XXXRelocations.h</tt> file. The <tt>RelocationType</tt> is used by | 
 | the <tt>relocate</tt> method defined in <tt>XXXJITInfo.cpp</tt> to rewrite | 
 | addresses for referenced global symbols. | 
 | </p> | 
 |  | 
 | <p> | 
 | For example, <tt>X86Relocations.h</tt> specifies the following relocation types | 
 | for the X86 addresses. In all four cases, the relocated value is added to the | 
 | value already in memory. For <tt>reloc_pcrel_word</tt> | 
 | and <tt>reloc_picrel_word</tt>, there is an additional initial adjustment. | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | enum RelocationType { | 
 |   reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc | 
 |   reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base | 
 |   reloc_absolute_word = 2, // absolute relocation; no additional adjustment  | 
 |   reloc_absolute_dword = 3 // absolute relocation; no additional adjustment | 
 | }; | 
 | </pre> | 
 | </div> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- ======================================================================= --> | 
 | <div class="doc_subsection"> | 
 |   <a name="targetJITInfo">Target JIT Info</a> | 
 | </div> | 
 |  | 
 | <div class="doc_text"> | 
 |  | 
 | <p> | 
 | <tt>XXXJITInfo.cpp</tt> implements the JIT interfaces for target-specific | 
 | code-generation activities, such as emitting machine code and stubs. At minimum, | 
 | a target-specific version of <tt>XXXJITInfo</tt> implements the following: | 
 | </p> | 
 |  | 
 | <ul> | 
 | <li><tt>getLazyResolverFunction</tt> — Initializes the JIT, gives the | 
 |     target a function that is used for compilation.</li> | 
 |  | 
 | <li><tt>emitFunctionStub</tt> — Returns a native function with a specified | 
 |     address for a callback function.</li> | 
 |  | 
 | <li><tt>relocate</tt> — Changes the addresses of referenced globals, based | 
 |     on relocation types.</li> | 
 |  | 
 | <li>Callback function that are wrappers to a function stub that is used when the | 
 |     real target is not initially known.</li> | 
 | </ul> | 
 |  | 
 | <p> | 
 | <tt>getLazyResolverFunction</tt> is generally trivial to implement. It makes the | 
 | incoming parameter as the global <tt>JITCompilerFunction</tt> and returns the | 
 | callback function that will be used a function wrapper. For the Alpha target | 
 | (in <tt>AlphaJITInfo.cpp</tt>), the <tt>getLazyResolverFunction</tt> | 
 | implementation is simply: | 
 | </p> | 
 |  | 
 | <div class="doc_code"> | 
 | <pre> | 
 | TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(   | 
 |                                             JITCompilerFn F) { | 
 |   JITCompilerFunction = F; | 
 |   return AlphaCompilationCallback; | 
 | } | 
 | </pre> | 
 | </div> | 
 |  | 
 | <p> | 
 | For the X86 target, the <tt>getLazyResolverFunction</tt> implementation is a | 
 | little more complication, because it returns a different callback function for | 
 | processors with SSE instructions and XMM registers. | 
 | </p> | 
 |  | 
 | <p> | 
 | The callback function initially saves and later restores the callee register | 
 | values, incoming arguments, and frame and return address. The callback function | 
 | needs low-level access to the registers or stack, so it is typically implemented | 
 | with assembler. | 
 | </p> | 
 |  | 
 | </div> | 
 |  | 
 | <!-- *********************************************************************** --> | 
 |  | 
 | <hr> | 
 | <address> | 
 |   <a href="http://jigsaw.w3.org/css-validator/check/referer"><img | 
 |   src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a> | 
 |   <a href="http://validator.w3.org/check/referer"><img | 
 |   src="http://www.w3.org/Icons/valid-html401-blue" alt="Valid HTML 4.01"></a> | 
 |  | 
 |   <a href="http://www.woo.com">Mason Woo</a> and <a href="http://misha.brukman.net">Misha Brukman</a><br> | 
 |   <a href="http://llvm.org">The LLVM Compiler Infrastructure</a> | 
 |   <br> | 
 |   Last modified: $Date$ | 
 | </address> | 
 |  | 
 | </body> | 
 | </html> |