| //===-- TargetMachine.cpp - General Target Information ---------------------==// |
| // |
| // This file describes the general parts of a Target machine. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Target/SchedInfo.h" |
| #include "llvm/Target/Machine.h" |
| #include "llvm/DerivedTypes.h" |
| |
| // External object describing the machine instructions |
| // Initialized only when the TargetMachine class is created |
| // and reset when that class is destroyed. |
| // |
| const MachineInstrDescriptor* TargetInstrDescriptors = NULL; |
| |
| resourceId_t MachineResource::nextId = 0; |
| |
| static cycles_t ComputeMinGap (const InstrRUsage& fromRU, |
| const InstrRUsage& toRU); |
| |
| static bool RUConflict (const vector<resourceId_t>& fromRVec, |
| const vector<resourceId_t>& fromRVec); |
| |
| //--------------------------------------------------------------------------- |
| // class TargetMachine |
| // |
| // Purpose: |
| // Machine description. |
| // |
| //--------------------------------------------------------------------------- |
| |
| |
| // function TargetMachine::findOptimalStorageSize |
| // |
| // Purpose: |
| // This default implementation assumes that all sub-word data items use |
| // space equal to optSizeForSubWordData, and all other primitive data |
| // items use space according to the type. |
| // |
| unsigned int TargetMachine::findOptimalStorageSize(const Type* ty) const { |
| switch(ty->getPrimitiveID()) { |
| case Type::BoolTyID: |
| case Type::UByteTyID: |
| case Type::SByteTyID: |
| case Type::UShortTyID: |
| case Type::ShortTyID: |
| return optSizeForSubWordData; |
| |
| default: |
| return DataLayout.getTypeSize(ty); |
| } |
| } |
| |
| |
| //--------------------------------------------------------------------------- |
| // class MachineInstructionInfo |
| // Interface to description of machine instructions |
| //--------------------------------------------------------------------------- |
| |
| |
| /*ctor*/ |
| MachineInstrInfo::MachineInstrInfo(const MachineInstrDescriptor* _desc, |
| unsigned int _descSize, |
| unsigned int _numRealOpCodes) |
| : desc(_desc), descSize(_descSize), numRealOpCodes(_numRealOpCodes) |
| { |
| assert(TargetInstrDescriptors == NULL && desc != NULL); |
| TargetInstrDescriptors = desc; // initialize global variable |
| } |
| |
| |
| /*dtor*/ |
| MachineInstrInfo::~MachineInstrInfo() |
| { |
| TargetInstrDescriptors = NULL; // reset global variable |
| } |
| |
| |
| bool |
| MachineInstrInfo::constantFitsInImmedField(MachineOpCode opCode, |
| int64_t intValue) const |
| { |
| // First, check if opCode has an immed field. |
| bool isSignExtended; |
| uint64_t maxImmedValue = this->maxImmedConstant(opCode, isSignExtended); |
| if (maxImmedValue != 0) |
| { |
| // Now check if the constant fits |
| if (intValue <= (int64_t) maxImmedValue && |
| intValue >= -((int64_t) maxImmedValue+1)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| |
| //--------------------------------------------------------------------------- |
| // class MachineSchedInfo |
| // Interface to machine description for instruction scheduling |
| //--------------------------------------------------------------------------- |
| |
| /*ctor*/ |
| MachineSchedInfo::MachineSchedInfo(int _numSchedClasses, |
| const MachineInstrInfo* _mii, |
| const InstrClassRUsage* _classRUsages, |
| const InstrRUsageDelta* _usageDeltas, |
| const InstrIssueDelta* _issueDeltas, |
| unsigned int _numUsageDeltas, |
| unsigned int _numIssueDeltas) |
| : numSchedClasses(_numSchedClasses), |
| mii(_mii), |
| classRUsages(_classRUsages), |
| usageDeltas(_usageDeltas), |
| issueDeltas(_issueDeltas), |
| numUsageDeltas(_numUsageDeltas), |
| numIssueDeltas(_numIssueDeltas) |
| { |
| } |
| |
| void |
| MachineSchedInfo::initializeResources() |
| { |
| assert(MAX_NUM_SLOTS >= (int) getMaxNumIssueTotal() |
| && "Insufficient slots for static data! Increase MAX_NUM_SLOTS"); |
| |
| // First, compute common resource usage info for each class because |
| // most instructions will probably behave the same as their class. |
| // Cannot allocate a vector of InstrRUsage so new each one. |
| // |
| vector<InstrRUsage> instrRUForClasses; |
| instrRUForClasses.resize(numSchedClasses); |
| for (InstrSchedClass sc=0; sc < numSchedClasses; sc++) |
| { |
| // instrRUForClasses.push_back(new InstrRUsage); |
| instrRUForClasses[sc].setMaxSlots(getMaxNumIssueTotal()); |
| instrRUForClasses[sc] = classRUsages[sc]; |
| } |
| |
| computeInstrResources(instrRUForClasses); |
| |
| computeIssueGaps(instrRUForClasses); |
| } |
| |
| |
| void |
| MachineSchedInfo::computeInstrResources(const vector<InstrRUsage>& instrRUForClasses) |
| { |
| int numOpCodes = mii->getNumRealOpCodes(); |
| instrRUsages.resize(numOpCodes); |
| |
| // First get the resource usage information from the class resource usages. |
| for (MachineOpCode op=0; op < numOpCodes; op++) |
| { |
| InstrSchedClass sc = getSchedClass(op); |
| assert(sc >= 0 && sc < numSchedClasses); |
| instrRUsages[op] = instrRUForClasses[sc]; |
| } |
| |
| // Now, modify the resource usages as specified in the deltas. |
| for (unsigned i=0; i < numUsageDeltas; i++) |
| { |
| MachineOpCode op = usageDeltas[i].opCode; |
| assert(op < numOpCodes); |
| instrRUsages[op].addUsageDelta(usageDeltas[i]); |
| } |
| |
| // Then modify the issue restrictions as specified in the deltas. |
| for (unsigned i=0; i < numIssueDeltas; i++) |
| { |
| MachineOpCode op = issueDeltas[i].opCode; |
| assert(op < numOpCodes); |
| instrRUsages[issueDeltas[i].opCode].addIssueDelta(issueDeltas[i]); |
| } |
| } |
| |
| |
| void |
| MachineSchedInfo::computeIssueGaps(const vector<InstrRUsage>& instrRUForClasses) |
| { |
| int numOpCodes = mii->getNumRealOpCodes(); |
| instrRUsages.resize(numOpCodes); |
| |
| assert(numOpCodes < (1 << MAX_OPCODE_SIZE) - 1 |
| && "numOpCodes invalid for implementation of class OpCodePair!"); |
| |
| // First, compute issue gaps between pairs of classes based on common |
| // resources usages for each class, because most instruction pairs will |
| // usually behave the same as their class. |
| // |
| int classPairGaps[numSchedClasses][numSchedClasses]; |
| for (InstrSchedClass fromSC=0; fromSC < numSchedClasses; fromSC++) |
| for (InstrSchedClass toSC=0; toSC < numSchedClasses; toSC++) |
| { |
| int classPairGap = ComputeMinGap(instrRUForClasses[fromSC], |
| instrRUForClasses[toSC]); |
| classPairGaps[fromSC][toSC] = classPairGap; |
| } |
| |
| // Now, for each pair of instructions, use the class pair gap if both |
| // instructions have identical resource usage as their respective classes. |
| // If not, recompute the gap for the pair from scratch. |
| |
| longestIssueConflict = 0; |
| |
| for (MachineOpCode fromOp=0; fromOp < numOpCodes; fromOp++) |
| for (MachineOpCode toOp=0; toOp < numOpCodes; toOp++) |
| { |
| int instrPairGap = |
| (instrRUsages[fromOp].sameAsClass && instrRUsages[toOp].sameAsClass) |
| ? classPairGaps[getSchedClass(fromOp)][getSchedClass(toOp)] |
| : ComputeMinGap(instrRUsages[fromOp], instrRUsages[toOp]); |
| |
| if (instrPairGap > 0) |
| { |
| issueGaps[OpCodePair(fromOp,toOp)] = instrPairGap; |
| conflictLists[fromOp].push_back(toOp); |
| longestIssueConflict = max(longestIssueConflict, instrPairGap); |
| } |
| } |
| } |
| |
| |
| // Check if fromRVec and toRVec have *any* common entries. |
| // Assume the vectors are sorted in increasing order. |
| // Algorithm copied from function set_intersection() for sorted ranges (stl_algo.h). |
| inline static bool |
| RUConflict(const vector<resourceId_t>& fromRVec, |
| const vector<resourceId_t>& toRVec) |
| { |
| bool commonElementFound = false; |
| |
| unsigned fN = fromRVec.size(), tN = toRVec.size(); |
| unsigned fi = 0, ti = 0; |
| while (fi < fN && ti < tN) |
| if (fromRVec[fi] < toRVec[ti]) |
| ++fi; |
| else if (toRVec[ti] < fromRVec[fi]) |
| ++ti; |
| else |
| { |
| commonElementFound = true; |
| break; |
| } |
| |
| return commonElementFound; |
| } |
| |
| |
| static cycles_t |
| ComputeMinGap(const InstrRUsage& fromRU, const InstrRUsage& toRU) |
| { |
| cycles_t minGap = 0; |
| |
| if (fromRU.numBubbles > 0) |
| minGap = fromRU.numBubbles; |
| |
| if (minGap < fromRU.numCycles) |
| { |
| // only need to check from cycle `minGap' onwards |
| for (cycles_t gap=minGap; gap <= fromRU.numCycles-1; gap++) |
| { |
| // check if instr. #2 can start executing `gap' cycles after #1 |
| // by checking for resource conflicts in each overlapping cycle |
| cycles_t numOverlap = min(fromRU.numCycles - gap, toRU.numCycles); |
| for (cycles_t c = 0; c <= numOverlap-1; c++) |
| if (RUConflict(fromRU.resourcesByCycle[gap + c], |
| toRU.resourcesByCycle[c])) |
| {// conflict found so minGap must be more than `gap' |
| minGap = gap+1; |
| break; |
| } |
| } |
| } |
| |
| return minGap; |
| } |
| |
| //--------------------------------------------------------------------------- |