| //===-- MachineVerifier.cpp - Machine Code Verifier -------------*- C++ -*-===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // Pass to verify generated machine code. The following is checked: | 
 | // | 
 | // Operand counts: All explicit operands must be present. | 
 | // | 
 | // Register classes: All physical and virtual register operands must be | 
 | // compatible with the register class required by the instruction descriptor. | 
 | // | 
 | // Register live intervals: Registers must be defined only once, and must be | 
 | // defined before use. | 
 | // | 
 | // The machine code verifier is enabled from LLVMTargetMachine.cpp with the | 
 | // command-line option -verify-machineinstrs, or by defining the environment | 
 | // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive | 
 | // the verifier errors. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Function.h" | 
 | #include "llvm/CodeGen/LiveVariables.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineMemOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetRegisterInfo.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/ADT/DenseSet.h" | 
 | #include "llvm/ADT/SetOperations.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | using namespace llvm; | 
 |  | 
 | namespace { | 
 |   struct MachineVerifier { | 
 |  | 
 |     MachineVerifier(Pass *pass, bool allowDoubleDefs) : | 
 |       PASS(pass), | 
 |       allowVirtDoubleDefs(allowDoubleDefs), | 
 |       allowPhysDoubleDefs(allowDoubleDefs), | 
 |       OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) | 
 |       {} | 
 |  | 
 |     bool runOnMachineFunction(MachineFunction &MF); | 
 |  | 
 |     Pass *const PASS; | 
 |     const bool allowVirtDoubleDefs; | 
 |     const bool allowPhysDoubleDefs; | 
 |  | 
 |     const char *const OutFileName; | 
 |     raw_ostream *OS; | 
 |     const MachineFunction *MF; | 
 |     const TargetMachine *TM; | 
 |     const TargetRegisterInfo *TRI; | 
 |     const MachineRegisterInfo *MRI; | 
 |  | 
 |     unsigned foundErrors; | 
 |  | 
 |     typedef SmallVector<unsigned, 16> RegVector; | 
 |     typedef DenseSet<unsigned> RegSet; | 
 |     typedef DenseMap<unsigned, const MachineInstr*> RegMap; | 
 |  | 
 |     BitVector regsReserved; | 
 |     RegSet regsLive; | 
 |     RegVector regsDefined, regsDead, regsKilled; | 
 |     RegSet regsLiveInButUnused; | 
 |  | 
 |     // Add Reg and any sub-registers to RV | 
 |     void addRegWithSubRegs(RegVector &RV, unsigned Reg) { | 
 |       RV.push_back(Reg); | 
 |       if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
 |         for (const unsigned *R = TRI->getSubRegisters(Reg); *R; R++) | 
 |           RV.push_back(*R); | 
 |     } | 
 |  | 
 |     struct BBInfo { | 
 |       // Is this MBB reachable from the MF entry point? | 
 |       bool reachable; | 
 |  | 
 |       // Vregs that must be live in because they are used without being | 
 |       // defined. Map value is the user. | 
 |       RegMap vregsLiveIn; | 
 |  | 
 |       // Vregs that must be dead in because they are defined without being | 
 |       // killed first. Map value is the defining instruction. | 
 |       RegMap vregsDeadIn; | 
 |  | 
 |       // Regs killed in MBB. They may be defined again, and will then be in both | 
 |       // regsKilled and regsLiveOut. | 
 |       RegSet regsKilled; | 
 |  | 
 |       // Regs defined in MBB and live out. Note that vregs passing through may | 
 |       // be live out without being mentioned here. | 
 |       RegSet regsLiveOut; | 
 |  | 
 |       // Vregs that pass through MBB untouched. This set is disjoint from | 
 |       // regsKilled and regsLiveOut. | 
 |       RegSet vregsPassed; | 
 |  | 
 |       // Vregs that must pass through MBB because they are needed by a successor | 
 |       // block. This set is disjoint from regsLiveOut. | 
 |       RegSet vregsRequired; | 
 |  | 
 |       BBInfo() : reachable(false) {} | 
 |  | 
 |       // Add register to vregsPassed if it belongs there. Return true if | 
 |       // anything changed. | 
 |       bool addPassed(unsigned Reg) { | 
 |         if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
 |           return false; | 
 |         if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) | 
 |           return false; | 
 |         return vregsPassed.insert(Reg).second; | 
 |       } | 
 |  | 
 |       // Same for a full set. | 
 |       bool addPassed(const RegSet &RS) { | 
 |         bool changed = false; | 
 |         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) | 
 |           if (addPassed(*I)) | 
 |             changed = true; | 
 |         return changed; | 
 |       } | 
 |  | 
 |       // Add register to vregsRequired if it belongs there. Return true if | 
 |       // anything changed. | 
 |       bool addRequired(unsigned Reg) { | 
 |         if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
 |           return false; | 
 |         if (regsLiveOut.count(Reg)) | 
 |           return false; | 
 |         return vregsRequired.insert(Reg).second; | 
 |       } | 
 |  | 
 |       // Same for a full set. | 
 |       bool addRequired(const RegSet &RS) { | 
 |         bool changed = false; | 
 |         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) | 
 |           if (addRequired(*I)) | 
 |             changed = true; | 
 |         return changed; | 
 |       } | 
 |  | 
 |       // Same for a full map. | 
 |       bool addRequired(const RegMap &RM) { | 
 |         bool changed = false; | 
 |         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) | 
 |           if (addRequired(I->first)) | 
 |             changed = true; | 
 |         return changed; | 
 |       } | 
 |  | 
 |       // Live-out registers are either in regsLiveOut or vregsPassed. | 
 |       bool isLiveOut(unsigned Reg) const { | 
 |         return regsLiveOut.count(Reg) || vregsPassed.count(Reg); | 
 |       } | 
 |     }; | 
 |  | 
 |     // Extra register info per MBB. | 
 |     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; | 
 |  | 
 |     bool isReserved(unsigned Reg) { | 
 |       return Reg < regsReserved.size() && regsReserved.test(Reg); | 
 |     } | 
 |  | 
 |     // Analysis information if available | 
 |     LiveVariables *LiveVars; | 
 |  | 
 |     void visitMachineFunctionBefore(); | 
 |     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); | 
 |     void visitMachineInstrBefore(const MachineInstr *MI); | 
 |     void visitMachineOperand(const MachineOperand *MO, unsigned MONum); | 
 |     void visitMachineInstrAfter(const MachineInstr *MI); | 
 |     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); | 
 |     void visitMachineFunctionAfter(); | 
 |  | 
 |     void report(const char *msg, const MachineFunction *MF); | 
 |     void report(const char *msg, const MachineBasicBlock *MBB); | 
 |     void report(const char *msg, const MachineInstr *MI); | 
 |     void report(const char *msg, const MachineOperand *MO, unsigned MONum); | 
 |  | 
 |     void markReachable(const MachineBasicBlock *MBB); | 
 |     void calcMaxRegsPassed(); | 
 |     void calcMinRegsPassed(); | 
 |     void checkPHIOps(const MachineBasicBlock *MBB); | 
 |  | 
 |     void calcRegsRequired(); | 
 |     void verifyLiveVariables(); | 
 |   }; | 
 |  | 
 |   struct MachineVerifierPass : public MachineFunctionPass { | 
 |     static char ID; // Pass ID, replacement for typeid | 
 |     bool AllowDoubleDefs; | 
 |  | 
 |     explicit MachineVerifierPass(bool allowDoubleDefs = false) | 
 |       : MachineFunctionPass(&ID), | 
 |         AllowDoubleDefs(allowDoubleDefs) {} | 
 |  | 
 |     void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.setPreservesAll(); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |  | 
 |     bool runOnMachineFunction(MachineFunction &MF) { | 
 |       MF.verify(this, AllowDoubleDefs); | 
 |       return false; | 
 |     } | 
 |   }; | 
 |  | 
 | } | 
 |  | 
 | char MachineVerifierPass::ID = 0; | 
 | static RegisterPass<MachineVerifierPass> | 
 | MachineVer("machineverifier", "Verify generated machine code"); | 
 | static const PassInfo *const MachineVerifyID = &MachineVer; | 
 |  | 
 | FunctionPass *llvm::createMachineVerifierPass(bool allowPhysDoubleDefs) { | 
 |   return new MachineVerifierPass(allowPhysDoubleDefs); | 
 | } | 
 |  | 
 | void MachineFunction::verify(Pass *p, bool allowDoubleDefs) const { | 
 |   MachineVerifier(p, allowDoubleDefs) | 
 |     .runOnMachineFunction(const_cast<MachineFunction&>(*this)); | 
 | } | 
 |  | 
 | bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { | 
 |   raw_ostream *OutFile = 0; | 
 |   if (OutFileName) { | 
 |     std::string ErrorInfo; | 
 |     OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, | 
 |                                  raw_fd_ostream::F_Append); | 
 |     if (!ErrorInfo.empty()) { | 
 |       errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; | 
 |       exit(1); | 
 |     } | 
 |  | 
 |     OS = OutFile; | 
 |   } else { | 
 |     OS = &errs(); | 
 |   } | 
 |  | 
 |   foundErrors = 0; | 
 |  | 
 |   this->MF = &MF; | 
 |   TM = &MF.getTarget(); | 
 |   TRI = TM->getRegisterInfo(); | 
 |   MRI = &MF.getRegInfo(); | 
 |  | 
 |   if (PASS) { | 
 |     LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); | 
 |   } else { | 
 |     LiveVars = NULL; | 
 |   } | 
 |  | 
 |   visitMachineFunctionBefore(); | 
 |   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); | 
 |        MFI!=MFE; ++MFI) { | 
 |     visitMachineBasicBlockBefore(MFI); | 
 |     for (MachineBasicBlock::const_iterator MBBI = MFI->begin(), | 
 |            MBBE = MFI->end(); MBBI != MBBE; ++MBBI) { | 
 |       visitMachineInstrBefore(MBBI); | 
 |       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) | 
 |         visitMachineOperand(&MBBI->getOperand(I), I); | 
 |       visitMachineInstrAfter(MBBI); | 
 |     } | 
 |     visitMachineBasicBlockAfter(MFI); | 
 |   } | 
 |   visitMachineFunctionAfter(); | 
 |  | 
 |   if (OutFile) | 
 |     delete OutFile; | 
 |   else if (foundErrors) | 
 |     llvm_report_error("Found "+Twine(foundErrors)+" machine code errors."); | 
 |  | 
 |   // Clean up. | 
 |   regsLive.clear(); | 
 |   regsDefined.clear(); | 
 |   regsDead.clear(); | 
 |   regsKilled.clear(); | 
 |   regsLiveInButUnused.clear(); | 
 |   MBBInfoMap.clear(); | 
 |  | 
 |   return false;                 // no changes | 
 | } | 
 |  | 
 | void MachineVerifier::report(const char *msg, const MachineFunction *MF) { | 
 |   assert(MF); | 
 |   *OS << '\n'; | 
 |   if (!foundErrors++) | 
 |     MF->print(*OS); | 
 |   *OS << "*** Bad machine code: " << msg << " ***\n" | 
 |       << "- function:    " << MF->getFunction()->getNameStr() << "\n"; | 
 | } | 
 |  | 
 | void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { | 
 |   assert(MBB); | 
 |   report(msg, MBB->getParent()); | 
 |   *OS << "- basic block: " << MBB->getName() | 
 |       << " " << (void*)MBB | 
 |       << " (BB#" << MBB->getNumber() << ")\n"; | 
 | } | 
 |  | 
 | void MachineVerifier::report(const char *msg, const MachineInstr *MI) { | 
 |   assert(MI); | 
 |   report(msg, MI->getParent()); | 
 |   *OS << "- instruction: "; | 
 |   MI->print(*OS, TM); | 
 | } | 
 |  | 
 | void MachineVerifier::report(const char *msg, | 
 |                              const MachineOperand *MO, unsigned MONum) { | 
 |   assert(MO); | 
 |   report(msg, MO->getParent()); | 
 |   *OS << "- operand " << MONum << ":   "; | 
 |   MO->print(*OS, TM); | 
 |   *OS << "\n"; | 
 | } | 
 |  | 
 | void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { | 
 |   BBInfo &MInfo = MBBInfoMap[MBB]; | 
 |   if (!MInfo.reachable) { | 
 |     MInfo.reachable = true; | 
 |     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), | 
 |            SuE = MBB->succ_end(); SuI != SuE; ++SuI) | 
 |       markReachable(*SuI); | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::visitMachineFunctionBefore() { | 
 |   regsReserved = TRI->getReservedRegs(*MF); | 
 |  | 
 |   // A sub-register of a reserved register is also reserved | 
 |   for (int Reg = regsReserved.find_first(); Reg>=0; | 
 |        Reg = regsReserved.find_next(Reg)) { | 
 |     for (const unsigned *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) { | 
 |       // FIXME: This should probably be: | 
 |       // assert(regsReserved.test(*Sub) && "Non-reserved sub-register"); | 
 |       regsReserved.set(*Sub); | 
 |     } | 
 |   } | 
 |   markReachable(&MF->front()); | 
 | } | 
 |  | 
 | // Does iterator point to a and b as the first two elements? | 
 | bool matchPair(MachineBasicBlock::const_succ_iterator i, | 
 |                const MachineBasicBlock *a, const MachineBasicBlock *b) { | 
 |   if (*i == a) | 
 |     return *++i == b; | 
 |   if (*i == b) | 
 |     return *++i == a; | 
 |   return false; | 
 | } | 
 |  | 
 | void | 
 | MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { | 
 |   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo(); | 
 |  | 
 |   // Start with minimal CFG sanity checks. | 
 |   MachineFunction::const_iterator MBBI = MBB; | 
 |   ++MBBI; | 
 |   if (MBBI != MF->end()) { | 
 |     // Block is not last in function. | 
 |     if (!MBB->isSuccessor(MBBI)) { | 
 |       // Block does not fall through. | 
 |       if (MBB->empty()) { | 
 |         report("MBB doesn't fall through but is empty!", MBB); | 
 |       } | 
 |     } | 
 |   } else { | 
 |     // Block is last in function. | 
 |     if (MBB->empty()) { | 
 |       report("MBB is last in function but is empty!", MBB); | 
 |     } | 
 |   } | 
 |  | 
 |   // Call AnalyzeBranch. If it succeeds, there several more conditions to check. | 
 |   MachineBasicBlock *TBB = 0, *FBB = 0; | 
 |   SmallVector<MachineOperand, 4> Cond; | 
 |   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), | 
 |                           TBB, FBB, Cond)) { | 
 |     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's | 
 |     // check whether its answers match up with reality. | 
 |     if (!TBB && !FBB) { | 
 |       // Block falls through to its successor. | 
 |       MachineFunction::const_iterator MBBI = MBB; | 
 |       ++MBBI; | 
 |       if (MBBI == MF->end()) { | 
 |         // It's possible that the block legitimately ends with a noreturn | 
 |         // call or an unreachable, in which case it won't actually fall | 
 |         // out the bottom of the function. | 
 |       } else if (MBB->succ_empty()) { | 
 |         // It's possible that the block legitimately ends with a noreturn | 
 |         // call or an unreachable, in which case it won't actuall fall | 
 |         // out of the block. | 
 |       } else if (MBB->succ_size() != 1) { | 
 |         report("MBB exits via unconditional fall-through but doesn't have " | 
 |                "exactly one CFG successor!", MBB); | 
 |       } else if (MBB->succ_begin()[0] != MBBI) { | 
 |         report("MBB exits via unconditional fall-through but its successor " | 
 |                "differs from its CFG successor!", MBB); | 
 |       } | 
 |       if (!MBB->empty() && MBB->back().getDesc().isBarrier()) { | 
 |         report("MBB exits via unconditional fall-through but ends with a " | 
 |                "barrier instruction!", MBB); | 
 |       } | 
 |       if (!Cond.empty()) { | 
 |         report("MBB exits via unconditional fall-through but has a condition!", | 
 |                MBB); | 
 |       } | 
 |     } else if (TBB && !FBB && Cond.empty()) { | 
 |       // Block unconditionally branches somewhere. | 
 |       if (MBB->succ_size() != 1) { | 
 |         report("MBB exits via unconditional branch but doesn't have " | 
 |                "exactly one CFG successor!", MBB); | 
 |       } else if (MBB->succ_begin()[0] != TBB) { | 
 |         report("MBB exits via unconditional branch but the CFG " | 
 |                "successor doesn't match the actual successor!", MBB); | 
 |       } | 
 |       if (MBB->empty()) { | 
 |         report("MBB exits via unconditional branch but doesn't contain " | 
 |                "any instructions!", MBB); | 
 |       } else if (!MBB->back().getDesc().isBarrier()) { | 
 |         report("MBB exits via unconditional branch but doesn't end with a " | 
 |                "barrier instruction!", MBB); | 
 |       } else if (!MBB->back().getDesc().isTerminator()) { | 
 |         report("MBB exits via unconditional branch but the branch isn't a " | 
 |                "terminator instruction!", MBB); | 
 |       } | 
 |     } else if (TBB && !FBB && !Cond.empty()) { | 
 |       // Block conditionally branches somewhere, otherwise falls through. | 
 |       MachineFunction::const_iterator MBBI = MBB; | 
 |       ++MBBI; | 
 |       if (MBBI == MF->end()) { | 
 |         report("MBB conditionally falls through out of function!", MBB); | 
 |       } if (MBB->succ_size() != 2) { | 
 |         report("MBB exits via conditional branch/fall-through but doesn't have " | 
 |                "exactly two CFG successors!", MBB); | 
 |       } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { | 
 |         report("MBB exits via conditional branch/fall-through but the CFG " | 
 |                "successors don't match the actual successors!", MBB); | 
 |       } | 
 |       if (MBB->empty()) { | 
 |         report("MBB exits via conditional branch/fall-through but doesn't " | 
 |                "contain any instructions!", MBB); | 
 |       } else if (MBB->back().getDesc().isBarrier()) { | 
 |         report("MBB exits via conditional branch/fall-through but ends with a " | 
 |                "barrier instruction!", MBB); | 
 |       } else if (!MBB->back().getDesc().isTerminator()) { | 
 |         report("MBB exits via conditional branch/fall-through but the branch " | 
 |                "isn't a terminator instruction!", MBB); | 
 |       } | 
 |     } else if (TBB && FBB) { | 
 |       // Block conditionally branches somewhere, otherwise branches | 
 |       // somewhere else. | 
 |       if (MBB->succ_size() != 2) { | 
 |         report("MBB exits via conditional branch/branch but doesn't have " | 
 |                "exactly two CFG successors!", MBB); | 
 |       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { | 
 |         report("MBB exits via conditional branch/branch but the CFG " | 
 |                "successors don't match the actual successors!", MBB); | 
 |       } | 
 |       if (MBB->empty()) { | 
 |         report("MBB exits via conditional branch/branch but doesn't " | 
 |                "contain any instructions!", MBB); | 
 |       } else if (!MBB->back().getDesc().isBarrier()) { | 
 |         report("MBB exits via conditional branch/branch but doesn't end with a " | 
 |                "barrier instruction!", MBB); | 
 |       } else if (!MBB->back().getDesc().isTerminator()) { | 
 |         report("MBB exits via conditional branch/branch but the branch " | 
 |                "isn't a terminator instruction!", MBB); | 
 |       } | 
 |       if (Cond.empty()) { | 
 |         report("MBB exits via conditinal branch/branch but there's no " | 
 |                "condition!", MBB); | 
 |       } | 
 |     } else { | 
 |       report("AnalyzeBranch returned invalid data!", MBB); | 
 |     } | 
 |   } | 
 |  | 
 |   regsLive.clear(); | 
 |   for (MachineBasicBlock::const_livein_iterator I = MBB->livein_begin(), | 
 |          E = MBB->livein_end(); I != E; ++I) { | 
 |     if (!TargetRegisterInfo::isPhysicalRegister(*I)) { | 
 |       report("MBB live-in list contains non-physical register", MBB); | 
 |       continue; | 
 |     } | 
 |     regsLive.insert(*I); | 
 |     for (const unsigned *R = TRI->getSubRegisters(*I); *R; R++) | 
 |       regsLive.insert(*R); | 
 |   } | 
 |   regsLiveInButUnused = regsLive; | 
 |  | 
 |   const MachineFrameInfo *MFI = MF->getFrameInfo(); | 
 |   assert(MFI && "Function has no frame info"); | 
 |   BitVector PR = MFI->getPristineRegs(MBB); | 
 |   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { | 
 |     regsLive.insert(I); | 
 |     for (const unsigned *R = TRI->getSubRegisters(I); *R; R++) | 
 |       regsLive.insert(*R); | 
 |   } | 
 |  | 
 |   regsKilled.clear(); | 
 |   regsDefined.clear(); | 
 | } | 
 |  | 
 | void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { | 
 |   const TargetInstrDesc &TI = MI->getDesc(); | 
 |   if (MI->getNumOperands() < TI.getNumOperands()) { | 
 |     report("Too few operands", MI); | 
 |     *OS << TI.getNumOperands() << " operands expected, but " | 
 |         << MI->getNumExplicitOperands() << " given.\n"; | 
 |   } | 
 |  | 
 |   // Check the MachineMemOperands for basic consistency. | 
 |   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), | 
 |        E = MI->memoperands_end(); I != E; ++I) { | 
 |     if ((*I)->isLoad() && !TI.mayLoad()) | 
 |       report("Missing mayLoad flag", MI); | 
 |     if ((*I)->isStore() && !TI.mayStore()) | 
 |       report("Missing mayStore flag", MI); | 
 |   } | 
 | } | 
 |  | 
 | void | 
 | MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { | 
 |   const MachineInstr *MI = MO->getParent(); | 
 |   const TargetInstrDesc &TI = MI->getDesc(); | 
 |  | 
 |   // The first TI.NumDefs operands must be explicit register defines | 
 |   if (MONum < TI.getNumDefs()) { | 
 |     if (!MO->isReg()) | 
 |       report("Explicit definition must be a register", MO, MONum); | 
 |     else if (!MO->isDef()) | 
 |       report("Explicit definition marked as use", MO, MONum); | 
 |     else if (MO->isImplicit()) | 
 |       report("Explicit definition marked as implicit", MO, MONum); | 
 |   } else if (MONum < TI.getNumOperands()) { | 
 |     if (MO->isReg()) { | 
 |       if (MO->isDef()) | 
 |         report("Explicit operand marked as def", MO, MONum); | 
 |       if (MO->isImplicit()) | 
 |         report("Explicit operand marked as implicit", MO, MONum); | 
 |     } | 
 |   } else { | 
 |     if (MO->isReg() && !MO->isImplicit() && !TI.isVariadic()) | 
 |       report("Extra explicit operand on non-variadic instruction", MO, MONum); | 
 |   } | 
 |  | 
 |   switch (MO->getType()) { | 
 |   case MachineOperand::MO_Register: { | 
 |     const unsigned Reg = MO->getReg(); | 
 |     if (!Reg) | 
 |       return; | 
 |  | 
 |     // Check Live Variables. | 
 |     if (MO->isUndef()) { | 
 |       // An <undef> doesn't refer to any register, so just skip it. | 
 |     } else if (MO->isUse()) { | 
 |       regsLiveInButUnused.erase(Reg); | 
 |  | 
 |       bool isKill = false; | 
 |       if (MO->isKill()) { | 
 |         isKill = true; | 
 |         // Tied operands on two-address instuctions MUST NOT have a <kill> flag. | 
 |         if (MI->isRegTiedToDefOperand(MONum)) | 
 |             report("Illegal kill flag on two-address instruction operand", | 
 |                    MO, MONum); | 
 |       } else { | 
 |         // TwoAddress instr modifying a reg is treated as kill+def. | 
 |         unsigned defIdx; | 
 |         if (MI->isRegTiedToDefOperand(MONum, &defIdx) && | 
 |             MI->getOperand(defIdx).getReg() == Reg) | 
 |           isKill = true; | 
 |       } | 
 |       if (isKill) { | 
 |         addRegWithSubRegs(regsKilled, Reg); | 
 |  | 
 |         // Check that LiveVars knows this kill | 
 |         if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg)) { | 
 |           LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); | 
 |           if (std::find(VI.Kills.begin(), | 
 |                         VI.Kills.end(), MI) == VI.Kills.end()) | 
 |             report("Kill missing from LiveVariables", MO, MONum); | 
 |         } | 
 |       } | 
 |  | 
 |       // Use of a dead register. | 
 |       if (!regsLive.count(Reg)) { | 
 |         if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
 |           // Reserved registers may be used even when 'dead'. | 
 |           if (!isReserved(Reg)) | 
 |             report("Using an undefined physical register", MO, MONum); | 
 |         } else { | 
 |           BBInfo &MInfo = MBBInfoMap[MI->getParent()]; | 
 |           // We don't know which virtual registers are live in, so only complain | 
 |           // if vreg was killed in this MBB. Otherwise keep track of vregs that | 
 |           // must be live in. PHI instructions are handled separately. | 
 |           if (MInfo.regsKilled.count(Reg)) | 
 |             report("Using a killed virtual register", MO, MONum); | 
 |           else if (MI->getOpcode() != TargetInstrInfo::PHI) | 
 |             MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); | 
 |         } | 
 |       } | 
 |     } else { | 
 |       assert(MO->isDef()); | 
 |       // Register defined. | 
 |       // TODO: verify that earlyclobber ops are not used. | 
 |       if (MO->isDead()) | 
 |         addRegWithSubRegs(regsDead, Reg); | 
 |       else | 
 |         addRegWithSubRegs(regsDefined, Reg); | 
 |     } | 
 |  | 
 |     // Check register classes. | 
 |     if (MONum < TI.getNumOperands() && !MO->isImplicit()) { | 
 |       const TargetOperandInfo &TOI = TI.OpInfo[MONum]; | 
 |       unsigned SubIdx = MO->getSubReg(); | 
 |  | 
 |       if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
 |         unsigned sr = Reg; | 
 |         if (SubIdx) { | 
 |           unsigned s = TRI->getSubReg(Reg, SubIdx); | 
 |           if (!s) { | 
 |             report("Invalid subregister index for physical register", | 
 |                    MO, MONum); | 
 |             return; | 
 |           } | 
 |           sr = s; | 
 |         } | 
 |         if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) { | 
 |           if (!DRC->contains(sr)) { | 
 |             report("Illegal physical register for instruction", MO, MONum); | 
 |             *OS << TRI->getName(sr) << " is not a " | 
 |                 << DRC->getName() << " register.\n"; | 
 |           } | 
 |         } | 
 |       } else { | 
 |         // Virtual register. | 
 |         const TargetRegisterClass *RC = MRI->getRegClass(Reg); | 
 |         if (SubIdx) { | 
 |           if (RC->subregclasses_begin()+SubIdx >= RC->subregclasses_end()) { | 
 |             report("Invalid subregister index for virtual register", MO, MONum); | 
 |             return; | 
 |           } | 
 |           RC = *(RC->subregclasses_begin()+SubIdx); | 
 |         } | 
 |         if (const TargetRegisterClass *DRC = TOI.getRegClass(TRI)) { | 
 |           if (RC != DRC && !RC->hasSuperClass(DRC)) { | 
 |             report("Illegal virtual register for instruction", MO, MONum); | 
 |             *OS << "Expected a " << DRC->getName() << " register, but got a " | 
 |                 << RC->getName() << " register\n"; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   case MachineOperand::MO_MachineBasicBlock: | 
 |     if (MI->getOpcode() == TargetInstrInfo::PHI) { | 
 |       if (!MO->getMBB()->isSuccessor(MI->getParent())) | 
 |         report("PHI operand is not in the CFG", MO, MONum); | 
 |     } | 
 |     break; | 
 |  | 
 |   default: | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { | 
 |   BBInfo &MInfo = MBBInfoMap[MI->getParent()]; | 
 |   set_union(MInfo.regsKilled, regsKilled); | 
 |   set_subtract(regsLive, regsKilled); | 
 |   regsKilled.clear(); | 
 |  | 
 |   // Verify that both <def> and <def,dead> operands refer to dead registers. | 
 |   RegVector defs(regsDefined); | 
 |   defs.append(regsDead.begin(), regsDead.end()); | 
 |  | 
 |   for (RegVector::const_iterator I = defs.begin(), E = defs.end(); | 
 |        I != E; ++I) { | 
 |     if (regsLive.count(*I)) { | 
 |       if (TargetRegisterInfo::isPhysicalRegister(*I)) { | 
 |         if (!allowPhysDoubleDefs && !isReserved(*I) && | 
 |             !regsLiveInButUnused.count(*I)) { | 
 |           report("Redefining a live physical register", MI); | 
 |           *OS << "Register " << TRI->getName(*I) | 
 |               << " was defined but already live.\n"; | 
 |         } | 
 |       } else { | 
 |         if (!allowVirtDoubleDefs) { | 
 |           report("Redefining a live virtual register", MI); | 
 |           *OS << "Virtual register %reg" << *I | 
 |               << " was defined but already live.\n"; | 
 |         } | 
 |       } | 
 |     } else if (TargetRegisterInfo::isVirtualRegister(*I) && | 
 |                !MInfo.regsKilled.count(*I)) { | 
 |       // Virtual register defined without being killed first must be dead on | 
 |       // entry. | 
 |       MInfo.vregsDeadIn.insert(std::make_pair(*I, MI)); | 
 |     } | 
 |   } | 
 |  | 
 |   set_subtract(regsLive, regsDead); regsDead.clear(); | 
 |   set_union(regsLive, regsDefined); regsDefined.clear(); | 
 | } | 
 |  | 
 | void | 
 | MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { | 
 |   MBBInfoMap[MBB].regsLiveOut = regsLive; | 
 |   regsLive.clear(); | 
 | } | 
 |  | 
 | // Calculate the largest possible vregsPassed sets. These are the registers that | 
 | // can pass through an MBB live, but may not be live every time. It is assumed | 
 | // that all vregsPassed sets are empty before the call. | 
 | void MachineVerifier::calcMaxRegsPassed() { | 
 |   // First push live-out regs to successors' vregsPassed. Remember the MBBs that | 
 |   // have any vregsPassed. | 
 |   DenseSet<const MachineBasicBlock*> todo; | 
 |   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); | 
 |        MFI != MFE; ++MFI) { | 
 |     const MachineBasicBlock &MBB(*MFI); | 
 |     BBInfo &MInfo = MBBInfoMap[&MBB]; | 
 |     if (!MInfo.reachable) | 
 |       continue; | 
 |     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), | 
 |            SuE = MBB.succ_end(); SuI != SuE; ++SuI) { | 
 |       BBInfo &SInfo = MBBInfoMap[*SuI]; | 
 |       if (SInfo.addPassed(MInfo.regsLiveOut)) | 
 |         todo.insert(*SuI); | 
 |     } | 
 |   } | 
 |  | 
 |   // Iteratively push vregsPassed to successors. This will converge to the same | 
 |   // final state regardless of DenseSet iteration order. | 
 |   while (!todo.empty()) { | 
 |     const MachineBasicBlock *MBB = *todo.begin(); | 
 |     todo.erase(MBB); | 
 |     BBInfo &MInfo = MBBInfoMap[MBB]; | 
 |     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), | 
 |            SuE = MBB->succ_end(); SuI != SuE; ++SuI) { | 
 |       if (*SuI == MBB) | 
 |         continue; | 
 |       BBInfo &SInfo = MBBInfoMap[*SuI]; | 
 |       if (SInfo.addPassed(MInfo.vregsPassed)) | 
 |         todo.insert(*SuI); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Calculate the minimum vregsPassed set. These are the registers that always | 
 | // pass live through an MBB. The calculation assumes that calcMaxRegsPassed has | 
 | // been called earlier. | 
 | void MachineVerifier::calcMinRegsPassed() { | 
 |   DenseSet<const MachineBasicBlock*> todo; | 
 |   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); | 
 |        MFI != MFE; ++MFI) | 
 |     todo.insert(MFI); | 
 |  | 
 |   while (!todo.empty()) { | 
 |     const MachineBasicBlock *MBB = *todo.begin(); | 
 |     todo.erase(MBB); | 
 |     BBInfo &MInfo = MBBInfoMap[MBB]; | 
 |  | 
 |     // Remove entries from vRegsPassed that are not live out from all | 
 |     // reachable predecessors. | 
 |     RegSet dead; | 
 |     for (RegSet::iterator I = MInfo.vregsPassed.begin(), | 
 |            E = MInfo.vregsPassed.end(); I != E; ++I) { | 
 |       for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), | 
 |              PrE = MBB->pred_end(); PrI != PrE; ++PrI) { | 
 |         BBInfo &PrInfo = MBBInfoMap[*PrI]; | 
 |         if (PrInfo.reachable && !PrInfo.isLiveOut(*I)) { | 
 |           dead.insert(*I); | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |     // If any regs removed, we need to recheck successors. | 
 |     if (!dead.empty()) { | 
 |       set_subtract(MInfo.vregsPassed, dead); | 
 |       todo.insert(MBB->succ_begin(), MBB->succ_end()); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Calculate the set of virtual registers that must be passed through each basic | 
 | // block in order to satisfy the requirements of successor blocks. This is very | 
 | // similar to calcMaxRegsPassed, only backwards. | 
 | void MachineVerifier::calcRegsRequired() { | 
 |   // First push live-in regs to predecessors' vregsRequired. | 
 |   DenseSet<const MachineBasicBlock*> todo; | 
 |   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); | 
 |        MFI != MFE; ++MFI) { | 
 |     const MachineBasicBlock &MBB(*MFI); | 
 |     BBInfo &MInfo = MBBInfoMap[&MBB]; | 
 |     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), | 
 |            PrE = MBB.pred_end(); PrI != PrE; ++PrI) { | 
 |       BBInfo &PInfo = MBBInfoMap[*PrI]; | 
 |       if (PInfo.addRequired(MInfo.vregsLiveIn)) | 
 |         todo.insert(*PrI); | 
 |     } | 
 |   } | 
 |  | 
 |   // Iteratively push vregsRequired to predecessors. This will converge to the | 
 |   // same final state regardless of DenseSet iteration order. | 
 |   while (!todo.empty()) { | 
 |     const MachineBasicBlock *MBB = *todo.begin(); | 
 |     todo.erase(MBB); | 
 |     BBInfo &MInfo = MBBInfoMap[MBB]; | 
 |     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), | 
 |            PrE = MBB->pred_end(); PrI != PrE; ++PrI) { | 
 |       if (*PrI == MBB) | 
 |         continue; | 
 |       BBInfo &SInfo = MBBInfoMap[*PrI]; | 
 |       if (SInfo.addRequired(MInfo.vregsRequired)) | 
 |         todo.insert(*PrI); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Check PHI instructions at the beginning of MBB. It is assumed that | 
 | // calcMinRegsPassed has been run so BBInfo::isLiveOut is valid. | 
 | void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { | 
 |   for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); | 
 |        BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) { | 
 |     DenseSet<const MachineBasicBlock*> seen; | 
 |  | 
 |     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { | 
 |       unsigned Reg = BBI->getOperand(i).getReg(); | 
 |       const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); | 
 |       if (!Pre->isSuccessor(MBB)) | 
 |         continue; | 
 |       seen.insert(Pre); | 
 |       BBInfo &PrInfo = MBBInfoMap[Pre]; | 
 |       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) | 
 |         report("PHI operand is not live-out from predecessor", | 
 |                &BBI->getOperand(i), i); | 
 |     } | 
 |  | 
 |     // Did we see all predecessors? | 
 |     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), | 
 |            PrE = MBB->pred_end(); PrI != PrE; ++PrI) { | 
 |       if (!seen.count(*PrI)) { | 
 |         report("Missing PHI operand", BBI); | 
 |         *OS << "BB#" << (*PrI)->getNumber() | 
 |             << " is a predecessor according to the CFG.\n"; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::visitMachineFunctionAfter() { | 
 |   calcMaxRegsPassed(); | 
 |  | 
 |   // With the maximal set of vregsPassed we can verify dead-in registers. | 
 |   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); | 
 |        MFI != MFE; ++MFI) { | 
 |     BBInfo &MInfo = MBBInfoMap[MFI]; | 
 |  | 
 |     // Skip unreachable MBBs. | 
 |     if (!MInfo.reachable) | 
 |       continue; | 
 |  | 
 |     for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(), | 
 |            PrE = MFI->pred_end(); PrI != PrE; ++PrI) { | 
 |       BBInfo &PrInfo = MBBInfoMap[*PrI]; | 
 |       if (!PrInfo.reachable) | 
 |         continue; | 
 |  | 
 |       // Verify physical live-ins. EH landing pads have magic live-ins so we | 
 |       // ignore them. | 
 |       if (!MFI->isLandingPad()) { | 
 |         for (MachineBasicBlock::const_livein_iterator I = MFI->livein_begin(), | 
 |                E = MFI->livein_end(); I != E; ++I) { | 
 |           if (TargetRegisterInfo::isPhysicalRegister(*I) && | 
 |               !isReserved (*I) && !PrInfo.isLiveOut(*I)) { | 
 |             report("Live-in physical register is not live-out from predecessor", | 
 |                    MFI); | 
 |             *OS << "Register " << TRI->getName(*I) | 
 |                 << " is not live-out from BB#" << (*PrI)->getNumber() | 
 |                 << ".\n"; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |  | 
 |       // Verify dead-in virtual registers. | 
 |       if (!allowVirtDoubleDefs) { | 
 |         for (RegMap::iterator I = MInfo.vregsDeadIn.begin(), | 
 |                E = MInfo.vregsDeadIn.end(); I != E; ++I) { | 
 |           // DeadIn register must be in neither regsLiveOut or vregsPassed of | 
 |           // any predecessor. | 
 |           if (PrInfo.isLiveOut(I->first)) { | 
 |             report("Live-in virtual register redefined", I->second); | 
 |             *OS << "Register %reg" << I->first | 
 |                 << " was live-out from predecessor MBB #" | 
 |                 << (*PrI)->getNumber() << ".\n"; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   calcMinRegsPassed(); | 
 |  | 
 |   // With the minimal set of vregsPassed we can verify live-in virtual | 
 |   // registers, including PHI instructions. | 
 |   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); | 
 |        MFI != MFE; ++MFI) { | 
 |     BBInfo &MInfo = MBBInfoMap[MFI]; | 
 |  | 
 |     // Skip unreachable MBBs. | 
 |     if (!MInfo.reachable) | 
 |       continue; | 
 |  | 
 |     checkPHIOps(MFI); | 
 |  | 
 |     for (MachineBasicBlock::const_pred_iterator PrI = MFI->pred_begin(), | 
 |            PrE = MFI->pred_end(); PrI != PrE; ++PrI) { | 
 |       BBInfo &PrInfo = MBBInfoMap[*PrI]; | 
 |       if (!PrInfo.reachable) | 
 |         continue; | 
 |  | 
 |       for (RegMap::iterator I = MInfo.vregsLiveIn.begin(), | 
 |              E = MInfo.vregsLiveIn.end(); I != E; ++I) { | 
 |         if (!PrInfo.isLiveOut(I->first)) { | 
 |           report("Used virtual register is not live-in", I->second); | 
 |           *OS << "Register %reg" << I->first | 
 |               << " is not live-out from predecessor MBB #" | 
 |               << (*PrI)->getNumber() | 
 |               << ".\n"; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Now check LiveVariables info if available | 
 |   if (LiveVars) { | 
 |     calcRegsRequired(); | 
 |     verifyLiveVariables(); | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::verifyLiveVariables() { | 
 |   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); | 
 |   for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister, | 
 |          RegE = MRI->getLastVirtReg()-1; Reg != RegE; ++Reg) { | 
 |     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); | 
 |     for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); | 
 |          MFI != MFE; ++MFI) { | 
 |       BBInfo &MInfo = MBBInfoMap[MFI]; | 
 |  | 
 |       // Our vregsRequired should be identical to LiveVariables' AliveBlocks | 
 |       if (MInfo.vregsRequired.count(Reg)) { | 
 |         if (!VI.AliveBlocks.test(MFI->getNumber())) { | 
 |           report("LiveVariables: Block missing from AliveBlocks", MFI); | 
 |           *OS << "Virtual register %reg" << Reg | 
 |               << " must be live through the block.\n"; | 
 |         } | 
 |       } else { | 
 |         if (VI.AliveBlocks.test(MFI->getNumber())) { | 
 |           report("LiveVariables: Block should not be in AliveBlocks", MFI); | 
 |           *OS << "Virtual register %reg" << Reg | 
 |               << " is not needed live through the block.\n"; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  |