|  | //===-- FunctionLoweringInfo.cpp ------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements routines for translating functions from LLVM IR into | 
|  | // Machine IR. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "function-lowering-info" | 
|  | #include "FunctionLoweringInfo.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/Analysis/DebugInfo.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetFrameInfo.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | /// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence | 
|  | /// of insertvalue or extractvalue indices that identify a member, return | 
|  | /// the linearized index of the start of the member. | 
|  | /// | 
|  | unsigned llvm::ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty, | 
|  | const unsigned *Indices, | 
|  | const unsigned *IndicesEnd, | 
|  | unsigned CurIndex) { | 
|  | // Base case: We're done. | 
|  | if (Indices && Indices == IndicesEnd) | 
|  | return CurIndex; | 
|  |  | 
|  | // Given a struct type, recursively traverse the elements. | 
|  | if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | for (StructType::element_iterator EB = STy->element_begin(), | 
|  | EI = EB, | 
|  | EE = STy->element_end(); | 
|  | EI != EE; ++EI) { | 
|  | if (Indices && *Indices == unsigned(EI - EB)) | 
|  | return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex); | 
|  | CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex); | 
|  | } | 
|  | return CurIndex; | 
|  | } | 
|  | // Given an array type, recursively traverse the elements. | 
|  | else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | const Type *EltTy = ATy->getElementType(); | 
|  | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { | 
|  | if (Indices && *Indices == i) | 
|  | return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex); | 
|  | CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex); | 
|  | } | 
|  | return CurIndex; | 
|  | } | 
|  | // We haven't found the type we're looking for, so keep searching. | 
|  | return CurIndex + 1; | 
|  | } | 
|  |  | 
|  | /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of | 
|  | /// EVTs that represent all the individual underlying | 
|  | /// non-aggregate types that comprise it. | 
|  | /// | 
|  | /// If Offsets is non-null, it points to a vector to be filled in | 
|  | /// with the in-memory offsets of each of the individual values. | 
|  | /// | 
|  | void llvm::ComputeValueVTs(const TargetLowering &TLI, const Type *Ty, | 
|  | SmallVectorImpl<EVT> &ValueVTs, | 
|  | SmallVectorImpl<uint64_t> *Offsets, | 
|  | uint64_t StartingOffset) { | 
|  | // Given a struct type, recursively traverse the elements. | 
|  | if (const StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy); | 
|  | for (StructType::element_iterator EB = STy->element_begin(), | 
|  | EI = EB, | 
|  | EE = STy->element_end(); | 
|  | EI != EE; ++EI) | 
|  | ComputeValueVTs(TLI, *EI, ValueVTs, Offsets, | 
|  | StartingOffset + SL->getElementOffset(EI - EB)); | 
|  | return; | 
|  | } | 
|  | // Given an array type, recursively traverse the elements. | 
|  | if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | const Type *EltTy = ATy->getElementType(); | 
|  | uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy); | 
|  | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) | 
|  | ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets, | 
|  | StartingOffset + i * EltSize); | 
|  | return; | 
|  | } | 
|  | // Interpret void as zero return values. | 
|  | if (Ty->isVoidTy()) | 
|  | return; | 
|  | // Base case: we can get an EVT for this LLVM IR type. | 
|  | ValueVTs.push_back(TLI.getValueType(Ty)); | 
|  | if (Offsets) | 
|  | Offsets->push_back(StartingOffset); | 
|  | } | 
|  |  | 
|  | /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by | 
|  | /// PHI nodes or outside of the basic block that defines it, or used by a | 
|  | /// switch or atomic instruction, which may expand to multiple basic blocks. | 
|  | static bool isUsedOutsideOfDefiningBlock(const Instruction *I) { | 
|  | if (isa<PHINode>(I)) return true; | 
|  | const BasicBlock *BB = I->getParent(); | 
|  | for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end(); | 
|  | UI != E; ++UI) | 
|  | if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isOnlyUsedInEntryBlock - If the specified argument is only used in the | 
|  | /// entry block, return true.  This includes arguments used by switches, since | 
|  | /// the switch may expand into multiple basic blocks. | 
|  | static bool isOnlyUsedInEntryBlock(const Argument *A, bool EnableFastISel) { | 
|  | // With FastISel active, we may be splitting blocks, so force creation | 
|  | // of virtual registers for all non-dead arguments. | 
|  | // Don't force virtual registers for byval arguments though, because | 
|  | // fast-isel can't handle those in all cases. | 
|  | if (EnableFastISel && !A->hasByValAttr()) | 
|  | return A->use_empty(); | 
|  |  | 
|  | const BasicBlock *Entry = A->getParent()->begin(); | 
|  | for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); | 
|  | UI != E; ++UI) | 
|  | if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI)) | 
|  | return false;  // Use not in entry block. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli) | 
|  | : TLI(tli) { | 
|  | } | 
|  |  | 
|  | void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf, | 
|  | bool EnableFastISel) { | 
|  | Fn = &fn; | 
|  | MF = &mf; | 
|  | RegInfo = &MF->getRegInfo(); | 
|  |  | 
|  | // Create a vreg for each argument register that is not dead and is used | 
|  | // outside of the entry block for the function. | 
|  | for (Function::const_arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end(); | 
|  | AI != E; ++AI) | 
|  | if (!isOnlyUsedInEntryBlock(AI, EnableFastISel)) | 
|  | InitializeRegForValue(AI); | 
|  |  | 
|  | // Initialize the mapping of values to registers.  This is only set up for | 
|  | // instruction values that are used outside of the block that defines | 
|  | // them. | 
|  | Function::const_iterator BB = Fn->begin(), EB = Fn->end(); | 
|  | for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) | 
|  | if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) { | 
|  | const Type *Ty = AI->getAllocatedType(); | 
|  | uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); | 
|  | unsigned Align = | 
|  | std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), | 
|  | AI->getAlignment()); | 
|  |  | 
|  | TySize *= CUI->getZExtValue();   // Get total allocated size. | 
|  | if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects. | 
|  | StaticAllocaMap[AI] = | 
|  | MF->getFrameInfo()->CreateStackObject(TySize, Align, false); | 
|  | } | 
|  |  | 
|  | for (; BB != EB; ++BB) | 
|  | for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) | 
|  | if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I)) | 
|  | if (!isa<AllocaInst>(I) || | 
|  | !StaticAllocaMap.count(cast<AllocaInst>(I))) | 
|  | InitializeRegForValue(I); | 
|  |  | 
|  | // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This | 
|  | // also creates the initial PHI MachineInstrs, though none of the input | 
|  | // operands are populated. | 
|  | for (BB = Fn->begin(); BB != EB; ++BB) { | 
|  | MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB); | 
|  | MBBMap[BB] = MBB; | 
|  | MF->push_back(MBB); | 
|  |  | 
|  | // Transfer the address-taken flag. This is necessary because there could | 
|  | // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only | 
|  | // the first one should be marked. | 
|  | if (BB->hasAddressTaken()) | 
|  | MBB->setHasAddressTaken(); | 
|  |  | 
|  | // Create Machine PHI nodes for LLVM PHI nodes, lowering them as | 
|  | // appropriate. | 
|  | const PHINode *PN; | 
|  | DebugLoc DL; | 
|  | for (BasicBlock::const_iterator | 
|  | I = BB->begin(), E = BB->end(); I != E; ++I) { | 
|  |  | 
|  | PN = dyn_cast<PHINode>(I); | 
|  | if (!PN || PN->use_empty()) continue; | 
|  |  | 
|  | unsigned PHIReg = ValueMap[PN]; | 
|  | assert(PHIReg && "PHI node does not have an assigned virtual register!"); | 
|  |  | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, PN->getType(), ValueVTs); | 
|  | for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { | 
|  | EVT VT = ValueVTs[vti]; | 
|  | unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT); | 
|  | const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); | 
|  | for (unsigned i = 0; i != NumRegisters; ++i) | 
|  | BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i); | 
|  | PHIReg += NumRegisters; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Mark landing pad blocks. | 
|  | for (BB = Fn->begin(); BB != EB; ++BB) | 
|  | if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator())) | 
|  | MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); | 
|  | } | 
|  |  | 
|  | /// clear - Clear out all the function-specific state. This returns this | 
|  | /// FunctionLoweringInfo to an empty state, ready to be used for a | 
|  | /// different function. | 
|  | void FunctionLoweringInfo::clear() { | 
|  | assert(CatchInfoFound.size() == CatchInfoLost.size() && | 
|  | "Not all catch info was assigned to a landing pad!"); | 
|  |  | 
|  | MBBMap.clear(); | 
|  | ValueMap.clear(); | 
|  | StaticAllocaMap.clear(); | 
|  | #ifndef NDEBUG | 
|  | CatchInfoLost.clear(); | 
|  | CatchInfoFound.clear(); | 
|  | #endif | 
|  | LiveOutRegInfo.clear(); | 
|  | } | 
|  |  | 
|  | unsigned FunctionLoweringInfo::MakeReg(EVT VT) { | 
|  | return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); | 
|  | } | 
|  |  | 
|  | /// CreateRegForValue - Allocate the appropriate number of virtual registers of | 
|  | /// the correctly promoted or expanded types.  Assign these registers | 
|  | /// consecutive vreg numbers and return the first assigned number. | 
|  | /// | 
|  | /// In the case that the given value has struct or array type, this function | 
|  | /// will assign registers for each member or element. | 
|  | /// | 
|  | unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, V->getType(), ValueVTs); | 
|  |  | 
|  | unsigned FirstReg = 0; | 
|  | for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { | 
|  | EVT ValueVT = ValueVTs[Value]; | 
|  | EVT RegisterVT = TLI.getRegisterType(V->getContext(), ValueVT); | 
|  |  | 
|  | unsigned NumRegs = TLI.getNumRegisters(V->getContext(), ValueVT); | 
|  | for (unsigned i = 0; i != NumRegs; ++i) { | 
|  | unsigned R = MakeReg(RegisterVT); | 
|  | if (!FirstReg) FirstReg = R; | 
|  | } | 
|  | } | 
|  | return FirstReg; | 
|  | } | 
|  |  | 
|  | /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V. | 
|  | GlobalVariable *llvm::ExtractTypeInfo(Value *V) { | 
|  | V = V->stripPointerCasts(); | 
|  | GlobalVariable *GV = dyn_cast<GlobalVariable>(V); | 
|  |  | 
|  | if (GV && GV->getName() == ".llvm.eh.catch.all.value") { | 
|  | assert(GV->hasInitializer() && | 
|  | "The EH catch-all value must have an initializer"); | 
|  | Value *Init = GV->getInitializer(); | 
|  | GV = dyn_cast<GlobalVariable>(Init); | 
|  | if (!GV) V = cast<ConstantPointerNull>(Init); | 
|  | } | 
|  |  | 
|  | assert((GV || isa<ConstantPointerNull>(V)) && | 
|  | "TypeInfo must be a global variable or NULL"); | 
|  | return GV; | 
|  | } | 
|  |  | 
|  | /// AddCatchInfo - Extract the personality and type infos from an eh.selector | 
|  | /// call, and add them to the specified machine basic block. | 
|  | void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI, | 
|  | MachineBasicBlock *MBB) { | 
|  | // Inform the MachineModuleInfo of the personality for this landing pad. | 
|  | const ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(1)); | 
|  | assert(CE->getOpcode() == Instruction::BitCast && | 
|  | isa<Function>(CE->getOperand(0)) && | 
|  | "Personality should be a function"); | 
|  | MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0))); | 
|  |  | 
|  | // Gather all the type infos for this landing pad and pass them along to | 
|  | // MachineModuleInfo. | 
|  | std::vector<const GlobalVariable *> TyInfo; | 
|  | unsigned N = I.getNumOperands() - 1; | 
|  |  | 
|  | for (unsigned i = N - 1; i > 1; --i) { | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) { | 
|  | unsigned FilterLength = CI->getZExtValue(); | 
|  | unsigned FirstCatch = i + FilterLength + !FilterLength; | 
|  | assert (FirstCatch <= N && "Invalid filter length"); | 
|  |  | 
|  | if (FirstCatch < N) { | 
|  | TyInfo.reserve(N - FirstCatch); | 
|  | for (unsigned j = FirstCatch; j < N; ++j) | 
|  | TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); | 
|  | MMI->addCatchTypeInfo(MBB, TyInfo); | 
|  | TyInfo.clear(); | 
|  | } | 
|  |  | 
|  | if (!FilterLength) { | 
|  | // Cleanup. | 
|  | MMI->addCleanup(MBB); | 
|  | } else { | 
|  | // Filter. | 
|  | TyInfo.reserve(FilterLength - 1); | 
|  | for (unsigned j = i + 1; j < FirstCatch; ++j) | 
|  | TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); | 
|  | MMI->addFilterTypeInfo(MBB, TyInfo); | 
|  | TyInfo.clear(); | 
|  | } | 
|  |  | 
|  | N = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (N > 2) { | 
|  | TyInfo.reserve(N - 2); | 
|  | for (unsigned j = 2; j < N; ++j) | 
|  | TyInfo.push_back(ExtractTypeInfo(I.getOperand(j))); | 
|  | MMI->addCatchTypeInfo(MBB, TyInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | void llvm::CopyCatchInfo(const BasicBlock *SrcBB, const BasicBlock *DestBB, | 
|  | MachineModuleInfo *MMI, FunctionLoweringInfo &FLI) { | 
|  | for (BasicBlock::const_iterator I = SrcBB->begin(), E = --SrcBB->end(); | 
|  | I != E; ++I) | 
|  | if (const EHSelectorInst *EHSel = dyn_cast<EHSelectorInst>(I)) { | 
|  | // Apply the catch info to DestBB. | 
|  | AddCatchInfo(*EHSel, MMI, FLI.MBBMap[DestBB]); | 
|  | #ifndef NDEBUG | 
|  | if (!FLI.MBBMap[SrcBB]->isLandingPad()) | 
|  | FLI.CatchInfoFound.insert(EHSel); | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being | 
|  | /// processed uses a memory 'm' constraint. | 
|  | bool | 
|  | llvm::hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos, | 
|  | const TargetLowering &TLI) { | 
|  | for (unsigned i = 0, e = CInfos.size(); i != e; ++i) { | 
|  | InlineAsm::ConstraintInfo &CI = CInfos[i]; | 
|  | for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) { | 
|  | TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]); | 
|  | if (CType == TargetLowering::C_Memory) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Indirect operand accesses access memory. | 
|  | if (CI.isIndirect) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// getFCmpCondCode - Return the ISD condition code corresponding to | 
|  | /// the given LLVM IR floating-point condition code.  This includes | 
|  | /// consideration of global floating-point math flags. | 
|  | /// | 
|  | ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) { | 
|  | ISD::CondCode FPC, FOC; | 
|  | switch (Pred) { | 
|  | case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break; | 
|  | case FCmpInst::FCMP_OEQ:   FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break; | 
|  | case FCmpInst::FCMP_OGT:   FOC = ISD::SETGT; FPC = ISD::SETOGT; break; | 
|  | case FCmpInst::FCMP_OGE:   FOC = ISD::SETGE; FPC = ISD::SETOGE; break; | 
|  | case FCmpInst::FCMP_OLT:   FOC = ISD::SETLT; FPC = ISD::SETOLT; break; | 
|  | case FCmpInst::FCMP_OLE:   FOC = ISD::SETLE; FPC = ISD::SETOLE; break; | 
|  | case FCmpInst::FCMP_ONE:   FOC = ISD::SETNE; FPC = ISD::SETONE; break; | 
|  | case FCmpInst::FCMP_ORD:   FOC = FPC = ISD::SETO;   break; | 
|  | case FCmpInst::FCMP_UNO:   FOC = FPC = ISD::SETUO;  break; | 
|  | case FCmpInst::FCMP_UEQ:   FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break; | 
|  | case FCmpInst::FCMP_UGT:   FOC = ISD::SETGT; FPC = ISD::SETUGT; break; | 
|  | case FCmpInst::FCMP_UGE:   FOC = ISD::SETGE; FPC = ISD::SETUGE; break; | 
|  | case FCmpInst::FCMP_ULT:   FOC = ISD::SETLT; FPC = ISD::SETULT; break; | 
|  | case FCmpInst::FCMP_ULE:   FOC = ISD::SETLE; FPC = ISD::SETULE; break; | 
|  | case FCmpInst::FCMP_UNE:   FOC = ISD::SETNE; FPC = ISD::SETUNE; break; | 
|  | case FCmpInst::FCMP_TRUE:  FOC = FPC = ISD::SETTRUE; break; | 
|  | default: | 
|  | llvm_unreachable("Invalid FCmp predicate opcode!"); | 
|  | FOC = FPC = ISD::SETFALSE; | 
|  | break; | 
|  | } | 
|  | if (FiniteOnlyFPMath()) | 
|  | return FOC; | 
|  | else | 
|  | return FPC; | 
|  | } | 
|  |  | 
|  | /// getICmpCondCode - Return the ISD condition code corresponding to | 
|  | /// the given LLVM IR integer condition code. | 
|  | /// | 
|  | ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) { | 
|  | switch (Pred) { | 
|  | case ICmpInst::ICMP_EQ:  return ISD::SETEQ; | 
|  | case ICmpInst::ICMP_NE:  return ISD::SETNE; | 
|  | case ICmpInst::ICMP_SLE: return ISD::SETLE; | 
|  | case ICmpInst::ICMP_ULE: return ISD::SETULE; | 
|  | case ICmpInst::ICMP_SGE: return ISD::SETGE; | 
|  | case ICmpInst::ICMP_UGE: return ISD::SETUGE; | 
|  | case ICmpInst::ICMP_SLT: return ISD::SETLT; | 
|  | case ICmpInst::ICMP_ULT: return ISD::SETULT; | 
|  | case ICmpInst::ICMP_SGT: return ISD::SETGT; | 
|  | case ICmpInst::ICMP_UGT: return ISD::SETUGT; | 
|  | default: | 
|  | llvm_unreachable("Invalid ICmp predicate opcode!"); | 
|  | return ISD::SETNE; | 
|  | } | 
|  | } |