| //===-- FunctionLoweringInfo.cpp ------------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This implements routines for translating functions from LLVM IR into |
| // Machine IR. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "function-lowering-info" |
| #include "FunctionLoweringInfo.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Module.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Analysis/DebugInfo.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Target/TargetFrameInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetLowering.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence |
| /// of insertvalue or extractvalue indices that identify a member, return |
| /// the linearized index of the start of the member. |
| /// |
| unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, |
| const unsigned *Indices, |
| const unsigned *IndicesEnd, |
| unsigned CurIndex) { |
| // Base case: We're done. |
| if (Indices && Indices == IndicesEnd) |
| return CurIndex; |
| |
| // Given a struct type, recursively traverse the elements. |
| if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| for (StructType::element_iterator EB = STy->element_begin(), |
| EI = EB, |
| EE = STy->element_end(); |
| EI != EE; ++EI) { |
| if (Indices && *Indices == unsigned(EI - EB)) |
| return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); |
| CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); |
| } |
| return CurIndex; |
| } |
| // Given an array type, recursively traverse the elements. |
| else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| const Type *EltTy = ATy->getElementType(); |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { |
| if (Indices && *Indices == i) |
| return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); |
| CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); |
| } |
| return CurIndex; |
| } |
| // We haven't found the type we're looking for, so keep searching. |
| return CurIndex + 1; |
| } |
| |
| /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of |
| /// EVTs that represent all the individual underlying |
| /// non-aggregate types that comprise it. |
| /// |
| /// If Offsets is non-null, it points to a vector to be filled in |
| /// with the in-memory offsets of each of the individual values. |
| /// |
| void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, |
| SmallVectorImpl<EVT> &ValueVTs, |
| SmallVectorImpl<uint64_t> *Offsets, |
| uint64_t StartingOffset) { |
| // Given a struct type, recursively traverse the elements. |
| if (const StructType *STy = dyn_cast<StructType>(Ty)) { |
| const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); |
| for (StructType::element_iterator EB = STy->element_begin(), |
| EI = EB, |
| EE = STy->element_end(); |
| EI != EE; ++EI) |
| ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, |
| StartingOffset + SL->getElementOffset(EI - EB)); |
| return; |
| } |
| // Given an array type, recursively traverse the elements. |
| if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| const Type *EltTy = ATy->getElementType(); |
| uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); |
| for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) |
| ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, |
| StartingOffset + i * EltSize); |
| return; |
| } |
| // Interpret void as zero return values. |
| if (Ty->isVoidTy()) |
| return; |
| // Base case: we can get an EVT for this LLVM IR type. |
| ValueVTs.push_back(TLI.getValueType(Ty)); |
| if (Offsets) |
| Offsets->push_back(StartingOffset); |
| } |
| |
| /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by |
| /// PHI nodes or outside of the basic block that defines it, or used by a |
| /// switch or atomic instruction, which may expand to multiple basic blocks. |
| static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { |
| if (isa<PHINode>(I)) return true; |
| const BasicBlock *BB = I->getParent(); |
| for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); |
| UI != E; ++UI) |
| if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI)) |
| return true; |
| return false; |
| } |
| |
| /// isOnlyUsedInEntryBlock - If the specified argument is only used in the |
| /// entry block, return true. This includes arguments used by switches, since |
| /// the switch may expand into multiple basic blocks. |
| static bool isOnlyUsedInEntryBlock(const Argument *A, bool EnableFastISel) { |
| // With FastISel active, we may be splitting blocks, so force creation |
| // of virtual registers for all non-dead arguments. |
| // Don't force virtual registers for byval arguments though, because |
| // fast-isel can't handle those in all cases. |
| if (EnableFastISel && !A->hasByValAttr()) |
| return A->use_empty(); |
| |
| const BasicBlock *Entry = A->getParent()->begin(); |
| for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); |
| UI != E; ++UI) |
| if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI)) |
| return false; // Use not in entry block. |
| return true; |
| } |
| |
| FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli) |
| : TLI(tli) { |
| } |
| |
| void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, |
| bool EnableFastISel) { |
| Fn = &fn; |
| MF = &mf; |
| RegInfo = &MF->getRegInfo(); |
| |
| // Create a vreg for each argument register that is not dead and is used |
| // outside of the entry block for the function. |
| for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); |
| AI != E; ++AI) |
| if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) |
| InitializeRegForValue(AI); |
| |
| // Initialize the mapping of values to registers. This is only set up for |
| // instruction values that are used outside of the block that defines |
| // them. |
| Function::const_iterator BB = Fn->begin(), EB = Fn->end(); |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { |
| const Type *Ty = AI->getAllocatedType(); |
| uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); |
| unsigned Align = |
| std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), |
| AI->getAlignment()); |
| |
| TySize *= CUI->getZExtValue(); // Get total allocated size. |
| if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. |
| StaticAllocaMap[AI] = |
| MF->getFrameInfo()->CreateStackObject(TySize, Align, false); |
| } |
| |
| for (; BB != EB; ++BB) |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) |
| if (!isa<AllocaInst>(I) || |
| !StaticAllocaMap.count(cast<AllocaInst>(I))) |
| InitializeRegForValue(I); |
| |
| // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This |
| // also creates the initial PHI MachineInstrs, though none of the input |
| // operands are populated. |
| for (BB = Fn->begin(); BB != EB; ++BB) { |
| MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); |
| MBBMap[BB] = MBB; |
| MF->push_back(MBB); |
| |
| // Transfer the address-taken flag. This is necessary because there could |
| // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only |
| // the first one should be marked. |
| if (BB->hasAddressTaken()) |
| MBB->setHasAddressTaken(); |
| |
| // Create Machine PHI nodes for LLVM PHI nodes, lowering them as |
| // appropriate. |
| const PHINode *PN; |
| DebugLoc DL; |
| for (BasicBlock::const_iterator |
| I = BB->begin(), E = BB->end(); I != E; ++I) { |
| |
| PN = dyn_cast<PHINode>(I); |
| if (!PN || PN->use_empty()) continue; |
| |
| unsigned PHIReg = ValueMap[PN]; |
| assert(PHIReg && "PHI node does not have an assigned virtual register!"); |
| |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, PN->getType(), ValueVTs); |
| for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { |
| EVT VT = ValueVTs[vti]; |
| unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT); |
| const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); |
| for (unsigned i = 0; i != NumRegisters; ++i) |
| BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); |
| PHIReg += NumRegisters; |
| } |
| } |
| } |
| |
| // Mark landing pad blocks. |
| for (BB = Fn->begin(); BB != EB; ++BB) |
| if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) |
| MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); |
| } |
| |
| /// clear - Clear out all the function-specific state. This returns this |
| /// FunctionLoweringInfo to an empty state, ready to be used for a |
| /// different function. |
| void FunctionLoweringInfo::clear() { |
| assert(CatchInfoFound.size() == CatchInfoLost.size() && |
| "Not all catch info was assigned to a landing pad!"); |
| |
| MBBMap.clear(); |
| ValueMap.clear(); |
| StaticAllocaMap.clear(); |
| #ifndef NDEBUG |
| CatchInfoLost.clear(); |
| CatchInfoFound.clear(); |
| #endif |
| LiveOutRegInfo.clear(); |
| } |
| |
| unsigned FunctionLoweringInfo::MakeReg(EVT VT) { |
| return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); |
| } |
| |
| /// CreateRegForValue - Allocate the appropriate number of virtual registers of |
| /// the correctly promoted or expanded types. Assign these registers |
| /// consecutive vreg numbers and return the first assigned number. |
| /// |
| /// In the case that the given value has struct or array type, this function |
| /// will assign registers for each member or element. |
| /// |
| unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { |
| SmallVector<EVT, 4> ValueVTs; |
| ComputeValueVTs(TLI, V->getType(), ValueVTs); |
| |
| unsigned FirstReg = 0; |
| for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { |
| EVT ValueVT = ValueVTs[Value]; |
| EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT); |
| |
| unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT); |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| unsigned R = MakeReg(RegisterVT); |
| if (!FirstReg) FirstReg = R; |
| } |
| } |
| return FirstReg; |
| } |
| |
| /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. |
| GlobalVariable *llvm::ExtractTypeInfo(Value *V) { |
| V = V->stripPointerCasts(); |
| GlobalVariable *GV = dyn_cast<GlobalVariable>(V); |
| |
| if (GV && GV->getName() == ".llvm.eh.catch.all.value") { |
| assert(GV->hasInitializer() && |
| "The EH catch-all value must have an initializer"); |
| Value *Init = GV->getInitializer(); |
| GV = dyn_cast<GlobalVariable>(Init); |
| if (!GV) V = cast<ConstantPointerNull>(Init); |
| } |
| |
| assert((GV || isa<ConstantPointerNull>(V)) && |
| "TypeInfo must be a global variable or NULL"); |
| return GV; |
| } |
| |
| /// AddCatchInfo - Extract the personality and type infos from an eh.selector |
| /// call, and add them to the specified machine basic block. |
| void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, |
| MachineBasicBlock *MBB) { |
| // Inform the MachineModuleInfo of the personality for this landing pad. |
| const ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(1)); |
| assert(CE->getOpcode() == Instruction::BitCast && |
| isa<Function>(CE->getOperand(0)) && |
| "Personality should be a function"); |
| MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); |
| |
| // Gather all the type infos for this landing pad and pass them along to |
| // MachineModuleInfo. |
| std::vector<const GlobalVariable *> TyInfo; |
| unsigned N = I.getNumOperands() - 1; |
| |
| for (unsigned i = N - 1; i > 1; --i) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) { |
| unsigned FilterLength = CI->getZExtValue(); |
| unsigned FirstCatch = i + FilterLength + !FilterLength; |
| assert (FirstCatch <= N && "Invalid filter length"); |
| |
| if (FirstCatch < N) { |
| TyInfo.reserve(N - FirstCatch); |
| for (unsigned j = FirstCatch; j < N; ++j) |
| TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); |
| MMI->addCatchTypeInfo(MBB, TyInfo); |
| TyInfo.clear(); |
| } |
| |
| if (!FilterLength) { |
| // Cleanup. |
| MMI->addCleanup(MBB); |
| } else { |
| // Filter. |
| TyInfo.reserve(FilterLength - 1); |
| for (unsigned j = i + 1; j < FirstCatch; ++j) |
| TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); |
| MMI->addFilterTypeInfo(MBB, TyInfo); |
| TyInfo.clear(); |
| } |
| |
| N = i; |
| } |
| } |
| |
| if (N > 2) { |
| TyInfo.reserve(N - 2); |
| for (unsigned j = 2; j < N; ++j) |
| TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); |
| MMI->addCatchTypeInfo(MBB, TyInfo); |
| } |
| } |
| |
| void llvm::CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB, |
| MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { |
| for (BasicBlock::const_iterator I = SrcBB->begin(), E = --SrcBB->end(); |
| I != E; ++I) |
| if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) { |
| // Apply the catch info to DestBB. |
| AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]); |
| #ifndef NDEBUG |
| if (!FLI.MBBMap[SrcBB]->isLandingPad()) |
| FLI.CatchInfoFound.insert(EHSel); |
| #endif |
| } |
| } |
| |
| /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being |
| /// processed uses a memory 'm' constraint. |
| bool |
| llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, |
| const TargetLowering &TLI) { |
| for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { |
| InlineAsm::ConstraintInfo &CI = CInfos[i]; |
| for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { |
| TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); |
| if (CType == TargetLowering::C_Memory) |
| return true; |
| } |
| |
| // Indirect operand accesses access memory. |
| if (CI.isIndirect) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// getFCmpCondCode - Return the ISD condition code corresponding to |
| /// the given LLVM IR floating-point condition code. This includes |
| /// consideration of global floating-point math flags. |
| /// |
| ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { |
| ISD::CondCode FPC, FOC; |
| switch (Pred) { |
| case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; |
| case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; |
| case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break; |
| case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break; |
| case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break; |
| case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break; |
| case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break; |
| case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break; |
| case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break; |
| case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; |
| case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break; |
| case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break; |
| case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break; |
| case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break; |
| case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break; |
| case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break; |
| default: |
| llvm_unreachable("Invalid FCmp predicate opcode!"); |
| FOC = FPC = ISD::SETFALSE; |
| break; |
| } |
| if (FiniteOnlyFPMath()) |
| return FOC; |
| else |
| return FPC; |
| } |
| |
| /// getICmpCondCode - Return the ISD condition code corresponding to |
| /// the given LLVM IR integer condition code. |
| /// |
| ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { |
| switch (Pred) { |
| case ICmpInst::ICMP_EQ: return ISD::SETEQ; |
| case ICmpInst::ICMP_NE: return ISD::SETNE; |
| case ICmpInst::ICMP_SLE: return ISD::SETLE; |
| case ICmpInst::ICMP_ULE: return ISD::SETULE; |
| case ICmpInst::ICMP_SGE: return ISD::SETGE; |
| case ICmpInst::ICMP_UGE: return ISD::SETUGE; |
| case ICmpInst::ICMP_SLT: return ISD::SETLT; |
| case ICmpInst::ICMP_ULT: return ISD::SETULT; |
| case ICmpInst::ICMP_SGT: return ISD::SETGT; |
| case ICmpInst::ICMP_UGT: return ISD::SETUGT; |
| default: |
| llvm_unreachable("Invalid ICmp predicate opcode!"); |
| return ISD::SETNE; |
| } |
| } |