| //===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "isel" |
| #include "PowerPC.h" |
| #include "PowerPCInstrBuilder.h" |
| #include "PowerPCInstrInfo.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Pass.h" |
| #include "llvm/CodeGen/IntrinsicLowering.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/MRegisterInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Support/GetElementPtrTypeIterator.h" |
| #include "llvm/Support/InstVisitor.h" |
| #include "Support/Debug.h" |
| #include <vector> |
| using namespace llvm; |
| |
| namespace { |
| /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic |
| /// PPC Representation. |
| /// |
| enum TypeClass { |
| cByte, cShort, cInt, cFP, cLong |
| }; |
| } |
| |
| /// getClass - Turn a primitive type into a "class" number which is based on the |
| /// size of the type, and whether or not it is floating point. |
| /// |
| static inline TypeClass getClass(const Type *Ty) { |
| switch (Ty->getTypeID()) { |
| case Type::SByteTyID: |
| case Type::UByteTyID: return cByte; // Byte operands are class #0 |
| case Type::ShortTyID: |
| case Type::UShortTyID: return cShort; // Short operands are class #1 |
| case Type::IntTyID: |
| case Type::UIntTyID: |
| case Type::PointerTyID: return cInt; // Int's and pointers are class #2 |
| |
| case Type::FloatTyID: |
| case Type::DoubleTyID: return cFP; // Floating Point is #3 |
| |
| case Type::LongTyID: |
| case Type::ULongTyID: return cLong; // Longs are class #4 |
| default: |
| assert(0 && "Invalid type to getClass!"); |
| return cByte; // not reached |
| } |
| } |
| |
| // getClassB - Just like getClass, but treat boolean values as ints. |
| static inline TypeClass getClassB(const Type *Ty) { |
| if (Ty == Type::BoolTy) return cInt; |
| return getClass(Ty); |
| } |
| |
| namespace { |
| struct ISel : public FunctionPass, InstVisitor<ISel> { |
| TargetMachine &TM; |
| MachineFunction *F; // The function we are compiling into |
| MachineBasicBlock *BB; // The current MBB we are compiling |
| int VarArgsFrameIndex; // FrameIndex for start of varargs area |
| int ReturnAddressIndex; // FrameIndex for the return address |
| |
| std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs |
| |
| // MBBMap - Mapping between LLVM BB -> Machine BB |
| std::map<const BasicBlock*, MachineBasicBlock*> MBBMap; |
| |
| // AllocaMap - Mapping from fixed sized alloca instructions to the |
| // FrameIndex for the alloca. |
| std::map<AllocaInst*, unsigned> AllocaMap; |
| |
| ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {} |
| |
| /// runOnFunction - Top level implementation of instruction selection for |
| /// the entire function. |
| /// |
| bool runOnFunction(Function &Fn) { |
| // First pass over the function, lower any unknown intrinsic functions |
| // with the IntrinsicLowering class. |
| LowerUnknownIntrinsicFunctionCalls(Fn); |
| |
| F = &MachineFunction::construct(&Fn, TM); |
| |
| // Create all of the machine basic blocks for the function... |
| for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) |
| F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I)); |
| |
| BB = &F->front(); |
| |
| // Set up a frame object for the return address. This is used by the |
| // llvm.returnaddress & llvm.frameaddress intrinisics. |
| ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4); |
| |
| // Copy incoming arguments off of the stack... |
| LoadArgumentsToVirtualRegs(Fn); |
| |
| // Instruction select everything except PHI nodes |
| visit(Fn); |
| |
| // Select the PHI nodes |
| SelectPHINodes(); |
| |
| RegMap.clear(); |
| MBBMap.clear(); |
| AllocaMap.clear(); |
| F = 0; |
| // We always build a machine code representation for the function |
| return true; |
| } |
| |
| virtual const char *getPassName() const { |
| return "PowerPC Simple Instruction Selection"; |
| } |
| |
| /// visitBasicBlock - This method is called when we are visiting a new basic |
| /// block. This simply creates a new MachineBasicBlock to emit code into |
| /// and adds it to the current MachineFunction. Subsequent visit* for |
| /// instructions will be invoked for all instructions in the basic block. |
| /// |
| void visitBasicBlock(BasicBlock &LLVM_BB) { |
| BB = MBBMap[&LLVM_BB]; |
| } |
| |
| /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the |
| /// function, lowering any calls to unknown intrinsic functions into the |
| /// equivalent LLVM code. |
| /// |
| void LowerUnknownIntrinsicFunctionCalls(Function &F); |
| |
| /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function |
| /// from the stack into virtual registers. |
| /// |
| void LoadArgumentsToVirtualRegs(Function &F); |
| |
| /// SelectPHINodes - Insert machine code to generate phis. This is tricky |
| /// because we have to generate our sources into the source basic blocks, |
| /// not the current one. |
| /// |
| void SelectPHINodes(); |
| |
| // Visitation methods for various instructions. These methods simply emit |
| // fixed PowerPC code for each instruction. |
| |
| // Control flow operators |
| void visitReturnInst(ReturnInst &RI); |
| void visitBranchInst(BranchInst &BI); |
| |
| struct ValueRecord { |
| Value *Val; |
| unsigned Reg; |
| const Type *Ty; |
| ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {} |
| ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {} |
| }; |
| void doCall(const ValueRecord &Ret, MachineInstr *CallMI, |
| const std::vector<ValueRecord> &Args); |
| void visitCallInst(CallInst &I); |
| void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I); |
| |
| // Arithmetic operators |
| void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass); |
| void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); } |
| void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); } |
| void visitMul(BinaryOperator &B); |
| |
| void visitDiv(BinaryOperator &B) { visitDivRem(B); } |
| void visitRem(BinaryOperator &B) { visitDivRem(B); } |
| void visitDivRem(BinaryOperator &B); |
| |
| // Bitwise operators |
| void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); } |
| void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); } |
| void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); } |
| |
| // Comparison operators... |
| void visitSetCondInst(SetCondInst &I); |
| unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MBBI); |
| void visitSelectInst(SelectInst &SI); |
| |
| |
| // Memory Instructions |
| void visitLoadInst(LoadInst &I); |
| void visitStoreInst(StoreInst &I); |
| void visitGetElementPtrInst(GetElementPtrInst &I); |
| void visitAllocaInst(AllocaInst &I); |
| void visitMallocInst(MallocInst &I); |
| void visitFreeInst(FreeInst &I); |
| |
| // Other operators |
| void visitShiftInst(ShiftInst &I); |
| void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass |
| void visitCastInst(CastInst &I); |
| void visitVANextInst(VANextInst &I); |
| void visitVAArgInst(VAArgInst &I); |
| |
| void visitInstruction(Instruction &I) { |
| std::cerr << "Cannot instruction select: " << I; |
| abort(); |
| } |
| |
| /// promote32 - Make a value 32-bits wide, and put it somewhere. |
| /// |
| void promote32(unsigned targetReg, const ValueRecord &VR); |
| |
| /// emitGEPOperation - Common code shared between visitGetElementPtrInst and |
| /// constant expression GEP support. |
| /// |
| void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, |
| Value *Src, User::op_iterator IdxBegin, |
| User::op_iterator IdxEnd, unsigned TargetReg); |
| |
| /// emitCastOperation - Common code shared between visitCastInst and |
| /// constant expression cast support. |
| /// |
| void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP, |
| Value *Src, const Type *DestTy, unsigned TargetReg); |
| |
| /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary |
| /// and constant expression support. |
| /// |
| void emitSimpleBinaryOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, |
| unsigned OperatorClass, unsigned TargetReg); |
| |
| /// emitBinaryFPOperation - This method handles emission of floating point |
| /// Add (0), Sub (1), Mul (2), and Div (3) operations. |
| void emitBinaryFPOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, |
| unsigned OperatorClass, unsigned TargetReg); |
| |
| void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, unsigned TargetReg); |
| |
| void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, |
| unsigned DestReg, const Type *DestTy, |
| unsigned Op0Reg, unsigned Op1Reg); |
| void doMultiplyConst(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MBBI, |
| unsigned DestReg, const Type *DestTy, |
| unsigned Op0Reg, unsigned Op1Val); |
| |
| void emitDivRemOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, bool isDiv, |
| unsigned TargetReg); |
| |
| /// emitSetCCOperation - Common code shared between visitSetCondInst and |
| /// constant expression support. |
| /// |
| void emitSetCCOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, unsigned Opcode, |
| unsigned TargetReg); |
| |
| /// emitShiftOperation - Common code shared between visitShiftInst and |
| /// constant expression support. |
| /// |
| void emitShiftOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Op, Value *ShiftAmount, bool isLeftShift, |
| const Type *ResultTy, unsigned DestReg); |
| |
| /// emitSelectOperation - Common code shared between visitSelectInst and the |
| /// constant expression support. |
| void emitSelectOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Cond, Value *TrueVal, Value *FalseVal, |
| unsigned DestReg); |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void copyConstantToRegister(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator MBBI, |
| Constant *C, unsigned Reg); |
| |
| void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, |
| unsigned LHS, unsigned RHS); |
| |
| /// makeAnotherReg - This method returns the next register number we haven't |
| /// yet used. |
| /// |
| /// Long values are handled somewhat specially. They are always allocated |
| /// as pairs of 32 bit integer values. The register number returned is the |
| /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits |
| /// of the long value. |
| /// |
| unsigned makeAnotherReg(const Type *Ty) { |
| assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) && |
| "Current target doesn't have PPC reg info??"); |
| const PowerPCRegisterInfo *MRI = |
| static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()); |
| if (Ty == Type::LongTy || Ty == Type::ULongTy) { |
| const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy); |
| // Create the lower part |
| F->getSSARegMap()->createVirtualRegister(RC); |
| // Create the upper part. |
| return F->getSSARegMap()->createVirtualRegister(RC)-1; |
| } |
| |
| // Add the mapping of regnumber => reg class to MachineFunction |
| const TargetRegisterClass *RC = MRI->getRegClassForType(Ty); |
| return F->getSSARegMap()->createVirtualRegister(RC); |
| } |
| |
| /// getReg - This method turns an LLVM value into a register number. |
| /// |
| unsigned getReg(Value &V) { return getReg(&V); } // Allow references |
| unsigned getReg(Value *V) { |
| // Just append to the end of the current bb. |
| MachineBasicBlock::iterator It = BB->end(); |
| return getReg(V, BB, It); |
| } |
| unsigned getReg(Value *V, MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IPt); |
| |
| /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca |
| /// that is to be statically allocated with the initial stack frame |
| /// adjustment. |
| unsigned getFixedSizedAllocaFI(AllocaInst *AI); |
| }; |
| } |
| |
| /// dyn_castFixedAlloca - If the specified value is a fixed size alloca |
| /// instruction in the entry block, return it. Otherwise, return a null |
| /// pointer. |
| static AllocaInst *dyn_castFixedAlloca(Value *V) { |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| BasicBlock *BB = AI->getParent(); |
| if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front()) |
| return AI; |
| } |
| return 0; |
| } |
| |
| /// getReg - This method turns an LLVM value into a register number. |
| /// |
| unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IPt) { |
| // If this operand is a constant, emit the code to copy the constant into |
| // the register here... |
| // |
| if (Constant *C = dyn_cast<Constant>(V)) { |
| unsigned Reg = makeAnotherReg(V->getType()); |
| copyConstantToRegister(MBB, IPt, C, Reg); |
| return Reg; |
| } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { |
| // GV is located at PC + distance |
| unsigned LRsave = makeAnotherReg(Type::IntTy); |
| unsigned CurPC = makeAnotherReg(Type::IntTy); |
| unsigned Reg1 = makeAnotherReg(V->getType()); |
| unsigned Reg2 = makeAnotherReg(V->getType()); |
| // Save the old LR |
| BuildMI(*MBB, IPt, PPC32::MFLR, 0, LRsave); |
| // Move PC to destination reg |
| BuildMI(*MBB, IPt, PPC32::MovePCtoLR, 0, CurPC); |
| // Restore the old LR |
| BuildMI(*MBB, IPt, PPC32::MTLR, 1).addReg(LRsave); |
| // Move value at PC + distance into return reg |
| BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(CurPC) |
| .addGlobalAddress(GV); |
| BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1) |
| .addGlobalAddress(GV); |
| return Reg2; |
| } else if (CastInst *CI = dyn_cast<CastInst>(V)) { |
| // Do not emit noop casts at all. |
| if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType())) |
| return getReg(CI->getOperand(0), MBB, IPt); |
| } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) { |
| unsigned Reg = makeAnotherReg(V->getType()); |
| unsigned FI = getFixedSizedAllocaFI(AI); |
| addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false); |
| return Reg; |
| } |
| |
| unsigned &Reg = RegMap[V]; |
| if (Reg == 0) { |
| Reg = makeAnotherReg(V->getType()); |
| RegMap[V] = Reg; |
| } |
| |
| return Reg; |
| } |
| |
| /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca |
| /// that is to be statically allocated with the initial stack frame |
| /// adjustment. |
| unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) { |
| // Already computed this? |
| std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI); |
| if (I != AllocaMap.end() && I->first == AI) return I->second; |
| |
| const Type *Ty = AI->getAllocatedType(); |
| ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize()); |
| unsigned TySize = TM.getTargetData().getTypeSize(Ty); |
| TySize *= CUI->getValue(); // Get total allocated size... |
| unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty); |
| |
| // Create a new stack object using the frame manager... |
| int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment); |
| AllocaMap.insert(I, std::make_pair(AI, FrameIdx)); |
| return FrameIdx; |
| } |
| |
| |
| /// copyConstantToRegister - Output the instructions required to put the |
| /// specified constant into the specified register. |
| /// |
| void ISel::copyConstantToRegister(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Constant *C, unsigned R) { |
| if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { |
| unsigned Class = 0; |
| switch (CE->getOpcode()) { |
| case Instruction::GetElementPtr: |
| emitGEPOperation(MBB, IP, CE->getOperand(0), |
| CE->op_begin()+1, CE->op_end(), R); |
| return; |
| case Instruction::Cast: |
| emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R); |
| return; |
| |
| case Instruction::Xor: ++Class; // FALL THROUGH |
| case Instruction::Or: ++Class; // FALL THROUGH |
| case Instruction::And: ++Class; // FALL THROUGH |
| case Instruction::Sub: ++Class; // FALL THROUGH |
| case Instruction::Add: |
| emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), |
| Class, R); |
| return; |
| |
| case Instruction::Mul: |
| emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R); |
| return; |
| |
| case Instruction::Div: |
| case Instruction::Rem: |
| emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), |
| CE->getOpcode() == Instruction::Div, R); |
| return; |
| |
| case Instruction::SetNE: |
| case Instruction::SetEQ: |
| case Instruction::SetLT: |
| case Instruction::SetGT: |
| case Instruction::SetLE: |
| case Instruction::SetGE: |
| emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), |
| CE->getOpcode(), R); |
| return; |
| |
| case Instruction::Shl: |
| case Instruction::Shr: |
| emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), |
| CE->getOpcode() == Instruction::Shl, CE->getType(), R); |
| return; |
| |
| case Instruction::Select: |
| emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1), |
| CE->getOperand(2), R); |
| return; |
| |
| default: |
| std::cerr << "Offending expr: " << C << "\n"; |
| assert(0 && "Constant expression not yet handled!\n"); |
| } |
| } |
| |
| if (C->getType()->isIntegral()) { |
| unsigned Class = getClassB(C->getType()); |
| |
| if (Class == cLong) { |
| // Copy the value into the register pair. |
| uint64_t Val = cast<ConstantInt>(C)->getRawValue(); |
| unsigned hiTmp = makeAnotherReg(Type::IntTy); |
| unsigned loTmp = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0) |
| .addImm(Val >> 48); |
| BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp) |
| .addImm((Val >> 32) & 0xFFFF); |
| BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0) |
| .addImm((Val >> 16) & 0xFFFF); |
| BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF); |
| return; |
| } |
| |
| assert(Class <= cInt && "Type not handled yet!"); |
| |
| if (C->getType() == Type::BoolTy) { |
| BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0) |
| .addImm(C == ConstantBool::True); |
| } else if (Class == cByte || Class == cShort) { |
| ConstantInt *CI = cast<ConstantInt>(C); |
| BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0) |
| .addImm(CI->getRawValue()); |
| } else { |
| ConstantInt *CI = cast<ConstantInt>(C); |
| int TheVal = CI->getRawValue() & 0xFFFFFFFF; |
| if (TheVal < 32768 && TheVal >= -32768) { |
| BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0) |
| .addImm(CI->getRawValue()); |
| } else { |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0) |
| .addImm(CI->getRawValue() >> 16); |
| BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg) |
| .addImm(CI->getRawValue() & 0xFFFF); |
| } |
| } |
| } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { |
| // We need to spill the constant to memory... |
| MachineConstantPool *CP = F->getConstantPool(); |
| unsigned CPI = CP->getConstantPoolIndex(CFP); |
| const Type *Ty = CFP->getType(); |
| |
| assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); |
| unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD; |
| addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI); |
| } else if (isa<ConstantPointerNull>(C)) { |
| // Copy zero (null pointer) to the register. |
| BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0); |
| } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) { |
| BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0) |
| .addGlobalAddress(CPR->getValue()); |
| BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0) |
| .addGlobalAddress(CPR->getValue()); |
| } else { |
| std::cerr << "Offending constant: " << C << "\n"; |
| assert(0 && "Type not handled yet!"); |
| } |
| } |
| |
| /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from |
| /// the stack into virtual registers. |
| /// |
| /// FIXME: When we can calculate which args are coming in via registers |
| /// source them from there instead. |
| void ISel::LoadArgumentsToVirtualRegs(Function &Fn) { |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| unsigned GPR_remaining = 8; |
| unsigned FPR_remaining = 13; |
| unsigned GPR_idx = 3; |
| unsigned FPR_idx = 1; |
| |
| MachineFrameInfo *MFI = F->getFrameInfo(); |
| |
| for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) { |
| bool ArgLive = !I->use_empty(); |
| unsigned Reg = ArgLive ? getReg(*I) : 0; |
| int FI; // Frame object index |
| |
| switch (getClassB(I->getType())) { |
| case cByte: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(1, ArgOffset); |
| if (GPR_remaining > 0) { |
| BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx) |
| .addReg(PPC32::R0+GPR_idx); |
| } else { |
| addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI); |
| } |
| } |
| break; |
| case cShort: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(2, ArgOffset); |
| if (GPR_remaining > 0) { |
| BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx) |
| .addReg(PPC32::R0+GPR_idx); |
| } else { |
| addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI); |
| } |
| } |
| break; |
| case cInt: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(4, ArgOffset); |
| if (GPR_remaining > 0) { |
| BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx) |
| .addReg(PPC32::R0+GPR_idx); |
| } else { |
| addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI); |
| } |
| } |
| break; |
| case cLong: |
| if (ArgLive) { |
| FI = MFI->CreateFixedObject(8, ArgOffset); |
| if (GPR_remaining > 1) { |
| BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx) |
| .addReg(PPC32::R0+GPR_idx); |
| BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1) |
| .addReg(PPC32::R0+GPR_idx+1); |
| } else { |
| addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI); |
| addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4); |
| } |
| } |
| ArgOffset += 4; // longs require 4 additional bytes |
| if (GPR_remaining > 1) { |
| GPR_remaining--; // uses up 2 GPRs |
| GPR_idx++; |
| } |
| break; |
| case cFP: |
| if (ArgLive) { |
| unsigned Opcode; |
| if (I->getType() == Type::FloatTy) { |
| Opcode = PPC32::LFS; |
| FI = MFI->CreateFixedObject(4, ArgOffset); |
| } else { |
| Opcode = PPC32::LFD; |
| FI = MFI->CreateFixedObject(8, ArgOffset); |
| } |
| if (FPR_remaining > 0) { |
| BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx); |
| FPR_remaining--; |
| FPR_idx++; |
| } else { |
| addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI); |
| } |
| } |
| if (I->getType() == Type::DoubleTy) { |
| ArgOffset += 4; // doubles require 4 additional bytes |
| if (GPR_remaining > 0) { |
| GPR_remaining--; // uses up 2 GPRs |
| GPR_idx++; |
| } |
| } |
| break; |
| default: |
| assert(0 && "Unhandled argument type!"); |
| } |
| ArgOffset += 4; // Each argument takes at least 4 bytes on the stack... |
| if (GPR_remaining > 0) { |
| GPR_remaining--; // uses up 2 GPRs |
| GPR_idx++; |
| } |
| } |
| |
| // If the function takes variable number of arguments, add a frame offset for |
| // the start of the first vararg value... this is used to expand |
| // llvm.va_start. |
| if (Fn.getFunctionType()->isVarArg()) |
| VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); |
| } |
| |
| |
| /// SelectPHINodes - Insert machine code to generate phis. This is tricky |
| /// because we have to generate our sources into the source basic blocks, not |
| /// the current one. |
| /// |
| void ISel::SelectPHINodes() { |
| const TargetInstrInfo &TII = *TM.getInstrInfo(); |
| const Function &LF = *F->getFunction(); // The LLVM function... |
| for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) { |
| const BasicBlock *BB = I; |
| MachineBasicBlock &MBB = *MBBMap[I]; |
| |
| // Loop over all of the PHI nodes in the LLVM basic block... |
| MachineBasicBlock::iterator PHIInsertPoint = MBB.begin(); |
| for (BasicBlock::const_iterator I = BB->begin(); |
| PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) { |
| |
| // Create a new machine instr PHI node, and insert it. |
| unsigned PHIReg = getReg(*PN); |
| MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint, |
| PPC32::PHI, PN->getNumOperands(), PHIReg); |
| |
| MachineInstr *LongPhiMI = 0; |
| if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy) |
| LongPhiMI = BuildMI(MBB, PHIInsertPoint, |
| PPC32::PHI, PN->getNumOperands(), PHIReg+1); |
| |
| // PHIValues - Map of blocks to incoming virtual registers. We use this |
| // so that we only initialize one incoming value for a particular block, |
| // even if the block has multiple entries in the PHI node. |
| // |
| std::map<MachineBasicBlock*, unsigned> PHIValues; |
| |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)]; |
| unsigned ValReg; |
| std::map<MachineBasicBlock*, unsigned>::iterator EntryIt = |
| PHIValues.lower_bound(PredMBB); |
| |
| if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) { |
| // We already inserted an initialization of the register for this |
| // predecessor. Recycle it. |
| ValReg = EntryIt->second; |
| |
| } else { |
| // Get the incoming value into a virtual register. |
| // |
| Value *Val = PN->getIncomingValue(i); |
| |
| // If this is a constant or GlobalValue, we may have to insert code |
| // into the basic block to compute it into a virtual register. |
| if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) || |
| isa<GlobalValue>(Val)) { |
| // Simple constants get emitted at the end of the basic block, |
| // before any terminator instructions. We "know" that the code to |
| // move a constant into a register will never clobber any flags. |
| ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator()); |
| } else { |
| // Because we don't want to clobber any values which might be in |
| // physical registers with the computation of this constant (which |
| // might be arbitrarily complex if it is a constant expression), |
| // just insert the computation at the top of the basic block. |
| MachineBasicBlock::iterator PI = PredMBB->begin(); |
| |
| // Skip over any PHI nodes though! |
| while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI) |
| ++PI; |
| |
| ValReg = getReg(Val, PredMBB, PI); |
| } |
| |
| // Remember that we inserted a value for this PHI for this predecessor |
| PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg)); |
| } |
| |
| PhiMI->addRegOperand(ValReg); |
| PhiMI->addMachineBasicBlockOperand(PredMBB); |
| if (LongPhiMI) { |
| LongPhiMI->addRegOperand(ValReg+1); |
| LongPhiMI->addMachineBasicBlockOperand(PredMBB); |
| } |
| } |
| |
| // Now that we emitted all of the incoming values for the PHI node, make |
| // sure to reposition the InsertPoint after the PHI that we just added. |
| // This is needed because we might have inserted a constant into this |
| // block, right after the PHI's which is before the old insert point! |
| PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI; |
| ++PHIInsertPoint; |
| } |
| } |
| } |
| |
| |
| // canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold |
| // it into the conditional branch or select instruction which is the only user |
| // of the cc instruction. This is the case if the conditional branch is the |
| // only user of the setcc, and if the setcc is in the same basic block as the |
| // conditional branch. We also don't handle long arguments below, so we reject |
| // them here as well. |
| // |
| static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) { |
| if (SetCondInst *SCI = dyn_cast<SetCondInst>(V)) |
| if (SCI->hasOneUse()) { |
| Instruction *User = cast<Instruction>(SCI->use_back()); |
| if ((isa<BranchInst>(User) || isa<SelectInst>(User)) && |
| SCI->getParent() == User->getParent() && |
| (getClassB(SCI->getOperand(0)->getType()) != cLong || |
| SCI->getOpcode() == Instruction::SetEQ || |
| SCI->getOpcode() == Instruction::SetNE)) |
| return SCI; |
| } |
| return 0; |
| } |
| |
| // Return a fixed numbering for setcc instructions which does not depend on the |
| // order of the opcodes. |
| // |
| static unsigned getSetCCNumber(unsigned Opcode) { |
| switch(Opcode) { |
| default: assert(0 && "Unknown setcc instruction!"); |
| case Instruction::SetEQ: return 0; |
| case Instruction::SetNE: return 1; |
| case Instruction::SetLT: return 2; |
| case Instruction::SetGE: return 3; |
| case Instruction::SetGT: return 4; |
| case Instruction::SetLE: return 5; |
| } |
| } |
| |
| /// emitUCOM - emits an unordered FP compare. |
| void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, |
| unsigned LHS, unsigned RHS) { |
| BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS); |
| } |
| |
| // EmitComparison - This function emits a comparison of the two operands, |
| // returning the extended setcc code to use. |
| unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1, |
| MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP) { |
| // The arguments are already supposed to be of the same type. |
| const Type *CompTy = Op0->getType(); |
| unsigned Class = getClassB(CompTy); |
| unsigned Op0r = getReg(Op0, MBB, IP); |
| |
| // Special case handling of: cmp R, i |
| if (isa<ConstantPointerNull>(Op1)) { |
| BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0); |
| } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| if (Class == cByte || Class == cShort || Class == cInt) { |
| unsigned Op1v = CI->getRawValue(); |
| |
| // Mask off any upper bits of the constant, if there are any... |
| Op1v &= (1ULL << (8 << Class)) - 1; |
| |
| // Compare immediate or promote to reg? |
| if (Op1v <= 32767) { |
| BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3, |
| PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v); |
| } else { |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3, |
| PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r); |
| } |
| return OpNum; |
| } else { |
| assert(Class == cLong && "Unknown integer class!"); |
| unsigned LowCst = CI->getRawValue(); |
| unsigned HiCst = CI->getRawValue() >> 32; |
| if (OpNum < 2) { // seteq, setne |
| unsigned LoTmp = Op0r; |
| if (LowCst != 0) { |
| unsigned LoLow = makeAnotherReg(Type::IntTy); |
| unsigned LoTmp = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst); |
| BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow) |
| .addImm(LowCst >> 16); |
| } |
| unsigned HiTmp = Op0r+1; |
| if (HiCst != 0) { |
| unsigned HiLow = makeAnotherReg(Type::IntTy); |
| unsigned HiTmp = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst); |
| BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow) |
| .addImm(HiCst >> 16); |
| } |
| unsigned FinalTmp = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); |
| //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0); |
| return OpNum; |
| } else { |
| // Emit a sequence of code which compares the high and low parts once |
| // each, then uses a conditional move to handle the overflow case. For |
| // example, a setlt for long would generate code like this: |
| // |
| // AL = lo(op1) < lo(op2) // Always unsigned comparison |
| // BL = hi(op1) < hi(op2) // Signedness depends on operands |
| // dest = hi(op1) == hi(op2) ? BL : AL; |
| // |
| |
| // FIXME: Not Yet Implemented |
| std::cerr << "EmitComparison unimplemented: Opnum >= 2\n"; |
| abort(); |
| return OpNum; |
| } |
| } |
| } |
| |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| switch (Class) { |
| default: assert(0 && "Unknown type class!"); |
| case cByte: |
| case cShort: |
| case cInt: |
| BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2, |
| PPC32::CR0).addReg(Op0r).addReg(Op1r); |
| break; |
| case cFP: |
| emitUCOM(MBB, IP, Op0r, Op1r); |
| break; |
| |
| case cLong: |
| if (OpNum < 2) { // seteq, setne |
| unsigned LoTmp = makeAnotherReg(Type::IntTy); |
| unsigned HiTmp = makeAnotherReg(Type::IntTy); |
| unsigned FinalTmp = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r); |
| BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1); |
| BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp); |
| //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0); |
| break; // Allow the sete or setne to be generated from flags set by OR |
| } else { |
| // Emit a sequence of code which compares the high and low parts once |
| // each, then uses a conditional move to handle the overflow case. For |
| // example, a setlt for long would generate code like this: |
| // |
| // AL = lo(op1) < lo(op2) // Signedness depends on operands |
| // BL = hi(op1) < hi(op2) // Always unsigned comparison |
| // dest = hi(op1) == hi(op2) ? BL : AL; |
| // |
| |
| // FIXME: Not Yet Implemented |
| std::cerr << "EmitComparison (cLong) unimplemented: Opnum >= 2\n"; |
| abort(); |
| return OpNum; |
| } |
| } |
| return OpNum; |
| } |
| |
| /// SetCC instructions - Here we just emit boilerplate code to set a byte-sized |
| /// register, then move it to wherever the result should be. |
| /// |
| void ISel::visitSetCondInst(SetCondInst &I) { |
| if (canFoldSetCCIntoBranchOrSelect(&I)) |
| return; // Fold this into a branch or select. |
| |
| unsigned DestReg = getReg(I); |
| MachineBasicBlock::iterator MII = BB->end(); |
| emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(), |
| DestReg); |
| } |
| |
| /// emitSetCCOperation - Common code shared between visitSetCondInst and |
| /// constant expression support. |
| /// |
| /// FIXME: this is wrong. we should figure out a way to guarantee |
| /// TargetReg is a CR and then make it a no-op |
| void ISel::emitSetCCOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, unsigned Opcode, |
| unsigned TargetReg) { |
| unsigned OpNum = getSetCCNumber(Opcode); |
| OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP); |
| |
| // The value is already in CR0 at this point, do nothing. |
| } |
| |
| |
| void ISel::visitSelectInst(SelectInst &SI) { |
| unsigned DestReg = getReg(SI); |
| MachineBasicBlock::iterator MII = BB->end(); |
| emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(), |
| SI.getFalseValue(), DestReg); |
| } |
| |
| /// emitSelect - Common code shared between visitSelectInst and the constant |
| /// expression support. |
| /// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has |
| /// no select instruction. FSEL only works for comparisons against zero. |
| void ISel::emitSelectOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Cond, Value *TrueVal, Value *FalseVal, |
| unsigned DestReg) { |
| unsigned SelectClass = getClassB(TrueVal->getType()); |
| |
| unsigned TrueReg = getReg(TrueVal, MBB, IP); |
| unsigned FalseReg = getReg(FalseVal, MBB, IP); |
| |
| if (TrueReg == FalseReg) { |
| if (SelectClass == cFP) { |
| BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg); |
| } else { |
| BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg); |
| } |
| |
| if (SelectClass == cLong) |
| BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1) |
| .addReg(TrueReg+1); |
| return; |
| } |
| |
| unsigned CondReg = getReg(Cond, MBB, IP); |
| unsigned numZeros = makeAnotherReg(Type::IntTy); |
| unsigned falseHi = makeAnotherReg(Type::IntTy); |
| unsigned falseAll = makeAnotherReg(Type::IntTy); |
| unsigned trueAll = makeAnotherReg(Type::IntTy); |
| unsigned Temp1 = makeAnotherReg(Type::IntTy); |
| unsigned Temp2 = makeAnotherReg(Type::IntTy); |
| |
| BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg); |
| BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26) |
| .addImm(0).addImm(0); |
| BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31); |
| BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll); |
| BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll); |
| BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll); |
| BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2); |
| |
| if (SelectClass == cLong) { |
| unsigned Temp3 = makeAnotherReg(Type::IntTy); |
| unsigned Temp4 = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll); |
| BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll); |
| BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4); |
| } |
| |
| return; |
| } |
| |
| |
| |
| /// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide |
| /// operand, in the specified target register. |
| /// |
| void ISel::promote32(unsigned targetReg, const ValueRecord &VR) { |
| bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy; |
| |
| Value *Val = VR.Val; |
| const Type *Ty = VR.Ty; |
| if (Val) { |
| if (Constant *C = dyn_cast<Constant>(Val)) { |
| Val = ConstantExpr::getCast(C, Type::IntTy); |
| Ty = Type::IntTy; |
| } |
| |
| // If this is a simple constant, just emit a load directly to avoid the copy |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { |
| int TheVal = CI->getRawValue() & 0xFFFFFFFF; |
| |
| if (TheVal < 32768 && TheVal >= -32768) { |
| BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal); |
| } else { |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0) |
| .addImm(TheVal >> 16); |
| BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg) |
| .addImm(TheVal & 0xFFFF); |
| } |
| return; |
| } |
| } |
| |
| // Make sure we have the register number for this value... |
| unsigned Reg = Val ? getReg(Val) : VR.Reg; |
| |
| switch (getClassB(Ty)) { |
| case cByte: |
| // Extend value into target register (8->32) |
| if (isUnsigned) |
| BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0) |
| .addZImm(24).addZImm(31); |
| else |
| BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg); |
| break; |
| case cShort: |
| // Extend value into target register (16->32) |
| if (isUnsigned) |
| BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0) |
| .addZImm(16).addZImm(31); |
| else |
| BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg); |
| break; |
| case cInt: |
| // Move value into target register (32->32) |
| BuildMI(BB, PPC32::OR, 2, targetReg).addReg(Reg).addReg(Reg); |
| break; |
| default: |
| assert(0 && "Unpromotable operand class in promote32"); |
| } |
| } |
| |
| /// visitReturnInst - implemented with BLR |
| /// |
| void ISel::visitReturnInst(ReturnInst &I) { |
| // Only do the processing if this is a non-void return |
| if (I.getNumOperands() > 0) { |
| Value *RetVal = I.getOperand(0); |
| switch (getClassB(RetVal->getType())) { |
| case cByte: // integral return values: extend or move into r3 and return |
| case cShort: |
| case cInt: |
| promote32(PPC32::R3, ValueRecord(RetVal)); |
| break; |
| case cFP: { // Floats & Doubles: Return in f1 |
| unsigned RetReg = getReg(RetVal); |
| BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg); |
| break; |
| } |
| case cLong: { |
| unsigned RetReg = getReg(RetVal); |
| BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg); |
| BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1); |
| break; |
| } |
| default: |
| visitInstruction(I); |
| } |
| } |
| BuildMI(BB, PPC32::BLR, 1).addImm(0); |
| } |
| |
| // getBlockAfter - Return the basic block which occurs lexically after the |
| // specified one. |
| static inline BasicBlock *getBlockAfter(BasicBlock *BB) { |
| Function::iterator I = BB; ++I; // Get iterator to next block |
| return I != BB->getParent()->end() ? &*I : 0; |
| } |
| |
| /// visitBranchInst - Handle conditional and unconditional branches here. Note |
| /// that since code layout is frozen at this point, that if we are trying to |
| /// jump to a block that is the immediate successor of the current block, we can |
| /// just make a fall-through (but we don't currently). |
| /// |
| void ISel::visitBranchInst(BranchInst &BI) { |
| // Update machine-CFG edges |
| BB->addSuccessor (MBBMap[BI.getSuccessor(0)]); |
| if (BI.isConditional()) |
| BB->addSuccessor (MBBMap[BI.getSuccessor(1)]); |
| |
| BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one |
| |
| if (!BI.isConditional()) { // Unconditional branch? |
| if (BI.getSuccessor(0) != NextBB) |
| BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]); |
| return; |
| } |
| |
| // See if we can fold the setcc into the branch itself... |
| SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition()); |
| if (SCI == 0) { |
| // Nope, cannot fold setcc into this branch. Emit a branch on a condition |
| // computed some other way... |
| unsigned condReg = getReg(BI.getCondition()); |
| BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg) |
| .addImm(0); |
| if (BI.getSuccessor(1) == NextBB) { |
| if (BI.getSuccessor(0) != NextBB) |
| BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2) |
| .addMBB(MBBMap[BI.getSuccessor(0)]); |
| } else { |
| BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2) |
| .addMBB(MBBMap[BI.getSuccessor(1)]); |
| |
| if (BI.getSuccessor(0) != NextBB) |
| BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]); |
| } |
| return; |
| } |
| |
| unsigned OpNum = getSetCCNumber(SCI->getOpcode()); |
| MachineBasicBlock::iterator MII = BB->end(); |
| OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII); |
| |
| const Type *CompTy = SCI->getOperand(0)->getType(); |
| bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP; |
| |
| static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 }; |
| unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4; |
| unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12; |
| unsigned BIval = BITab[0]; |
| |
| if (BI.getSuccessor(0) != NextBB) { |
| BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval) |
| .addMBB(MBBMap[BI.getSuccessor(0)]); |
| if (BI.getSuccessor(1) != NextBB) |
| BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]); |
| } else { |
| // Change to the inverse condition... |
| if (BI.getSuccessor(1) != NextBB) { |
| BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval) |
| .addMBB(MBBMap[BI.getSuccessor(1)]); |
| } |
| } |
| } |
| |
| |
| /// doCall - This emits an abstract call instruction, setting up the arguments |
| /// and the return value as appropriate. For the actual function call itself, |
| /// it inserts the specified CallMI instruction into the stream. |
| /// |
| /// FIXME: See Documentation at the following URL for "correct" behavior |
| /// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html> |
| void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI, |
| const std::vector<ValueRecord> &Args) { |
| // Count how many bytes are to be pushed on the stack... |
| unsigned NumBytes = 0; |
| |
| if (!Args.empty()) { |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| switch (getClassB(Args[i].Ty)) { |
| case cByte: case cShort: case cInt: |
| NumBytes += 4; break; |
| case cLong: |
| NumBytes += 8; break; |
| case cFP: |
| NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8; |
| break; |
| default: assert(0 && "Unknown class!"); |
| } |
| |
| // Adjust the stack pointer for the new arguments... |
| BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| unsigned ArgOffset = 0; |
| unsigned GPR_remaining = 8; |
| unsigned FPR_remaining = 13; |
| unsigned GPR_idx = 3; |
| unsigned FPR_idx = 1; |
| |
| for (unsigned i = 0, e = Args.size(); i != e; ++i) { |
| unsigned ArgReg; |
| switch (getClassB(Args[i].Ty)) { |
| case cByte: |
| case cShort: |
| // Promote arg to 32 bits wide into a temporary register... |
| ArgReg = makeAnotherReg(Type::UIntTy); |
| promote32(ArgReg, Args[i]); |
| |
| // Reg or stack? |
| if (GPR_remaining > 0) { |
| BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg) |
| .addReg(ArgReg); |
| } else { |
| BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset) |
| .addReg(PPC32::R1); |
| } |
| break; |
| case cInt: |
| ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; |
| |
| // Reg or stack? |
| if (GPR_remaining > 0) { |
| BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg) |
| .addReg(ArgReg); |
| } else { |
| BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset) |
| .addReg(PPC32::R1); |
| } |
| break; |
| case cLong: |
| ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; |
| |
| // Reg or stack? |
| if (GPR_remaining > 1) { |
| BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg) |
| .addReg(ArgReg); |
| BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1) |
| .addReg(ArgReg+1); |
| } else { |
| BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset) |
| .addReg(PPC32::R1); |
| BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4) |
| .addReg(PPC32::R1); |
| } |
| |
| ArgOffset += 4; // 8 byte entry, not 4. |
| if (GPR_remaining > 0) { |
| GPR_remaining -= 1; // uses up 2 GPRs |
| GPR_idx += 1; |
| } |
| break; |
| case cFP: |
| ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg; |
| if (Args[i].Ty == Type::FloatTy) { |
| // Reg or stack? |
| if (FPR_remaining > 0) { |
| BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg); |
| FPR_remaining--; |
| FPR_idx++; |
| } else { |
| BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset) |
| .addReg(PPC32::R1); |
| } |
| } else { |
| assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!"); |
| // Reg or stack? |
| if (FPR_remaining > 0) { |
| BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg); |
| FPR_remaining--; |
| FPR_idx++; |
| } else { |
| BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset) |
| .addReg(PPC32::R1); |
| } |
| |
| ArgOffset += 4; // 8 byte entry, not 4. |
| if (GPR_remaining > 0) { |
| GPR_remaining--; // uses up 2 GPRs |
| GPR_idx++; |
| } |
| } |
| break; |
| |
| default: assert(0 && "Unknown class!"); |
| } |
| ArgOffset += 4; |
| if (GPR_remaining > 0) { |
| GPR_remaining--; // uses up 2 GPRs |
| GPR_idx++; |
| } |
| } |
| } else { |
| BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0); |
| } |
| |
| BB->push_back(CallMI); |
| |
| BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes); |
| |
| // If there is a return value, scavenge the result from the location the call |
| // leaves it in... |
| // |
| if (Ret.Ty != Type::VoidTy) { |
| unsigned DestClass = getClassB(Ret.Ty); |
| switch (DestClass) { |
| case cByte: |
| case cShort: |
| case cInt: |
| // Integral results are in r3 |
| BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3); |
| break; |
| case cFP: // Floating-point return values live in f1 |
| BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1); |
| break; |
| case cLong: // Long values are in r3:r4 |
| BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3); |
| BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4); |
| break; |
| default: assert(0 && "Unknown class!"); |
| } |
| } |
| } |
| |
| |
| /// visitCallInst - Push args on stack and do a procedure call instruction. |
| void ISel::visitCallInst(CallInst &CI) { |
| MachineInstr *TheCall; |
| if (Function *F = CI.getCalledFunction()) { |
| // Is it an intrinsic function call? |
| if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) { |
| visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here |
| return; |
| } |
| |
| // Emit a CALL instruction with PC-relative displacement. |
| TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true); |
| } else { // Emit an indirect call through the CTR |
| unsigned Reg = getReg(CI.getCalledValue()); |
| BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg); |
| TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0); |
| } |
| |
| std::vector<ValueRecord> Args; |
| for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i) |
| Args.push_back(ValueRecord(CI.getOperand(i))); |
| |
| unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0; |
| doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args); |
| } |
| |
| |
| /// dyncastIsNan - Return the operand of an isnan operation if this is an isnan. |
| /// |
| static Value *dyncastIsNan(Value *V) { |
| if (CallInst *CI = dyn_cast<CallInst>(V)) |
| if (Function *F = CI->getCalledFunction()) |
| if (F->getIntrinsicID() == Intrinsic::isunordered) |
| return CI->getOperand(1); |
| return 0; |
| } |
| |
| /// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by |
| /// or's whos operands are all calls to the isnan predicate. |
| static bool isOnlyUsedByUnorderedComparisons(Value *V) { |
| assert(dyncastIsNan(V) && "The value isn't an isnan call!"); |
| |
| // Check all uses, which will be or's of isnans if this predicate is true. |
| for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){ |
| Instruction *I = cast<Instruction>(*UI); |
| if (I->getOpcode() != Instruction::Or) return false; |
| if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false; |
| if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false; |
| } |
| |
| return true; |
| } |
| |
| /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the |
| /// function, lowering any calls to unknown intrinsic functions into the |
| /// equivalent LLVM code. |
| /// |
| void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) { |
| for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) |
| if (CallInst *CI = dyn_cast<CallInst>(I++)) |
| if (Function *F = CI->getCalledFunction()) |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::not_intrinsic: |
| case Intrinsic::vastart: |
| case Intrinsic::vacopy: |
| case Intrinsic::vaend: |
| case Intrinsic::returnaddress: |
| case Intrinsic::frameaddress: |
| // FIXME: should lower this ourselves |
| // case Intrinsic::isunordered: |
| // We directly implement these intrinsics |
| break; |
| case Intrinsic::readio: { |
| // On PPC, memory operations are in-order. Lower this intrinsic |
| // into a volatile load. |
| Instruction *Before = CI->getPrev(); |
| LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI); |
| CI->replaceAllUsesWith(LI); |
| BB->getInstList().erase(CI); |
| break; |
| } |
| case Intrinsic::writeio: { |
| // On PPC, memory operations are in-order. Lower this intrinsic |
| // into a volatile store. |
| Instruction *Before = CI->getPrev(); |
| StoreInst *LI = new StoreInst(CI->getOperand(1), |
| CI->getOperand(2), true, CI); |
| CI->replaceAllUsesWith(LI); |
| BB->getInstList().erase(CI); |
| break; |
| } |
| default: |
| // All other intrinsic calls we must lower. |
| Instruction *Before = CI->getPrev(); |
| TM.getIntrinsicLowering().LowerIntrinsicCall(CI); |
| if (Before) { // Move iterator to instruction after call |
| I = Before; ++I; |
| } else { |
| I = BB->begin(); |
| } |
| } |
| } |
| |
| void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) { |
| unsigned TmpReg1, TmpReg2, TmpReg3; |
| switch (ID) { |
| case Intrinsic::vastart: |
| // Get the address of the first vararg value... |
| TmpReg1 = getReg(CI); |
| addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex); |
| return; |
| |
| case Intrinsic::vacopy: |
| TmpReg1 = getReg(CI); |
| TmpReg2 = getReg(CI.getOperand(1)); |
| BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2); |
| return; |
| case Intrinsic::vaend: return; |
| |
| case Intrinsic::returnaddress: |
| case Intrinsic::frameaddress: |
| TmpReg1 = getReg(CI); |
| if (cast<Constant>(CI.getOperand(1))->isNullValue()) { |
| if (ID == Intrinsic::returnaddress) { |
| // Just load the return address |
| addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1), |
| ReturnAddressIndex); |
| } else { |
| addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), |
| ReturnAddressIndex, -4, false); |
| } |
| } else { |
| // Values other than zero are not implemented yet. |
| BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0); |
| } |
| return; |
| |
| #if 0 |
| // This may be useful for supporting isunordered |
| case Intrinsic::isnan: |
| // If this is only used by 'isunordered' style comparisons, don't emit it. |
| if (isOnlyUsedByUnorderedComparisons(&CI)) return; |
| TmpReg1 = getReg(CI.getOperand(1)); |
| emitUCOM(BB, BB->end(), TmpReg1, TmpReg1); |
| TmpReg2 = makeAnotherReg(Type::IntTy); |
| BuildMI(BB, PPC32::MFCR, TmpReg2); |
| TmpReg3 = getReg(CI); |
| BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31); |
| return; |
| #endif |
| |
| default: assert(0 && "Error: unknown intrinsics should have been lowered!"); |
| } |
| } |
| |
| /// visitSimpleBinary - Implement simple binary operators for integral types... |
| /// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for |
| /// Xor. |
| /// |
| void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) { |
| unsigned DestReg = getReg(B); |
| MachineBasicBlock::iterator MI = BB->end(); |
| Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1); |
| unsigned Class = getClassB(B.getType()); |
| |
| emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg); |
| } |
| |
| /// emitBinaryFPOperation - This method handles emission of floating point |
| /// Add (0), Sub (1), Mul (2), and Div (3) operations. |
| void ISel::emitBinaryFPOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, |
| unsigned OperatorClass, unsigned DestReg) { |
| |
| // Special case: op Reg, <const fp> |
| if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) { |
| // Create a constant pool entry for this constant. |
| MachineConstantPool *CP = F->getConstantPool(); |
| unsigned CPI = CP->getConstantPoolIndex(Op1C); |
| const Type *Ty = Op1->getType(); |
| |
| static const unsigned OpcodeTab[][4] = { |
| { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float |
| { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double |
| }; |
| |
| assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); |
| unsigned TempReg = makeAnotherReg(Ty); |
| unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD; |
| addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI); |
| |
| unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; |
| unsigned Op0r = getReg(Op0, BB, IP); |
| BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg); |
| return; |
| } |
| |
| // Special case: R1 = op <const fp>, R2 |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0)) |
| if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) { |
| // -0.0 - X === -X |
| unsigned op1Reg = getReg(Op1, BB, IP); |
| BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg); |
| return; |
| } else { |
| // R1 = op CST, R2 --> R1 = opr R2, CST |
| |
| // Create a constant pool entry for this constant. |
| MachineConstantPool *CP = F->getConstantPool(); |
| unsigned CPI = CP->getConstantPoolIndex(CFP); |
| const Type *Ty = CFP->getType(); |
| |
| static const unsigned OpcodeTab[][4] = { |
| { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float |
| { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double |
| }; |
| |
| assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); |
| unsigned TempReg = makeAnotherReg(Ty); |
| unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD; |
| addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI); |
| |
| unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass]; |
| unsigned Op1r = getReg(Op1, BB, IP); |
| BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r); |
| return; |
| } |
| |
| // General case. |
| static const unsigned OpcodeTab[] = { |
| PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV |
| }; |
| |
| unsigned Opcode = OpcodeTab[OperatorClass]; |
| unsigned Op0r = getReg(Op0, BB, IP); |
| unsigned Op1r = getReg(Op1, BB, IP); |
| BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); |
| } |
| |
| /// emitSimpleBinaryOperation - Implement simple binary operators for integral |
| /// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for |
| /// Or, 4 for Xor. |
| /// |
| /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary |
| /// and constant expression support. |
| /// |
| void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, |
| unsigned OperatorClass, unsigned DestReg) { |
| unsigned Class = getClassB(Op0->getType()); |
| |
| // Arithmetic and Bitwise operators |
| static const unsigned OpcodeTab[] = { |
| PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR |
| }; |
| // Otherwise, code generate the full operation with a constant. |
| static const unsigned BottomTab[] = { |
| PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR |
| }; |
| static const unsigned TopTab[] = { |
| PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR |
| }; |
| |
| if (Class == cFP) { |
| assert(OperatorClass < 2 && "No logical ops for FP!"); |
| emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg); |
| return; |
| } |
| |
| if (Op0->getType() == Type::BoolTy) { |
| if (OperatorClass == 3) |
| // If this is an or of two isnan's, emit an FP comparison directly instead |
| // of or'ing two isnan's together. |
| if (Value *LHS = dyncastIsNan(Op0)) |
| if (Value *RHS = dyncastIsNan(Op1)) { |
| unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP); |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| emitUCOM(MBB, IP, Op0Reg, Op1Reg); |
| BuildMI(*MBB, IP, PPC32::MFCR, TmpReg); |
| BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4) |
| .addImm(31).addImm(31); |
| return; |
| } |
| } |
| |
| // sub 0, X -> neg X |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0)) |
| if (OperatorClass == 1 && CI->isNullValue()) { |
| unsigned op1Reg = getReg(Op1, MBB, IP); |
| BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg); |
| |
| if (Class == cLong) { |
| unsigned zeroes = makeAnotherReg(Type::IntTy); |
| unsigned overflow = makeAnotherReg(Type::IntTy); |
| unsigned T = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg); |
| BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27) |
| .addImm(5).addImm(31); |
| BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow); |
| BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T); |
| } |
| return; |
| } |
| |
| // Special case: op Reg, <const int> |
| if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { |
| unsigned Op0r = getReg(Op0, MBB, IP); |
| |
| // xor X, -1 -> not X |
| if (OperatorClass == 4 && Op1C->isAllOnesValue()) { |
| BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r); |
| if (Class == cLong) // Invert the top part too |
| BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1) |
| .addReg(Op0r+1); |
| return; |
| } |
| |
| unsigned Opcode = OpcodeTab[OperatorClass]; |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| |
| if (Class != cLong) { |
| BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); |
| return; |
| } |
| |
| // If the constant is zero in the low 32-bits, just copy the low part |
| // across and apply the normal 32-bit operation to the high parts. There |
| // will be no carry or borrow into the top. |
| if (cast<ConstantInt>(Op1C)->getRawValue() == 0) { |
| if (OperatorClass != 2) // All but and... |
| BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r); |
| else |
| BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0); |
| BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1); |
| return; |
| } |
| |
| // If this is a long value and the high or low bits have a special |
| // property, emit some special cases. |
| unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL; |
| |
| // If this is a logical operation and the top 32-bits are zero, just |
| // operate on the lower 32. |
| if (Op1h == 0 && OperatorClass > 1) { |
| BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); |
| if (OperatorClass != 2) // All but and |
| BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1); |
| else |
| BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0); |
| return; |
| } |
| |
| // TODO: We could handle lots of other special cases here, such as AND'ing |
| // with 0xFFFFFFFF00000000 -> noop, etc. |
| |
| BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r) |
| .addImm(Op1r); |
| BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1) |
| .addImm(Op1r+1); |
| return; |
| } |
| |
| unsigned Op0r = getReg(Op0, MBB, IP); |
| unsigned Op1r = getReg(Op1, MBB, IP); |
| |
| if (Class != cLong) { |
| unsigned Opcode = OpcodeTab[OperatorClass]; |
| BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r); |
| } else { |
| BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r) |
| .addImm(Op1r); |
| BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1) |
| .addImm(Op1r+1); |
| } |
| return; |
| } |
| |
| /// doMultiply - Emit appropriate instructions to multiply together the |
| /// registers op0Reg and op1Reg, and put the result in DestReg. The type of the |
| /// result should be given as DestTy. |
| /// |
| void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI, |
| unsigned DestReg, const Type *DestTy, |
| unsigned op0Reg, unsigned op1Reg) { |
| unsigned Class = getClass(DestTy); |
| switch (Class) { |
| case cLong: |
| BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1) |
| .addReg(op1Reg+1); |
| case cInt: |
| case cShort: |
| case cByte: |
| BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg); |
| return; |
| default: |
| assert(0 && "doMultiply cannot operate on unknown type!"); |
| } |
| } |
| |
| // ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It |
| // returns zero when the input is not exactly a power of two. |
| static unsigned ExactLog2(unsigned Val) { |
| if (Val == 0 || (Val & (Val-1))) return 0; |
| unsigned Count = 0; |
| while (Val != 1) { |
| Val >>= 1; |
| ++Count; |
| } |
| return Count+1; |
| } |
| |
| |
| /// doMultiplyConst - This function is specialized to efficiently codegen an 8, |
| /// 16, or 32-bit integer multiply by a constant. |
| /// |
| void ISel::doMultiplyConst(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| unsigned DestReg, const Type *DestTy, |
| unsigned op0Reg, unsigned ConstRHS) { |
| unsigned Class = getClass(DestTy); |
| // Handle special cases here. |
| switch (ConstRHS) { |
| case 0: |
| BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0); |
| return; |
| case 1: |
| BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg); |
| return; |
| case 2: |
| BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg); |
| return; |
| } |
| |
| // If the element size is exactly a power of 2, use a shift to get it. |
| if (unsigned Shift = ExactLog2(ConstRHS)) { |
| switch (Class) { |
| default: assert(0 && "Unknown class for this function!"); |
| case cByte: |
| case cShort: |
| case cInt: |
| BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg) |
| .addImm(Shift-1).addImm(0).addImm(31-Shift-1); |
| return; |
| } |
| } |
| |
| // Most general case, emit a normal multiply... |
| unsigned TmpReg1 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg2 = makeAnotherReg(Type::IntTy); |
| BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0) |
| .addImm(ConstRHS >> 16); |
| BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS); |
| |
| // Emit a MUL to multiply the register holding the index by |
| // elementSize, putting the result in OffsetReg. |
| doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2); |
| } |
| |
| void ISel::visitMul(BinaryOperator &I) { |
| unsigned ResultReg = getReg(I); |
| |
| Value *Op0 = I.getOperand(0); |
| Value *Op1 = I.getOperand(1); |
| |
| MachineBasicBlock::iterator IP = BB->end(); |
| emitMultiply(BB, IP, Op0, Op1, ResultReg); |
| } |
| |
| void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, unsigned DestReg) { |
| MachineBasicBlock &BB = *MBB; |
| TypeClass Class = getClass(Op0->getType()); |
| |
| // Simple scalar multiply? |
| unsigned Op0Reg = getReg(Op0, &BB, IP); |
| switch (Class) { |
| case cByte: |
| case cShort: |
| case cInt: |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant |
| doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val); |
| } else { |
| unsigned Op1Reg = getReg(Op1, &BB, IP); |
| doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg); |
| } |
| return; |
| case cFP: |
| emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg); |
| return; |
| case cLong: |
| break; |
| } |
| |
| // Long value. We have to do things the hard way... |
| if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) { |
| unsigned CLow = CI->getRawValue(); |
| unsigned CHi = CI->getRawValue() >> 32; |
| |
| if (CLow == 0) { |
| // If the low part of the constant is all zeros, things are simple. |
| BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0); |
| doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi); |
| return; |
| } |
| |
| // Multiply the two low parts |
| unsigned OverflowReg = 0; |
| if (CLow == 1) { |
| BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg); |
| } else { |
| unsigned TmpRegL = makeAnotherReg(Type::UIntTy); |
| unsigned Op1RegL = makeAnotherReg(Type::UIntTy); |
| OverflowReg = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0) |
| .addImm(CLow >> 16); |
| BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow); |
| BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL); |
| BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg) |
| .addReg(Op1RegL); |
| } |
| |
| unsigned AHBLReg = makeAnotherReg(Type::UIntTy); |
| doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow); |
| |
| unsigned AHBLplusOverflowReg; |
| if (OverflowReg) { |
| AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32) |
| AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); |
| } else { |
| AHBLplusOverflowReg = AHBLReg; |
| } |
| |
| if (CHi == 0) { |
| BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg) |
| .addReg(AHBLplusOverflowReg); |
| } else { |
| unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH |
| doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi); |
| |
| BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32) |
| DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); |
| } |
| return; |
| } |
| |
| // General 64x64 multiply |
| |
| unsigned Op1Reg = getReg(Op1, &BB, IP); |
| |
| // Multiply the two low parts... capturing carry into EDX |
| BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL |
| |
| unsigned OverflowReg = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32 |
| |
| unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL |
| BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg); |
| |
| unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32) |
| AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg); |
| |
| unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH |
| BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1); |
| |
| BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32) |
| DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg); |
| } |
| |
| |
| /// visitDivRem - Handle division and remainder instructions... these |
| /// instruction both require the same instructions to be generated, they just |
| /// select the result from a different register. Note that both of these |
| /// instructions work differently for signed and unsigned operands. |
| /// |
| void ISel::visitDivRem(BinaryOperator &I) { |
| unsigned ResultReg = getReg(I); |
| Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); |
| |
| MachineBasicBlock::iterator IP = BB->end(); |
| emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div, |
| ResultReg); |
| } |
| |
| void ISel::emitDivRemOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Op0, Value *Op1, bool isDiv, |
| unsigned ResultReg) { |
| const Type *Ty = Op0->getType(); |
| unsigned Class = getClass(Ty); |
| switch (Class) { |
| case cFP: // Floating point divide |
| if (isDiv) { |
| emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg); |
| return; |
| } else { // Floating point remainder... |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned Op1Reg = getReg(Op1, BB, IP); |
| MachineInstr *TheCall = |
| BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true); |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy)); |
| Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy)); |
| doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args); |
| } |
| return; |
| case cLong: { |
| static const char *FnName[] = |
| { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" }; |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned Op1Reg = getReg(Op1, BB, IP); |
| unsigned NameIdx = Ty->isUnsigned()*2 + isDiv; |
| MachineInstr *TheCall = |
| BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true); |
| |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(Op0Reg, Type::LongTy)); |
| Args.push_back(ValueRecord(Op1Reg, Type::LongTy)); |
| doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args); |
| return; |
| } |
| case cByte: case cShort: case cInt: |
| break; // Small integrals, handled below... |
| default: assert(0 && "Unknown class!"); |
| } |
| |
| // Special case signed division by power of 2. |
| if (isDiv) |
| if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) { |
| assert(Class != cLong && "This doesn't handle 64-bit divides!"); |
| int V = CI->getValue(); |
| |
| if (V == 1) { // X /s 1 => X |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg); |
| return; |
| } |
| |
| if (V == -1) { // X /s -1 => -X |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg); |
| return; |
| } |
| |
| bool isNeg = false; |
| if (V < 0) { // Not a positive power of 2? |
| V = -V; |
| isNeg = true; // Maybe it's a negative power of 2. |
| } |
| if (unsigned Log = ExactLog2(V)) { |
| --Log; |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned TmpReg = makeAnotherReg(Op0->getType()); |
| if (Log != 1) |
| BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1); |
| else |
| BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg); |
| |
| unsigned TmpReg2 = makeAnotherReg(Op0->getType()); |
| BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log) |
| .addImm(32-Log).addImm(31); |
| |
| unsigned TmpReg3 = makeAnotherReg(Op0->getType()); |
| BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2); |
| |
| unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg; |
| BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log); |
| |
| if (isNeg) |
| BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4); |
| return; |
| } |
| } |
| |
| unsigned Op0Reg = getReg(Op0, BB, IP); |
| unsigned Op1Reg = getReg(Op1, BB, IP); |
| |
| if (isDiv) { |
| if (Ty->isSigned()) { |
| BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); |
| } else { |
| BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg); |
| } |
| } else { // Remainder |
| unsigned TmpReg1 = makeAnotherReg(Op0->getType()); |
| unsigned TmpReg2 = makeAnotherReg(Op0->getType()); |
| |
| if (Ty->isSigned()) { |
| BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg); |
| } else { |
| BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg); |
| } |
| BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg); |
| BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg); |
| } |
| } |
| |
| |
| /// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here |
| /// for constant immediate shift values, and for constant immediate |
| /// shift values equal to 1. Even the general case is sort of special, |
| /// because the shift amount has to be in CL, not just any old register. |
| /// |
| void ISel::visitShiftInst(ShiftInst &I) { |
| MachineBasicBlock::iterator IP = BB->end (); |
| emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1), |
| I.getOpcode () == Instruction::Shl, I.getType (), |
| getReg (I)); |
| } |
| |
| /// emitShiftOperation - Common code shared between visitShiftInst and |
| /// constant expression support. |
| /// |
| void ISel::emitShiftOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Op, Value *ShiftAmount, bool isLeftShift, |
| const Type *ResultTy, unsigned DestReg) { |
| unsigned SrcReg = getReg (Op, MBB, IP); |
| bool isSigned = ResultTy->isSigned (); |
| unsigned Class = getClass (ResultTy); |
| |
| // Longs, as usual, are handled specially... |
| if (Class == cLong) { |
| // If we have a constant shift, we can generate much more efficient code |
| // than otherwise... |
| // |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { |
| unsigned Amount = CUI->getValue(); |
| if (Amount < 32) { |
| if (isLeftShift) { |
| // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA |
| BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1) |
| .addImm(Amount).addImm(0).addImm(31-Amount); |
| BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg) |
| .addImm(Amount).addImm(32-Amount).addImm(31); |
| BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg) |
| .addImm(Amount).addImm(0).addImm(31-Amount); |
| } else { |
| // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA |
| BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg) |
| .addImm(32-Amount).addImm(Amount).addImm(31); |
| BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1) |
| .addImm(32-Amount).addImm(0).addImm(Amount-1); |
| BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1) |
| .addImm(32-Amount).addImm(Amount).addImm(31); |
| } |
| } else { // Shifting more than 32 bits |
| Amount -= 32; |
| if (isLeftShift) { |
| if (Amount != 0) { |
| BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg) |
| .addImm(Amount).addImm(0).addImm(31-Amount); |
| } else { |
| BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg) |
| .addReg(SrcReg); |
| } |
| BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0); |
| } else { |
| if (Amount != 0) { |
| if (isSigned) |
| BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1) |
| .addImm(Amount); |
| else |
| BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1) |
| .addImm(32-Amount).addImm(Amount).addImm(31); |
| } else { |
| BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1) |
| .addReg(SrcReg+1); |
| } |
| BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0); |
| } |
| } |
| } else { |
| unsigned TmpReg1 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg2 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg3 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg4 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg5 = makeAnotherReg(Type::IntTy); |
| unsigned TmpReg6 = makeAnotherReg(Type::IntTy); |
| unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); |
| |
| if (isLeftShift) { |
| BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) |
| .addImm(32); |
| BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1) |
| .addReg(ShiftAmountReg); |
| BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1); |
| BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3); |
| BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg) |
| .addImm(-32); |
| BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5); |
| BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4) |
| .addReg(TmpReg6); |
| BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg) |
| .addReg(ShiftAmountReg); |
| } else { |
| if (isSigned) { |
| // FIXME: Unimplmented |
| // Page C-3 of the PowerPC 32bit Programming Environments Manual |
| } else { |
| BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg) |
| .addImm(32); |
| BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg) |
| .addReg(ShiftAmountReg); |
| BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1) |
| .addReg(TmpReg1); |
| BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2) |
| .addReg(TmpReg3); |
| BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg) |
| .addImm(-32); |
| BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1) |
| .addReg(TmpReg5); |
| BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4) |
| .addReg(TmpReg6); |
| BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1) |
| .addReg(ShiftAmountReg); |
| } |
| } |
| } |
| return; |
| } |
| |
| if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) { |
| // The shift amount is constant, guaranteed to be a ubyte. Get its value. |
| assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?"); |
| unsigned Amount = CUI->getValue(); |
| |
| if (isLeftShift) { |
| BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg) |
| .addImm(Amount).addImm(0).addImm(31-Amount); |
| } else { |
| if (isSigned) { |
| BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount); |
| } else { |
| BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg) |
| .addImm(32-Amount).addImm(Amount).addImm(31); |
| } |
| } |
| } else { // The shift amount is non-constant. |
| unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP); |
| |
| if (isLeftShift) { |
| BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg) |
| .addReg(ShiftAmountReg); |
| } else { |
| BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg) |
| .addReg(SrcReg).addReg(ShiftAmountReg); |
| } |
| } |
| } |
| |
| |
| /// visitLoadInst - Implement LLVM load instructions |
| /// |
| void ISel::visitLoadInst(LoadInst &I) { |
| static const unsigned Opcodes[] = { |
| PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS |
| }; |
| unsigned Class = getClassB(I.getType()); |
| unsigned Opcode = Opcodes[Class]; |
| if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD; |
| |
| unsigned DestReg = getReg(I); |
| |
| if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) { |
| unsigned FI = getFixedSizedAllocaFI(AI); |
| if (Class == cLong) { |
| addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI); |
| addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4); |
| } else { |
| addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI); |
| } |
| } else { |
| unsigned SrcAddrReg = getReg(I.getOperand(0)); |
| |
| if (Class == cLong) { |
| BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg); |
| BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg); |
| } else { |
| BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg); |
| } |
| } |
| } |
| |
| /// visitStoreInst - Implement LLVM store instructions |
| /// |
| void ISel::visitStoreInst(StoreInst &I) { |
| unsigned ValReg = getReg(I.getOperand(0)); |
| unsigned AddressReg = getReg(I.getOperand(1)); |
| |
| const Type *ValTy = I.getOperand(0)->getType(); |
| unsigned Class = getClassB(ValTy); |
| |
| if (Class == cLong) { |
| BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg); |
| BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg); |
| return; |
| } |
| |
| static const unsigned Opcodes[] = { |
| PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS |
| }; |
| unsigned Opcode = Opcodes[Class]; |
| if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD; |
| BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg); |
| } |
| |
| |
| /// visitCastInst - Here we have various kinds of copying with or without sign |
| /// extension going on. |
| /// |
| void ISel::visitCastInst(CastInst &CI) { |
| Value *Op = CI.getOperand(0); |
| |
| unsigned SrcClass = getClassB(Op->getType()); |
| unsigned DestClass = getClassB(CI.getType()); |
| // Noop casts are not emitted: getReg will return the source operand as the |
| // register to use for any uses of the noop cast. |
| if (DestClass == SrcClass) |
| return; |
| |
| // If this is a cast from a 32-bit integer to a Long type, and the only uses |
| // of the case are GEP instructions, then the cast does not need to be |
| // generated explicitly, it will be folded into the GEP. |
| if (DestClass == cLong && SrcClass == cInt) { |
| bool AllUsesAreGEPs = true; |
| for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I) |
| if (!isa<GetElementPtrInst>(*I)) { |
| AllUsesAreGEPs = false; |
| break; |
| } |
| |
| // No need to codegen this cast if all users are getelementptr instrs... |
| if (AllUsesAreGEPs) return; |
| } |
| |
| unsigned DestReg = getReg(CI); |
| MachineBasicBlock::iterator MI = BB->end(); |
| emitCastOperation(BB, MI, Op, CI.getType(), DestReg); |
| } |
| |
| /// emitCastOperation - Common code shared between visitCastInst and constant |
| /// expression cast support. |
| /// |
| void ISel::emitCastOperation(MachineBasicBlock *BB, |
| MachineBasicBlock::iterator IP, |
| Value *Src, const Type *DestTy, |
| unsigned DestReg) { |
| const Type *SrcTy = Src->getType(); |
| unsigned SrcClass = getClassB(SrcTy); |
| unsigned DestClass = getClassB(DestTy); |
| unsigned SrcReg = getReg(Src, BB, IP); |
| |
| // Implement casts to bool by using compare on the operand followed by set if |
| // not zero on the result. |
| if (DestTy == Type::BoolTy) { |
| switch (SrcClass) { |
| case cByte: |
| case cShort: |
| case cInt: { |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1); |
| BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg); |
| break; |
| } |
| case cLong: { |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| unsigned SrcReg2 = makeAnotherReg(Type::IntTy); |
| BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1); |
| BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1); |
| BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2); |
| break; |
| } |
| case cFP: |
| // FIXME |
| // Load -0.0 |
| // Compare |
| // move to CR1 |
| // Negate -0.0 |
| // Compare |
| // CROR |
| // MFCR |
| // Left-align |
| // SRA ? |
| break; |
| } |
| return; |
| } |
| |
| // Implement casts between values of the same type class (as determined by |
| // getClass) by using a register-to-register move. |
| if (SrcClass == DestClass) { |
| if (SrcClass <= cInt) { |
| BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| } else if (SrcClass == cFP && SrcTy == DestTy) { |
| BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg); |
| } else if (SrcClass == cFP) { |
| if (SrcTy == Type::FloatTy) { // float -> double |
| assert(DestTy == Type::DoubleTy && "Unknown cFP member!"); |
| BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg); |
| } else { // double -> float |
| assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy && |
| "Unknown cFP member!"); |
| BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg); |
| } |
| } else if (SrcClass == cLong) { |
| BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1) |
| .addReg(SrcReg+1); |
| } else { |
| assert(0 && "Cannot handle this type of cast instruction!"); |
| abort(); |
| } |
| return; |
| } |
| |
| // Handle cast of SMALLER int to LARGER int using a move with sign extension |
| // or zero extension, depending on whether the source type was signed. |
| if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) && |
| SrcClass < DestClass) { |
| bool isLong = DestClass == cLong; |
| if (isLong) DestClass = cInt; |
| |
| bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; |
| if (SrcClass < cInt) { |
| if (isUnsigned) { |
| unsigned shift = (SrcClass == cByte) ? 24 : 16; |
| BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0) |
| .addImm(shift).addImm(31); |
| } else { |
| BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, |
| 1, DestReg).addReg(SrcReg); |
| } |
| } else { |
| BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| } |
| |
| if (isLong) { // Handle upper 32 bits as appropriate... |
| if (isUnsigned) // Zero out top bits... |
| BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0); |
| else // Sign extend bottom half... |
| BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31); |
| } |
| return; |
| } |
| |
| // Special case long -> int ... |
| if (SrcClass == cLong && DestClass == cInt) { |
| BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg); |
| return; |
| } |
| |
| // Handle cast of LARGER int to SMALLER int with a clear or sign extend |
| if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt |
| && SrcClass > DestClass) { |
| bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy; |
| if (isUnsigned) { |
| unsigned shift = (SrcClass == cByte) ? 24 : 16; |
| BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0) |
| .addImm(shift).addImm(31); |
| } else { |
| BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1, |
| DestReg).addReg(SrcReg); |
| } |
| return; |
| } |
| |
| // Handle casts from integer to floating point now... |
| if (DestClass == cFP) { |
| |
| // Emit a library call for long to float conversion |
| if (SrcClass == cLong) { |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(SrcReg, SrcTy)); |
| MachineInstr *TheCall = |
| BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true); |
| doCall(ValueRecord(DestReg, DestTy), TheCall, Args); |
| return; |
| } |
| |
| unsigned TmpReg = makeAnotherReg(Type::IntTy); |
| switch (SrcTy->getTypeID()) { |
| case Type::BoolTyID: |
| case Type::SByteTyID: |
| BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg); |
| break; |
| case Type::UByteTyID: |
| BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0) |
| .addImm(24).addImm(31); |
| break; |
| case Type::ShortTyID: |
| BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg); |
| break; |
| case Type::UShortTyID: |
| BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0) |
| .addImm(16).addImm(31); |
| break; |
| case Type::IntTyID: |
| BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg); |
| break; |
| case Type::UIntTyID: |
| BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg); |
| break; |
| default: // No promotion needed... |
| break; |
| } |
| |
| SrcReg = TmpReg; |
| |
| // Spill the integer to memory and reload it from there. |
| // Also spill room for a special conversion constant |
| int ConstantFrameIndex = |
| F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); |
| int ValueFrameIdx = |
| F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); |
| |
| unsigned constantHi = makeAnotherReg(Type::IntTy); |
| unsigned constantLo = makeAnotherReg(Type::IntTy); |
| unsigned ConstF = makeAnotherReg(Type::DoubleTy); |
| unsigned TempF = makeAnotherReg(Type::DoubleTy); |
| |
| if (!SrcTy->isSigned()) { |
| BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0) |
| .addImm(0x4330); |
| BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0); |
| addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), |
| ConstantFrameIndex); |
| addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), |
| ConstantFrameIndex, 4); |
| addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), |
| ValueFrameIdx); |
| addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg), |
| ValueFrameIdx, 4); |
| addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), |
| ConstantFrameIndex); |
| addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx); |
| BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF); |
| } else { |
| unsigned TempLo = makeAnotherReg(Type::IntTy); |
| BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0) |
| .addImm(0x4330); |
| BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0) |
| .addImm(0x8000); |
| addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), |
| ConstantFrameIndex); |
| addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), |
| ConstantFrameIndex, 4); |
| addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), |
| ValueFrameIdx); |
| BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000); |
| addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo), |
| ValueFrameIdx, 4); |
| addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), |
| ConstantFrameIndex); |
| addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx); |
| BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF); |
| } |
| return; |
| } |
| |
| // Handle casts from floating point to integer now... |
| if (SrcClass == cFP) { |
| |
| // emit library call |
| if (DestClass == cLong) { |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(SrcReg, SrcTy)); |
| MachineInstr *TheCall = |
| BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true); |
| doCall(ValueRecord(DestReg, DestTy), TheCall, Args); |
| return; |
| } |
| |
| int ValueFrameIdx = |
| F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData()); |
| |
| // load into 32 bit value, and then truncate as necessary |
| // FIXME: This is wrong for unsigned dest types |
| //if (DestTy->isSigned()) { |
| unsigned TempReg = makeAnotherReg(Type::DoubleTy); |
| BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg); |
| addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3) |
| .addReg(TempReg), ValueFrameIdx); |
| addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg), |
| ValueFrameIdx+4); |
| //} else { |
| //} |
| |
| // FIXME: Truncate return value |
| return; |
| } |
| |
| // Anything we haven't handled already, we can't (yet) handle at all. |
| assert(0 && "Unhandled cast instruction!"); |
| abort(); |
| } |
| |
| /// visitVANextInst - Implement the va_next instruction... |
| /// |
| void ISel::visitVANextInst(VANextInst &I) { |
| unsigned VAList = getReg(I.getOperand(0)); |
| unsigned DestReg = getReg(I); |
| |
| unsigned Size; |
| switch (I.getArgType()->getTypeID()) { |
| default: |
| std::cerr << I; |
| assert(0 && "Error: bad type for va_next instruction!"); |
| return; |
| case Type::PointerTyID: |
| case Type::UIntTyID: |
| case Type::IntTyID: |
| Size = 4; |
| break; |
| case Type::ULongTyID: |
| case Type::LongTyID: |
| case Type::DoubleTyID: |
| Size = 8; |
| break; |
| } |
| |
| // Increment the VAList pointer... |
| BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size); |
| } |
| |
| void ISel::visitVAArgInst(VAArgInst &I) { |
| unsigned VAList = getReg(I.getOperand(0)); |
| unsigned DestReg = getReg(I); |
| |
| switch (I.getType()->getTypeID()) { |
| default: |
| std::cerr << I; |
| assert(0 && "Error: bad type for va_next instruction!"); |
| return; |
| case Type::PointerTyID: |
| case Type::UIntTyID: |
| case Type::IntTyID: |
| BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList); |
| break; |
| case Type::ULongTyID: |
| case Type::LongTyID: |
| BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList); |
| BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList); |
| break; |
| case Type::DoubleTyID: |
| BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList); |
| break; |
| } |
| } |
| |
| /// visitGetElementPtrInst - instruction-select GEP instructions |
| /// |
| void ISel::visitGetElementPtrInst(GetElementPtrInst &I) { |
| unsigned outputReg = getReg(I); |
| emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(), |
| outputReg); |
| } |
| |
| void ISel::emitGEPOperation(MachineBasicBlock *MBB, |
| MachineBasicBlock::iterator IP, |
| Value *Src, User::op_iterator IdxBegin, |
| User::op_iterator IdxEnd, unsigned TargetReg) { |
| const TargetData &TD = TM.getTargetData(); |
| if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src)) |
| Src = CPR->getValue(); |
| |
| std::vector<Value*> GEPOps; |
| GEPOps.resize(IdxEnd-IdxBegin+1); |
| GEPOps[0] = Src; |
| std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1); |
| |
| std::vector<const Type*> GEPTypes; |
| GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd), |
| gep_type_end(Src->getType(), IdxBegin, IdxEnd)); |
| |
| // Keep emitting instructions until we consume the entire GEP instruction. |
| while (!GEPTypes.empty()) { |
| // It's an array or pointer access: [ArraySize x ElementType]. |
| const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back()); |
| Value *idx = GEPOps.back(); |
| GEPOps.pop_back(); // Consume a GEP operand |
| GEPTypes.pop_back(); |
| |
| // Many GEP instructions use a [cast (int/uint) to LongTy] as their |
| // operand on X86. Handle this case directly now... |
| if (CastInst *CI = dyn_cast<CastInst>(idx)) |
| if (CI->getOperand(0)->getType() == Type::IntTy || |
| CI->getOperand(0)->getType() == Type::UIntTy) |
| idx = CI->getOperand(0); |
| |
| // We want to add BaseReg to(idxReg * sizeof ElementType). First, we |
| // must find the size of the pointed-to type (Not coincidentally, the next |
| // type is the type of the elements in the array). |
| const Type *ElTy = SqTy->getElementType(); |
| unsigned elementSize = TD.getTypeSize(ElTy); |
| |
| if (elementSize == 1) { |
| // If the element size is 1, we don't have to multiply, just add |
| unsigned idxReg = getReg(idx, MBB, IP); |
| unsigned Reg = makeAnotherReg(Type::UIntTy); |
| BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg); |
| --IP; // Insert the next instruction before this one. |
| TargetReg = Reg; // Codegen the rest of the GEP into this |
| } else { |
| unsigned idxReg = getReg(idx, MBB, IP); |
| unsigned OffsetReg = makeAnotherReg(Type::UIntTy); |
| |
| // Make sure we can back the iterator up to point to the first |
| // instruction emitted. |
| MachineBasicBlock::iterator BeforeIt = IP; |
| if (IP == MBB->begin()) |
| BeforeIt = MBB->end(); |
| else |
| --BeforeIt; |
| doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize); |
| |
| // Emit an ADD to add OffsetReg to the basePtr. |
| unsigned Reg = makeAnotherReg(Type::UIntTy); |
| BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg); |
| |
| // Step to the first instruction of the multiply. |
| if (BeforeIt == MBB->end()) |
| IP = MBB->begin(); |
| else |
| IP = ++BeforeIt; |
| |
| TargetReg = Reg; // Codegen the rest of the GEP into this |
| } |
| } |
| } |
| |
| /// visitAllocaInst - If this is a fixed size alloca, allocate space from the |
| /// frame manager, otherwise do it the hard way. |
| /// |
| void ISel::visitAllocaInst(AllocaInst &I) { |
| // If this is a fixed size alloca in the entry block for the function, we |
| // statically stack allocate the space, so we don't need to do anything here. |
| // |
| if (dyn_castFixedAlloca(&I)) return; |
| |
| // Find the data size of the alloca inst's getAllocatedType. |
| const Type *Ty = I.getAllocatedType(); |
| unsigned TySize = TM.getTargetData().getTypeSize(Ty); |
| |
| // Create a register to hold the temporary result of multiplying the type size |
| // constant by the variable amount. |
| unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy); |
| unsigned SrcReg1 = getReg(I.getArraySize()); |
| |
| // TotalSizeReg = mul <numelements>, <TypeSize> |
| MachineBasicBlock::iterator MBBI = BB->end(); |
| doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize); |
| |
| // AddedSize = add <TotalSizeReg>, 15 |
| unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15); |
| |
| // AlignedSize = and <AddedSize>, ~15 |
| unsigned AlignedSize = makeAnotherReg(Type::UIntTy); |
| BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0) |
| .addImm(0).addImm(27); |
| |
| // Subtract size from stack pointer, thereby allocating some space. |
| BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize); |
| |
| // Put a pointer to the space into the result register, by copying |
| // the stack pointer. |
| BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1); |
| |
| // Inform the Frame Information that we have just allocated a variable-sized |
| // object. |
| F->getFrameInfo()->CreateVariableSizedObject(); |
| } |
| |
| /// visitMallocInst - Malloc instructions are code generated into direct calls |
| /// to the library malloc. |
| /// |
| void ISel::visitMallocInst(MallocInst &I) { |
| unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType()); |
| unsigned Arg; |
| |
| if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) { |
| Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize)); |
| } else { |
| Arg = makeAnotherReg(Type::UIntTy); |
| unsigned Op0Reg = getReg(I.getOperand(0)); |
| MachineBasicBlock::iterator MBBI = BB->end(); |
| doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize); |
| } |
| |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(Arg, Type::UIntTy)); |
| MachineInstr *TheCall = |
| BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true); |
| doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args); |
| } |
| |
| |
| /// visitFreeInst - Free instructions are code gen'd to call the free libc |
| /// function. |
| /// |
| void ISel::visitFreeInst(FreeInst &I) { |
| std::vector<ValueRecord> Args; |
| Args.push_back(ValueRecord(I.getOperand(0))); |
| MachineInstr *TheCall = |
| BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true); |
| doCall(ValueRecord(0, Type::VoidTy), TheCall, Args); |
| } |
| |
| /// createPPC32SimpleInstructionSelector - This pass converts an LLVM function |
| /// into a machine code representation is a very simple peep-hole fashion. The |
| /// generated code sucks but the implementation is nice and simple. |
| /// |
| FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) { |
| return new ISel(TM); |
| } |