| //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements a linear scan register allocator. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "regalloc" | 
 | #include "VirtRegMap.h" | 
 | #include "VirtRegRewriter.h" | 
 | #include "Spiller.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
 | #include "llvm/CodeGen/LiveStackAnalysis.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineLoopInfo.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/CodeGen/RegAllocRegistry.h" | 
 | #include "llvm/CodeGen/RegisterCoalescer.h" | 
 | #include "llvm/Target/TargetRegisterInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/ADT/EquivalenceClasses.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <algorithm> | 
 | #include <set> | 
 | #include <queue> | 
 | #include <memory> | 
 | #include <cmath> | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumIters     , "Number of iterations performed"); | 
 | STATISTIC(NumBacktracks, "Number of times we had to backtrack"); | 
 | STATISTIC(NumCoalesce,   "Number of copies coalesced"); | 
 | STATISTIC(NumDowngrade,  "Number of registers downgraded"); | 
 |  | 
 | static cl::opt<bool> | 
 | NewHeuristic("new-spilling-heuristic", | 
 |              cl::desc("Use new spilling heuristic"), | 
 |              cl::init(false), cl::Hidden); | 
 |  | 
 | static cl::opt<bool> | 
 | PreSplitIntervals("pre-alloc-split", | 
 |                   cl::desc("Pre-register allocation live interval splitting"), | 
 |                   cl::init(false), cl::Hidden); | 
 |  | 
 | static cl::opt<bool> | 
 | TrivCoalesceEnds("trivial-coalesce-ends", | 
 |                   cl::desc("Attempt trivial coalescing of interval ends"), | 
 |                   cl::init(false), cl::Hidden); | 
 |  | 
 | static RegisterRegAlloc | 
 | linearscanRegAlloc("linearscan", "linear scan register allocator", | 
 |                    createLinearScanRegisterAllocator); | 
 |  | 
 | namespace { | 
 |   // When we allocate a register, add it to a fixed-size queue of | 
 |   // registers to skip in subsequent allocations. This trades a small | 
 |   // amount of register pressure and increased spills for flexibility in | 
 |   // the post-pass scheduler. | 
 |   // | 
 |   // Note that in a the number of registers used for reloading spills | 
 |   // will be one greater than the value of this option. | 
 |   // | 
 |   // One big limitation of this is that it doesn't differentiate between | 
 |   // different register classes. So on x86-64, if there is xmm register | 
 |   // pressure, it can caused fewer GPRs to be held in the queue. | 
 |   static cl::opt<unsigned> | 
 |   NumRecentlyUsedRegs("linearscan-skip-count", | 
 |                       cl::desc("Number of registers for linearscan to remember to skip."), | 
 |                       cl::init(0), | 
 |                       cl::Hidden); | 
 |   | 
 |   struct RALinScan : public MachineFunctionPass { | 
 |     static char ID; | 
 |     RALinScan() : MachineFunctionPass(&ID) { | 
 |       // Initialize the queue to record recently-used registers. | 
 |       if (NumRecentlyUsedRegs > 0) | 
 |         RecentRegs.resize(NumRecentlyUsedRegs, 0); | 
 |       RecentNext = RecentRegs.begin(); | 
 |     } | 
 |  | 
 |     typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr; | 
 |     typedef SmallVector<IntervalPtr, 32> IntervalPtrs; | 
 |   private: | 
 |     /// RelatedRegClasses - This structure is built the first time a function is | 
 |     /// compiled, and keeps track of which register classes have registers that | 
 |     /// belong to multiple classes or have aliases that are in other classes. | 
 |     EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses; | 
 |     DenseMap<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg; | 
 |  | 
 |     // NextReloadMap - For each register in the map, it maps to the another | 
 |     // register which is defined by a reload from the same stack slot and | 
 |     // both reloads are in the same basic block. | 
 |     DenseMap<unsigned, unsigned> NextReloadMap; | 
 |  | 
 |     // DowngradedRegs - A set of registers which are being "downgraded", i.e. | 
 |     // un-favored for allocation. | 
 |     SmallSet<unsigned, 8> DowngradedRegs; | 
 |  | 
 |     // DowngradeMap - A map from virtual registers to physical registers being | 
 |     // downgraded for the virtual registers. | 
 |     DenseMap<unsigned, unsigned> DowngradeMap; | 
 |  | 
 |     MachineFunction* mf_; | 
 |     MachineRegisterInfo* mri_; | 
 |     const TargetMachine* tm_; | 
 |     const TargetRegisterInfo* tri_; | 
 |     const TargetInstrInfo* tii_; | 
 |     BitVector allocatableRegs_; | 
 |     LiveIntervals* li_; | 
 |     LiveStacks* ls_; | 
 |     const MachineLoopInfo *loopInfo; | 
 |  | 
 |     /// handled_ - Intervals are added to the handled_ set in the order of their | 
 |     /// start value.  This is uses for backtracking. | 
 |     std::vector<LiveInterval*> handled_; | 
 |  | 
 |     /// fixed_ - Intervals that correspond to machine registers. | 
 |     /// | 
 |     IntervalPtrs fixed_; | 
 |  | 
 |     /// active_ - Intervals that are currently being processed, and which have a | 
 |     /// live range active for the current point. | 
 |     IntervalPtrs active_; | 
 |  | 
 |     /// inactive_ - Intervals that are currently being processed, but which have | 
 |     /// a hold at the current point. | 
 |     IntervalPtrs inactive_; | 
 |  | 
 |     typedef std::priority_queue<LiveInterval*, | 
 |                                 SmallVector<LiveInterval*, 64>, | 
 |                                 greater_ptr<LiveInterval> > IntervalHeap; | 
 |     IntervalHeap unhandled_; | 
 |  | 
 |     /// regUse_ - Tracks register usage. | 
 |     SmallVector<unsigned, 32> regUse_; | 
 |     SmallVector<unsigned, 32> regUseBackUp_; | 
 |  | 
 |     /// vrm_ - Tracks register assignments. | 
 |     VirtRegMap* vrm_; | 
 |  | 
 |     std::auto_ptr<VirtRegRewriter> rewriter_; | 
 |  | 
 |     std::auto_ptr<Spiller> spiller_; | 
 |  | 
 |     // The queue of recently-used registers. | 
 |     SmallVector<unsigned, 4> RecentRegs; | 
 |     SmallVector<unsigned, 4>::iterator RecentNext; | 
 |  | 
 |     // Record that we just picked this register. | 
 |     void recordRecentlyUsed(unsigned reg) { | 
 |       assert(reg != 0 && "Recently used register is NOREG!"); | 
 |       if (!RecentRegs.empty()) { | 
 |         *RecentNext++ = reg; | 
 |         if (RecentNext == RecentRegs.end()) | 
 |           RecentNext = RecentRegs.begin(); | 
 |       } | 
 |     } | 
 |  | 
 |   public: | 
 |     virtual const char* getPassName() const { | 
 |       return "Linear Scan Register Allocator"; | 
 |     } | 
 |  | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.setPreservesCFG(); | 
 |       AU.addRequired<LiveIntervals>(); | 
 |       AU.addPreserved<SlotIndexes>(); | 
 |       if (StrongPHIElim) | 
 |         AU.addRequiredID(StrongPHIEliminationID); | 
 |       // Make sure PassManager knows which analyses to make available | 
 |       // to coalescing and which analyses coalescing invalidates. | 
 |       AU.addRequiredTransitive<RegisterCoalescer>(); | 
 |       if (PreSplitIntervals) | 
 |         AU.addRequiredID(PreAllocSplittingID); | 
 |       AU.addRequired<LiveStacks>(); | 
 |       AU.addPreserved<LiveStacks>(); | 
 |       AU.addRequired<MachineLoopInfo>(); | 
 |       AU.addPreserved<MachineLoopInfo>(); | 
 |       AU.addRequired<VirtRegMap>(); | 
 |       AU.addPreserved<VirtRegMap>(); | 
 |       AU.addPreservedID(MachineDominatorsID); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |  | 
 |     /// runOnMachineFunction - register allocate the whole function | 
 |     bool runOnMachineFunction(MachineFunction&); | 
 |  | 
 |     // Determine if we skip this register due to its being recently used. | 
 |     bool isRecentlyUsed(unsigned reg) const { | 
 |       return std::find(RecentRegs.begin(), RecentRegs.end(), reg) != | 
 |              RecentRegs.end(); | 
 |     } | 
 |  | 
 |   private: | 
 |     /// linearScan - the linear scan algorithm | 
 |     void linearScan(); | 
 |  | 
 |     /// initIntervalSets - initialize the interval sets. | 
 |     /// | 
 |     void initIntervalSets(); | 
 |  | 
 |     /// processActiveIntervals - expire old intervals and move non-overlapping | 
 |     /// ones to the inactive list. | 
 |     void processActiveIntervals(SlotIndex CurPoint); | 
 |  | 
 |     /// processInactiveIntervals - expire old intervals and move overlapping | 
 |     /// ones to the active list. | 
 |     void processInactiveIntervals(SlotIndex CurPoint); | 
 |  | 
 |     /// hasNextReloadInterval - Return the next liveinterval that's being | 
 |     /// defined by a reload from the same SS as the specified one. | 
 |     LiveInterval *hasNextReloadInterval(LiveInterval *cur); | 
 |  | 
 |     /// DowngradeRegister - Downgrade a register for allocation. | 
 |     void DowngradeRegister(LiveInterval *li, unsigned Reg); | 
 |  | 
 |     /// UpgradeRegister - Upgrade a register for allocation. | 
 |     void UpgradeRegister(unsigned Reg); | 
 |  | 
 |     /// assignRegOrStackSlotAtInterval - assign a register if one | 
 |     /// is available, or spill. | 
 |     void assignRegOrStackSlotAtInterval(LiveInterval* cur); | 
 |  | 
 |     void updateSpillWeights(std::vector<float> &Weights, | 
 |                             unsigned reg, float weight, | 
 |                             const TargetRegisterClass *RC); | 
 |  | 
 |     /// findIntervalsToSpill - Determine the intervals to spill for the | 
 |     /// specified interval. It's passed the physical registers whose spill | 
 |     /// weight is the lowest among all the registers whose live intervals | 
 |     /// conflict with the interval. | 
 |     void findIntervalsToSpill(LiveInterval *cur, | 
 |                             std::vector<std::pair<unsigned,float> > &Candidates, | 
 |                             unsigned NumCands, | 
 |                             SmallVector<LiveInterval*, 8> &SpillIntervals); | 
 |  | 
 |     /// attemptTrivialCoalescing - If a simple interval is defined by a copy, | 
 |     /// try allocate the definition the same register as the source register | 
 |     /// if the register is not defined during live time of the interval. This | 
 |     /// eliminate a copy. This is used to coalesce copies which were not | 
 |     /// coalesced away before allocation either due to dest and src being in | 
 |     /// different register classes or because the coalescer was overly | 
 |     /// conservative. | 
 |     unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg); | 
 |  | 
 |     /// | 
 |     /// Register usage / availability tracking helpers. | 
 |     /// | 
 |  | 
 |     void initRegUses() { | 
 |       regUse_.resize(tri_->getNumRegs(), 0); | 
 |       regUseBackUp_.resize(tri_->getNumRegs(), 0); | 
 |     } | 
 |  | 
 |     void finalizeRegUses() { | 
 | #ifndef NDEBUG | 
 |       // Verify all the registers are "freed". | 
 |       bool Error = false; | 
 |       for (unsigned i = 0, e = tri_->getNumRegs(); i != e; ++i) { | 
 |         if (regUse_[i] != 0) { | 
 |           errs() << tri_->getName(i) << " is still in use!\n"; | 
 |           Error = true; | 
 |         } | 
 |       } | 
 |       if (Error) | 
 |         llvm_unreachable(0); | 
 | #endif | 
 |       regUse_.clear(); | 
 |       regUseBackUp_.clear(); | 
 |     } | 
 |  | 
 |     void addRegUse(unsigned physReg) { | 
 |       assert(TargetRegisterInfo::isPhysicalRegister(physReg) && | 
 |              "should be physical register!"); | 
 |       ++regUse_[physReg]; | 
 |       for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) | 
 |         ++regUse_[*as]; | 
 |     } | 
 |  | 
 |     void delRegUse(unsigned physReg) { | 
 |       assert(TargetRegisterInfo::isPhysicalRegister(physReg) && | 
 |              "should be physical register!"); | 
 |       assert(regUse_[physReg] != 0); | 
 |       --regUse_[physReg]; | 
 |       for (const unsigned* as = tri_->getAliasSet(physReg); *as; ++as) { | 
 |         assert(regUse_[*as] != 0); | 
 |         --regUse_[*as]; | 
 |       } | 
 |     } | 
 |  | 
 |     bool isRegAvail(unsigned physReg) const { | 
 |       assert(TargetRegisterInfo::isPhysicalRegister(physReg) && | 
 |              "should be physical register!"); | 
 |       return regUse_[physReg] == 0; | 
 |     } | 
 |  | 
 |     void backUpRegUses() { | 
 |       regUseBackUp_ = regUse_; | 
 |     } | 
 |  | 
 |     void restoreRegUses() { | 
 |       regUse_ = regUseBackUp_; | 
 |     } | 
 |  | 
 |     /// | 
 |     /// Register handling helpers. | 
 |     /// | 
 |  | 
 |     /// getFreePhysReg - return a free physical register for this virtual | 
 |     /// register interval if we have one, otherwise return 0. | 
 |     unsigned getFreePhysReg(LiveInterval* cur); | 
 |     unsigned getFreePhysReg(LiveInterval* cur, | 
 |                             const TargetRegisterClass *RC, | 
 |                             unsigned MaxInactiveCount, | 
 |                             SmallVector<unsigned, 256> &inactiveCounts, | 
 |                             bool SkipDGRegs); | 
 |  | 
 |     /// assignVirt2StackSlot - assigns this virtual register to a | 
 |     /// stack slot. returns the stack slot | 
 |     int assignVirt2StackSlot(unsigned virtReg); | 
 |  | 
 |     void ComputeRelatedRegClasses(); | 
 |  | 
 |     template <typename ItTy> | 
 |     void printIntervals(const char* const str, ItTy i, ItTy e) const { | 
 |       DEBUG({ | 
 |           if (str) | 
 |             errs() << str << " intervals:\n"; | 
 |  | 
 |           for (; i != e; ++i) { | 
 |             errs() << "\t" << *i->first << " -> "; | 
 |  | 
 |             unsigned reg = i->first->reg; | 
 |             if (TargetRegisterInfo::isVirtualRegister(reg)) | 
 |               reg = vrm_->getPhys(reg); | 
 |  | 
 |             errs() << tri_->getName(reg) << '\n'; | 
 |           } | 
 |         }); | 
 |     } | 
 |   }; | 
 |   char RALinScan::ID = 0; | 
 | } | 
 |  | 
 | static RegisterPass<RALinScan> | 
 | X("linearscan-regalloc", "Linear Scan Register Allocator"); | 
 |  | 
 | void RALinScan::ComputeRelatedRegClasses() { | 
 |   // First pass, add all reg classes to the union, and determine at least one | 
 |   // reg class that each register is in. | 
 |   bool HasAliases = false; | 
 |   for (TargetRegisterInfo::regclass_iterator RCI = tri_->regclass_begin(), | 
 |        E = tri_->regclass_end(); RCI != E; ++RCI) { | 
 |     RelatedRegClasses.insert(*RCI); | 
 |     for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end(); | 
 |          I != E; ++I) { | 
 |       HasAliases = HasAliases || *tri_->getAliasSet(*I) != 0; | 
 |        | 
 |       const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I]; | 
 |       if (PRC) { | 
 |         // Already processed this register.  Just make sure we know that | 
 |         // multiple register classes share a register. | 
 |         RelatedRegClasses.unionSets(PRC, *RCI); | 
 |       } else { | 
 |         PRC = *RCI; | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   // Second pass, now that we know conservatively what register classes each reg | 
 |   // belongs to, add info about aliases.  We don't need to do this for targets | 
 |   // without register aliases. | 
 |   if (HasAliases) | 
 |     for (DenseMap<unsigned, const TargetRegisterClass*>::iterator | 
 |          I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end(); | 
 |          I != E; ++I) | 
 |       for (const unsigned *AS = tri_->getAliasSet(I->first); *AS; ++AS) | 
 |         RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]); | 
 | } | 
 |  | 
 | /// attemptTrivialCoalescing - If a simple interval is defined by a copy, try | 
 | /// allocate the definition the same register as the source register if the | 
 | /// register is not defined during live time of the interval. If the interval is | 
 | /// killed by a copy, try to use the destination register. This eliminates a | 
 | /// copy. This is used to coalesce copies which were not coalesced away before | 
 | /// allocation either due to dest and src being in different register classes or | 
 | /// because the coalescer was overly conservative. | 
 | unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) { | 
 |   unsigned Preference = vrm_->getRegAllocPref(cur.reg); | 
 |   if ((Preference && Preference == Reg) || !cur.containsOneValue()) | 
 |     return Reg; | 
 |  | 
 |   // We cannot handle complicated live ranges. Simple linear stuff only. | 
 |   if (cur.ranges.size() != 1) | 
 |     return Reg; | 
 |  | 
 |   const LiveRange &range = cur.ranges.front(); | 
 |  | 
 |   VNInfo *vni = range.valno; | 
 |   if (vni->isUnused()) | 
 |     return Reg; | 
 |  | 
 |   unsigned CandReg; | 
 |   { | 
 |     MachineInstr *CopyMI; | 
 |     unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; | 
 |     if (vni->def != SlotIndex() && vni->isDefAccurate() && | 
 |         (CopyMI = li_->getInstructionFromIndex(vni->def)) && | 
 |         tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) | 
 |       // Defined by a copy, try to extend SrcReg forward | 
 |       CandReg = SrcReg; | 
 |     else if (TrivCoalesceEnds && | 
 |              (CopyMI = | 
 |               li_->getInstructionFromIndex(range.end.getBaseIndex())) && | 
 |              tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg) && | 
 |              cur.reg == SrcReg) | 
 |       // Only used by a copy, try to extend DstReg backwards | 
 |       CandReg = DstReg; | 
 |     else | 
 |       return Reg; | 
 |   } | 
 |  | 
 |   if (TargetRegisterInfo::isVirtualRegister(CandReg)) { | 
 |     if (!vrm_->isAssignedReg(CandReg)) | 
 |       return Reg; | 
 |     CandReg = vrm_->getPhys(CandReg); | 
 |   } | 
 |   if (Reg == CandReg) | 
 |     return Reg; | 
 |  | 
 |   const TargetRegisterClass *RC = mri_->getRegClass(cur.reg); | 
 |   if (!RC->contains(CandReg)) | 
 |     return Reg; | 
 |  | 
 |   if (li_->conflictsWithPhysReg(cur, *vrm_, CandReg)) | 
 |     return Reg; | 
 |  | 
 |   // Try to coalesce. | 
 |   DEBUG(errs() << "Coalescing: " << cur << " -> " << tri_->getName(CandReg) | 
 |         << '\n'); | 
 |   vrm_->clearVirt(cur.reg); | 
 |   vrm_->assignVirt2Phys(cur.reg, CandReg); | 
 |  | 
 |   ++NumCoalesce; | 
 |   return CandReg; | 
 | } | 
 |  | 
 | bool RALinScan::runOnMachineFunction(MachineFunction &fn) { | 
 |   mf_ = &fn; | 
 |   mri_ = &fn.getRegInfo(); | 
 |   tm_ = &fn.getTarget(); | 
 |   tri_ = tm_->getRegisterInfo(); | 
 |   tii_ = tm_->getInstrInfo(); | 
 |   allocatableRegs_ = tri_->getAllocatableSet(fn); | 
 |   li_ = &getAnalysis<LiveIntervals>(); | 
 |   ls_ = &getAnalysis<LiveStacks>(); | 
 |   loopInfo = &getAnalysis<MachineLoopInfo>(); | 
 |  | 
 |   // We don't run the coalescer here because we have no reason to | 
 |   // interact with it.  If the coalescer requires interaction, it | 
 |   // won't do anything.  If it doesn't require interaction, we assume | 
 |   // it was run as a separate pass. | 
 |  | 
 |   // If this is the first function compiled, compute the related reg classes. | 
 |   if (RelatedRegClasses.empty()) | 
 |     ComputeRelatedRegClasses(); | 
 |  | 
 |   // Also resize register usage trackers. | 
 |   initRegUses(); | 
 |  | 
 |   vrm_ = &getAnalysis<VirtRegMap>(); | 
 |   if (!rewriter_.get()) rewriter_.reset(createVirtRegRewriter()); | 
 |    | 
 |   spiller_.reset(createSpiller(mf_, li_, loopInfo, vrm_)); | 
 |    | 
 |   initIntervalSets(); | 
 |  | 
 |   linearScan(); | 
 |  | 
 |   // Rewrite spill code and update the PhysRegsUsed set. | 
 |   rewriter_->runOnMachineFunction(*mf_, *vrm_, li_); | 
 |  | 
 |   assert(unhandled_.empty() && "Unhandled live intervals remain!"); | 
 |  | 
 |   finalizeRegUses(); | 
 |  | 
 |   fixed_.clear(); | 
 |   active_.clear(); | 
 |   inactive_.clear(); | 
 |   handled_.clear(); | 
 |   NextReloadMap.clear(); | 
 |   DowngradedRegs.clear(); | 
 |   DowngradeMap.clear(); | 
 |   spiller_.reset(0); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// initIntervalSets - initialize the interval sets. | 
 | /// | 
 | void RALinScan::initIntervalSets() | 
 | { | 
 |   assert(unhandled_.empty() && fixed_.empty() && | 
 |          active_.empty() && inactive_.empty() && | 
 |          "interval sets should be empty on initialization"); | 
 |  | 
 |   handled_.reserve(li_->getNumIntervals()); | 
 |  | 
 |   for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { | 
 |     if (TargetRegisterInfo::isPhysicalRegister(i->second->reg)) { | 
 |       if (!i->second->empty()) { | 
 |         mri_->setPhysRegUsed(i->second->reg); | 
 |         fixed_.push_back(std::make_pair(i->second, i->second->begin())); | 
 |       } | 
 |     } else { | 
 |       if (i->second->empty()) { | 
 |         assignRegOrStackSlotAtInterval(i->second); | 
 |       } | 
 |       else | 
 |         unhandled_.push(i->second); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void RALinScan::linearScan() { | 
 |   // linear scan algorithm | 
 |   DEBUG({ | 
 |       errs() << "********** LINEAR SCAN **********\n" | 
 |              << "********** Function: "  | 
 |              << mf_->getFunction()->getName() << '\n'; | 
 |       printIntervals("fixed", fixed_.begin(), fixed_.end()); | 
 |     }); | 
 |  | 
 |   while (!unhandled_.empty()) { | 
 |     // pick the interval with the earliest start point | 
 |     LiveInterval* cur = unhandled_.top(); | 
 |     unhandled_.pop(); | 
 |     ++NumIters; | 
 |     DEBUG(errs() << "\n*** CURRENT ***: " << *cur << '\n'); | 
 |  | 
 |     assert(!cur->empty() && "Empty interval in unhandled set."); | 
 |  | 
 |     processActiveIntervals(cur->beginIndex()); | 
 |     processInactiveIntervals(cur->beginIndex()); | 
 |  | 
 |     assert(TargetRegisterInfo::isVirtualRegister(cur->reg) && | 
 |            "Can only allocate virtual registers!"); | 
 |  | 
 |     // Allocating a virtual register. try to find a free | 
 |     // physical register or spill an interval (possibly this one) in order to | 
 |     // assign it one. | 
 |     assignRegOrStackSlotAtInterval(cur); | 
 |  | 
 |     DEBUG({ | 
 |         printIntervals("active", active_.begin(), active_.end()); | 
 |         printIntervals("inactive", inactive_.begin(), inactive_.end()); | 
 |       }); | 
 |   } | 
 |  | 
 |   // Expire any remaining active intervals | 
 |   while (!active_.empty()) { | 
 |     IntervalPtr &IP = active_.back(); | 
 |     unsigned reg = IP.first->reg; | 
 |     DEBUG(errs() << "\tinterval " << *IP.first << " expired\n"); | 
 |     assert(TargetRegisterInfo::isVirtualRegister(reg) && | 
 |            "Can only allocate virtual registers!"); | 
 |     reg = vrm_->getPhys(reg); | 
 |     delRegUse(reg); | 
 |     active_.pop_back(); | 
 |   } | 
 |  | 
 |   // Expire any remaining inactive intervals | 
 |   DEBUG({ | 
 |       for (IntervalPtrs::reverse_iterator | 
 |              i = inactive_.rbegin(); i != inactive_.rend(); ++i) | 
 |         errs() << "\tinterval " << *i->first << " expired\n"; | 
 |     }); | 
 |   inactive_.clear(); | 
 |  | 
 |   // Add live-ins to every BB except for entry. Also perform trivial coalescing. | 
 |   MachineFunction::iterator EntryMBB = mf_->begin(); | 
 |   SmallVector<MachineBasicBlock*, 8> LiveInMBBs; | 
 |   for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { | 
 |     LiveInterval &cur = *i->second; | 
 |     unsigned Reg = 0; | 
 |     bool isPhys = TargetRegisterInfo::isPhysicalRegister(cur.reg); | 
 |     if (isPhys) | 
 |       Reg = cur.reg; | 
 |     else if (vrm_->isAssignedReg(cur.reg)) | 
 |       Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg)); | 
 |     if (!Reg) | 
 |       continue; | 
 |     // Ignore splited live intervals. | 
 |     if (!isPhys && vrm_->getPreSplitReg(cur.reg)) | 
 |       continue; | 
 |  | 
 |     for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end(); | 
 |          I != E; ++I) { | 
 |       const LiveRange &LR = *I; | 
 |       if (li_->findLiveInMBBs(LR.start, LR.end, LiveInMBBs)) { | 
 |         for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i) | 
 |           if (LiveInMBBs[i] != EntryMBB) { | 
 |             assert(TargetRegisterInfo::isPhysicalRegister(Reg) && | 
 |                    "Adding a virtual register to livein set?"); | 
 |             LiveInMBBs[i]->addLiveIn(Reg); | 
 |           } | 
 |         LiveInMBBs.clear(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   DEBUG(errs() << *vrm_); | 
 |  | 
 |   // Look for physical registers that end up not being allocated even though | 
 |   // register allocator had to spill other registers in its register class. | 
 |   if (ls_->getNumIntervals() == 0) | 
 |     return; | 
 |   if (!vrm_->FindUnusedRegisters(li_)) | 
 |     return; | 
 | } | 
 |  | 
 | /// processActiveIntervals - expire old intervals and move non-overlapping ones | 
 | /// to the inactive list. | 
 | void RALinScan::processActiveIntervals(SlotIndex CurPoint) | 
 | { | 
 |   DEBUG(errs() << "\tprocessing active intervals:\n"); | 
 |  | 
 |   for (unsigned i = 0, e = active_.size(); i != e; ++i) { | 
 |     LiveInterval *Interval = active_[i].first; | 
 |     LiveInterval::iterator IntervalPos = active_[i].second; | 
 |     unsigned reg = Interval->reg; | 
 |  | 
 |     IntervalPos = Interval->advanceTo(IntervalPos, CurPoint); | 
 |  | 
 |     if (IntervalPos == Interval->end()) {     // Remove expired intervals. | 
 |       DEBUG(errs() << "\t\tinterval " << *Interval << " expired\n"); | 
 |       assert(TargetRegisterInfo::isVirtualRegister(reg) && | 
 |              "Can only allocate virtual registers!"); | 
 |       reg = vrm_->getPhys(reg); | 
 |       delRegUse(reg); | 
 |  | 
 |       // Pop off the end of the list. | 
 |       active_[i] = active_.back(); | 
 |       active_.pop_back(); | 
 |       --i; --e; | 
 |  | 
 |     } else if (IntervalPos->start > CurPoint) { | 
 |       // Move inactive intervals to inactive list. | 
 |       DEBUG(errs() << "\t\tinterval " << *Interval << " inactive\n"); | 
 |       assert(TargetRegisterInfo::isVirtualRegister(reg) && | 
 |              "Can only allocate virtual registers!"); | 
 |       reg = vrm_->getPhys(reg); | 
 |       delRegUse(reg); | 
 |       // add to inactive. | 
 |       inactive_.push_back(std::make_pair(Interval, IntervalPos)); | 
 |  | 
 |       // Pop off the end of the list. | 
 |       active_[i] = active_.back(); | 
 |       active_.pop_back(); | 
 |       --i; --e; | 
 |     } else { | 
 |       // Otherwise, just update the iterator position. | 
 |       active_[i].second = IntervalPos; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// processInactiveIntervals - expire old intervals and move overlapping | 
 | /// ones to the active list. | 
 | void RALinScan::processInactiveIntervals(SlotIndex CurPoint) | 
 | { | 
 |   DEBUG(errs() << "\tprocessing inactive intervals:\n"); | 
 |  | 
 |   for (unsigned i = 0, e = inactive_.size(); i != e; ++i) { | 
 |     LiveInterval *Interval = inactive_[i].first; | 
 |     LiveInterval::iterator IntervalPos = inactive_[i].second; | 
 |     unsigned reg = Interval->reg; | 
 |  | 
 |     IntervalPos = Interval->advanceTo(IntervalPos, CurPoint); | 
 |  | 
 |     if (IntervalPos == Interval->end()) {       // remove expired intervals. | 
 |       DEBUG(errs() << "\t\tinterval " << *Interval << " expired\n"); | 
 |  | 
 |       // Pop off the end of the list. | 
 |       inactive_[i] = inactive_.back(); | 
 |       inactive_.pop_back(); | 
 |       --i; --e; | 
 |     } else if (IntervalPos->start <= CurPoint) { | 
 |       // move re-activated intervals in active list | 
 |       DEBUG(errs() << "\t\tinterval " << *Interval << " active\n"); | 
 |       assert(TargetRegisterInfo::isVirtualRegister(reg) && | 
 |              "Can only allocate virtual registers!"); | 
 |       reg = vrm_->getPhys(reg); | 
 |       addRegUse(reg); | 
 |       // add to active | 
 |       active_.push_back(std::make_pair(Interval, IntervalPos)); | 
 |  | 
 |       // Pop off the end of the list. | 
 |       inactive_[i] = inactive_.back(); | 
 |       inactive_.pop_back(); | 
 |       --i; --e; | 
 |     } else { | 
 |       // Otherwise, just update the iterator position. | 
 |       inactive_[i].second = IntervalPos; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// updateSpillWeights - updates the spill weights of the specifed physical | 
 | /// register and its weight. | 
 | void RALinScan::updateSpillWeights(std::vector<float> &Weights, | 
 |                                    unsigned reg, float weight, | 
 |                                    const TargetRegisterClass *RC) { | 
 |   SmallSet<unsigned, 4> Processed; | 
 |   SmallSet<unsigned, 4> SuperAdded; | 
 |   SmallVector<unsigned, 4> Supers; | 
 |   Weights[reg] += weight; | 
 |   Processed.insert(reg); | 
 |   for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) { | 
 |     Weights[*as] += weight; | 
 |     Processed.insert(*as); | 
 |     if (tri_->isSubRegister(*as, reg) && | 
 |         SuperAdded.insert(*as) && | 
 |         RC->contains(*as)) { | 
 |       Supers.push_back(*as); | 
 |     } | 
 |   } | 
 |  | 
 |   // If the alias is a super-register, and the super-register is in the | 
 |   // register class we are trying to allocate. Then add the weight to all | 
 |   // sub-registers of the super-register even if they are not aliases. | 
 |   // e.g. allocating for GR32, bh is not used, updating bl spill weight. | 
 |   //      bl should get the same spill weight otherwise it will be choosen | 
 |   //      as a spill candidate since spilling bh doesn't make ebx available. | 
 |   for (unsigned i = 0, e = Supers.size(); i != e; ++i) { | 
 |     for (const unsigned *sr = tri_->getSubRegisters(Supers[i]); *sr; ++sr) | 
 |       if (!Processed.count(*sr)) | 
 |         Weights[*sr] += weight; | 
 |   } | 
 | } | 
 |  | 
 | static | 
 | RALinScan::IntervalPtrs::iterator | 
 | FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) { | 
 |   for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end(); | 
 |        I != E; ++I) | 
 |     if (I->first == LI) return I; | 
 |   return IP.end(); | 
 | } | 
 |  | 
 | static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, SlotIndex Point){ | 
 |   for (unsigned i = 0, e = V.size(); i != e; ++i) { | 
 |     RALinScan::IntervalPtr &IP = V[i]; | 
 |     LiveInterval::iterator I = std::upper_bound(IP.first->begin(), | 
 |                                                 IP.second, Point); | 
 |     if (I != IP.first->begin()) --I; | 
 |     IP.second = I; | 
 |   } | 
 | } | 
 |  | 
 | /// addStackInterval - Create a LiveInterval for stack if the specified live | 
 | /// interval has been spilled. | 
 | static void addStackInterval(LiveInterval *cur, LiveStacks *ls_, | 
 |                              LiveIntervals *li_, | 
 |                              MachineRegisterInfo* mri_, VirtRegMap &vrm_) { | 
 |   int SS = vrm_.getStackSlot(cur->reg); | 
 |   if (SS == VirtRegMap::NO_STACK_SLOT) | 
 |     return; | 
 |  | 
 |   const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); | 
 |   LiveInterval &SI = ls_->getOrCreateInterval(SS, RC); | 
 |  | 
 |   VNInfo *VNI; | 
 |   if (SI.hasAtLeastOneValue()) | 
 |     VNI = SI.getValNumInfo(0); | 
 |   else | 
 |     VNI = SI.getNextValue(SlotIndex(), 0, false, | 
 |                           ls_->getVNInfoAllocator()); | 
 |  | 
 |   LiveInterval &RI = li_->getInterval(cur->reg); | 
 |   // FIXME: This may be overly conservative. | 
 |   SI.MergeRangesInAsValue(RI, VNI); | 
 | } | 
 |  | 
 | /// getConflictWeight - Return the number of conflicts between cur | 
 | /// live interval and defs and uses of Reg weighted by loop depthes. | 
 | static | 
 | float getConflictWeight(LiveInterval *cur, unsigned Reg, LiveIntervals *li_, | 
 |                         MachineRegisterInfo *mri_, | 
 |                         const MachineLoopInfo *loopInfo) { | 
 |   float Conflicts = 0; | 
 |   for (MachineRegisterInfo::reg_iterator I = mri_->reg_begin(Reg), | 
 |          E = mri_->reg_end(); I != E; ++I) { | 
 |     MachineInstr *MI = &*I; | 
 |     if (cur->liveAt(li_->getInstructionIndex(MI))) { | 
 |       unsigned loopDepth = loopInfo->getLoopDepth(MI->getParent()); | 
 |       Conflicts += powf(10.0f, (float)loopDepth); | 
 |     } | 
 |   } | 
 |   return Conflicts; | 
 | } | 
 |  | 
 | /// findIntervalsToSpill - Determine the intervals to spill for the | 
 | /// specified interval. It's passed the physical registers whose spill | 
 | /// weight is the lowest among all the registers whose live intervals | 
 | /// conflict with the interval. | 
 | void RALinScan::findIntervalsToSpill(LiveInterval *cur, | 
 |                             std::vector<std::pair<unsigned,float> > &Candidates, | 
 |                             unsigned NumCands, | 
 |                             SmallVector<LiveInterval*, 8> &SpillIntervals) { | 
 |   // We have figured out the *best* register to spill. But there are other | 
 |   // registers that are pretty good as well (spill weight within 3%). Spill | 
 |   // the one that has fewest defs and uses that conflict with cur. | 
 |   float Conflicts[3] = { 0.0f, 0.0f, 0.0f }; | 
 |   SmallVector<LiveInterval*, 8> SLIs[3]; | 
 |  | 
 |   DEBUG({ | 
 |       errs() << "\tConsidering " << NumCands << " candidates: "; | 
 |       for (unsigned i = 0; i != NumCands; ++i) | 
 |         errs() << tri_->getName(Candidates[i].first) << " "; | 
 |       errs() << "\n"; | 
 |     }); | 
 |    | 
 |   // Calculate the number of conflicts of each candidate. | 
 |   for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) { | 
 |     unsigned Reg = i->first->reg; | 
 |     unsigned PhysReg = vrm_->getPhys(Reg); | 
 |     if (!cur->overlapsFrom(*i->first, i->second)) | 
 |       continue; | 
 |     for (unsigned j = 0; j < NumCands; ++j) { | 
 |       unsigned Candidate = Candidates[j].first; | 
 |       if (tri_->regsOverlap(PhysReg, Candidate)) { | 
 |         if (NumCands > 1) | 
 |           Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo); | 
 |         SLIs[j].push_back(i->first); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){ | 
 |     unsigned Reg = i->first->reg; | 
 |     unsigned PhysReg = vrm_->getPhys(Reg); | 
 |     if (!cur->overlapsFrom(*i->first, i->second-1)) | 
 |       continue; | 
 |     for (unsigned j = 0; j < NumCands; ++j) { | 
 |       unsigned Candidate = Candidates[j].first; | 
 |       if (tri_->regsOverlap(PhysReg, Candidate)) { | 
 |         if (NumCands > 1) | 
 |           Conflicts[j] += getConflictWeight(cur, Reg, li_, mri_, loopInfo); | 
 |         SLIs[j].push_back(i->first); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Which is the best candidate? | 
 |   unsigned BestCandidate = 0; | 
 |   float MinConflicts = Conflicts[0]; | 
 |   for (unsigned i = 1; i != NumCands; ++i) { | 
 |     if (Conflicts[i] < MinConflicts) { | 
 |       BestCandidate = i; | 
 |       MinConflicts = Conflicts[i]; | 
 |     } | 
 |   } | 
 |  | 
 |   std::copy(SLIs[BestCandidate].begin(), SLIs[BestCandidate].end(), | 
 |             std::back_inserter(SpillIntervals)); | 
 | } | 
 |  | 
 | namespace { | 
 |   struct WeightCompare { | 
 |   private: | 
 |     const RALinScan &Allocator; | 
 |  | 
 |   public: | 
 |     WeightCompare(const RALinScan &Alloc) : Allocator(Alloc) {}; | 
 |  | 
 |     typedef std::pair<unsigned, float> RegWeightPair; | 
 |     bool operator()(const RegWeightPair &LHS, const RegWeightPair &RHS) const { | 
 |       return LHS.second < RHS.second && !Allocator.isRecentlyUsed(LHS.first); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | static bool weightsAreClose(float w1, float w2) { | 
 |   if (!NewHeuristic) | 
 |     return false; | 
 |  | 
 |   float diff = w1 - w2; | 
 |   if (diff <= 0.02f)  // Within 0.02f | 
 |     return true; | 
 |   return (diff / w2) <= 0.05f;  // Within 5%. | 
 | } | 
 |  | 
 | LiveInterval *RALinScan::hasNextReloadInterval(LiveInterval *cur) { | 
 |   DenseMap<unsigned, unsigned>::iterator I = NextReloadMap.find(cur->reg); | 
 |   if (I == NextReloadMap.end()) | 
 |     return 0; | 
 |   return &li_->getInterval(I->second); | 
 | } | 
 |  | 
 | void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) { | 
 |   bool isNew = DowngradedRegs.insert(Reg); | 
 |   isNew = isNew; // Silence compiler warning. | 
 |   assert(isNew && "Multiple reloads holding the same register?"); | 
 |   DowngradeMap.insert(std::make_pair(li->reg, Reg)); | 
 |   for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) { | 
 |     isNew = DowngradedRegs.insert(*AS); | 
 |     isNew = isNew; // Silence compiler warning. | 
 |     assert(isNew && "Multiple reloads holding the same register?"); | 
 |     DowngradeMap.insert(std::make_pair(li->reg, *AS)); | 
 |   } | 
 |   ++NumDowngrade; | 
 | } | 
 |  | 
 | void RALinScan::UpgradeRegister(unsigned Reg) { | 
 |   if (Reg) { | 
 |     DowngradedRegs.erase(Reg); | 
 |     for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) | 
 |       DowngradedRegs.erase(*AS); | 
 |   } | 
 | } | 
 |  | 
 | namespace { | 
 |   struct LISorter { | 
 |     bool operator()(LiveInterval* A, LiveInterval* B) { | 
 |       return A->beginIndex() < B->beginIndex(); | 
 |     } | 
 |   }; | 
 | } | 
 |  | 
 | /// assignRegOrStackSlotAtInterval - assign a register if one is available, or | 
 | /// spill. | 
 | void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) { | 
 |   DEBUG(errs() << "\tallocating current interval: "); | 
 |  | 
 |   // This is an implicitly defined live interval, just assign any register. | 
 |   const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); | 
 |   if (cur->empty()) { | 
 |     unsigned physReg = vrm_->getRegAllocPref(cur->reg); | 
 |     if (!physReg) | 
 |       physReg = *RC->allocation_order_begin(*mf_); | 
 |     DEBUG(errs() <<  tri_->getName(physReg) << '\n'); | 
 |     // Note the register is not really in use. | 
 |     vrm_->assignVirt2Phys(cur->reg, physReg); | 
 |     return; | 
 |   } | 
 |  | 
 |   backUpRegUses(); | 
 |  | 
 |   std::vector<std::pair<unsigned, float> > SpillWeightsToAdd; | 
 |   SlotIndex StartPosition = cur->beginIndex(); | 
 |   const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); | 
 |  | 
 |   // If start of this live interval is defined by a move instruction and its | 
 |   // source is assigned a physical register that is compatible with the target | 
 |   // register class, then we should try to assign it the same register. | 
 |   // This can happen when the move is from a larger register class to a smaller | 
 |   // one, e.g. X86::mov32to32_. These move instructions are not coalescable. | 
 |   if (!vrm_->getRegAllocPref(cur->reg) && cur->hasAtLeastOneValue()) { | 
 |     VNInfo *vni = cur->begin()->valno; | 
 |     if ((vni->def != SlotIndex()) && !vni->isUnused() && | 
 |          vni->isDefAccurate()) { | 
 |       MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); | 
 |       unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; | 
 |       if (CopyMI && | 
 |           tii_->isMoveInstr(*CopyMI, SrcReg, DstReg, SrcSubReg, DstSubReg)) { | 
 |         unsigned Reg = 0; | 
 |         if (TargetRegisterInfo::isPhysicalRegister(SrcReg)) | 
 |           Reg = SrcReg; | 
 |         else if (vrm_->isAssignedReg(SrcReg)) | 
 |           Reg = vrm_->getPhys(SrcReg); | 
 |         if (Reg) { | 
 |           if (SrcSubReg) | 
 |             Reg = tri_->getSubReg(Reg, SrcSubReg); | 
 |           if (DstSubReg) | 
 |             Reg = tri_->getMatchingSuperReg(Reg, DstSubReg, RC); | 
 |           if (Reg && allocatableRegs_[Reg] && RC->contains(Reg)) | 
 |             mri_->setRegAllocationHint(cur->reg, 0, Reg); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // For every interval in inactive we overlap with, mark the | 
 |   // register as not free and update spill weights. | 
 |   for (IntervalPtrs::const_iterator i = inactive_.begin(), | 
 |          e = inactive_.end(); i != e; ++i) { | 
 |     unsigned Reg = i->first->reg; | 
 |     assert(TargetRegisterInfo::isVirtualRegister(Reg) && | 
 |            "Can only allocate virtual registers!"); | 
 |     const TargetRegisterClass *RegRC = mri_->getRegClass(Reg); | 
 |     // If this is not in a related reg class to the register we're allocating,  | 
 |     // don't check it. | 
 |     if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader && | 
 |         cur->overlapsFrom(*i->first, i->second-1)) { | 
 |       Reg = vrm_->getPhys(Reg); | 
 |       addRegUse(Reg); | 
 |       SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight)); | 
 |     } | 
 |   } | 
 |    | 
 |   // Speculatively check to see if we can get a register right now.  If not, | 
 |   // we know we won't be able to by adding more constraints.  If so, we can | 
 |   // check to see if it is valid.  Doing an exhaustive search of the fixed_ list | 
 |   // is very bad (it contains all callee clobbered registers for any functions | 
 |   // with a call), so we want to avoid doing that if possible. | 
 |   unsigned physReg = getFreePhysReg(cur); | 
 |   unsigned BestPhysReg = physReg; | 
 |   if (physReg) { | 
 |     // We got a register.  However, if it's in the fixed_ list, we might | 
 |     // conflict with it.  Check to see if we conflict with it or any of its | 
 |     // aliases. | 
 |     SmallSet<unsigned, 8> RegAliases; | 
 |     for (const unsigned *AS = tri_->getAliasSet(physReg); *AS; ++AS) | 
 |       RegAliases.insert(*AS); | 
 |      | 
 |     bool ConflictsWithFixed = false; | 
 |     for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { | 
 |       IntervalPtr &IP = fixed_[i]; | 
 |       if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) { | 
 |         // Okay, this reg is on the fixed list.  Check to see if we actually | 
 |         // conflict. | 
 |         LiveInterval *I = IP.first; | 
 |         if (I->endIndex() > StartPosition) { | 
 |           LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition); | 
 |           IP.second = II; | 
 |           if (II != I->begin() && II->start > StartPosition) | 
 |             --II; | 
 |           if (cur->overlapsFrom(*I, II)) { | 
 |             ConflictsWithFixed = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     // Okay, the register picked by our speculative getFreePhysReg call turned | 
 |     // out to be in use.  Actually add all of the conflicting fixed registers to | 
 |     // regUse_ so we can do an accurate query. | 
 |     if (ConflictsWithFixed) { | 
 |       // For every interval in fixed we overlap with, mark the register as not | 
 |       // free and update spill weights. | 
 |       for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { | 
 |         IntervalPtr &IP = fixed_[i]; | 
 |         LiveInterval *I = IP.first; | 
 |  | 
 |         const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg]; | 
 |         if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&        | 
 |             I->endIndex() > StartPosition) { | 
 |           LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition); | 
 |           IP.second = II; | 
 |           if (II != I->begin() && II->start > StartPosition) | 
 |             --II; | 
 |           if (cur->overlapsFrom(*I, II)) { | 
 |             unsigned reg = I->reg; | 
 |             addRegUse(reg); | 
 |             SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight)); | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Using the newly updated regUse_ object, which includes conflicts in the | 
 |       // future, see if there are any registers available. | 
 |       physReg = getFreePhysReg(cur); | 
 |     } | 
 |   } | 
 |      | 
 |   // Restore the physical register tracker, removing information about the | 
 |   // future. | 
 |   restoreRegUses(); | 
 |    | 
 |   // If we find a free register, we are done: assign this virtual to | 
 |   // the free physical register and add this interval to the active | 
 |   // list. | 
 |   if (physReg) { | 
 |     DEBUG(errs() <<  tri_->getName(physReg) << '\n'); | 
 |     vrm_->assignVirt2Phys(cur->reg, physReg); | 
 |     addRegUse(physReg); | 
 |     active_.push_back(std::make_pair(cur, cur->begin())); | 
 |     handled_.push_back(cur); | 
 |  | 
 |     // "Upgrade" the physical register since it has been allocated. | 
 |     UpgradeRegister(physReg); | 
 |     if (LiveInterval *NextReloadLI = hasNextReloadInterval(cur)) { | 
 |       // "Downgrade" physReg to try to keep physReg from being allocated until | 
 |       // the next reload from the same SS is allocated.  | 
 |       mri_->setRegAllocationHint(NextReloadLI->reg, 0, physReg); | 
 |       DowngradeRegister(cur, physReg); | 
 |     } | 
 |     return; | 
 |   } | 
 |   DEBUG(errs() << "no free registers\n"); | 
 |  | 
 |   // Compile the spill weights into an array that is better for scanning. | 
 |   std::vector<float> SpillWeights(tri_->getNumRegs(), 0.0f); | 
 |   for (std::vector<std::pair<unsigned, float> >::iterator | 
 |        I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I) | 
 |     updateSpillWeights(SpillWeights, I->first, I->second, RC); | 
 |    | 
 |   // for each interval in active, update spill weights. | 
 |   for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end(); | 
 |        i != e; ++i) { | 
 |     unsigned reg = i->first->reg; | 
 |     assert(TargetRegisterInfo::isVirtualRegister(reg) && | 
 |            "Can only allocate virtual registers!"); | 
 |     reg = vrm_->getPhys(reg); | 
 |     updateSpillWeights(SpillWeights, reg, i->first->weight, RC); | 
 |   } | 
 |   | 
 |   DEBUG(errs() << "\tassigning stack slot at interval "<< *cur << ":\n"); | 
 |  | 
 |   // Find a register to spill. | 
 |   float minWeight = HUGE_VALF; | 
 |   unsigned minReg = 0; | 
 |  | 
 |   bool Found = false; | 
 |   std::vector<std::pair<unsigned,float> > RegsWeights; | 
 |   if (!minReg || SpillWeights[minReg] == HUGE_VALF) | 
 |     for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_), | 
 |            e = RC->allocation_order_end(*mf_); i != e; ++i) { | 
 |       unsigned reg = *i; | 
 |       float regWeight = SpillWeights[reg]; | 
 |       // Skip recently allocated registers. | 
 |       if (minWeight > regWeight && !isRecentlyUsed(reg)) | 
 |         Found = true; | 
 |       RegsWeights.push_back(std::make_pair(reg, regWeight)); | 
 |     } | 
 |    | 
 |   // If we didn't find a register that is spillable, try aliases? | 
 |   if (!Found) { | 
 |     for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_), | 
 |            e = RC->allocation_order_end(*mf_); i != e; ++i) { | 
 |       unsigned reg = *i; | 
 |       // No need to worry about if the alias register size < regsize of RC. | 
 |       // We are going to spill all registers that alias it anyway. | 
 |       for (const unsigned* as = tri_->getAliasSet(reg); *as; ++as) | 
 |         RegsWeights.push_back(std::make_pair(*as, SpillWeights[*as])); | 
 |     } | 
 |   } | 
 |  | 
 |   // Sort all potential spill candidates by weight. | 
 |   std::sort(RegsWeights.begin(), RegsWeights.end(), WeightCompare(*this)); | 
 |   minReg = RegsWeights[0].first; | 
 |   minWeight = RegsWeights[0].second; | 
 |   if (minWeight == HUGE_VALF) { | 
 |     // All registers must have inf weight. Just grab one! | 
 |     minReg = BestPhysReg ? BestPhysReg : *RC->allocation_order_begin(*mf_); | 
 |     if (cur->weight == HUGE_VALF || | 
 |         li_->getApproximateInstructionCount(*cur) == 0) { | 
 |       // Spill a physical register around defs and uses. | 
 |       if (li_->spillPhysRegAroundRegDefsUses(*cur, minReg, *vrm_)) { | 
 |         // spillPhysRegAroundRegDefsUses may have invalidated iterator stored | 
 |         // in fixed_. Reset them. | 
 |         for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { | 
 |           IntervalPtr &IP = fixed_[i]; | 
 |           LiveInterval *I = IP.first; | 
 |           if (I->reg == minReg || tri_->isSubRegister(minReg, I->reg)) | 
 |             IP.second = I->advanceTo(I->begin(), StartPosition); | 
 |         } | 
 |  | 
 |         DowngradedRegs.clear(); | 
 |         assignRegOrStackSlotAtInterval(cur); | 
 |       } else { | 
 |         assert(false && "Ran out of registers during register allocation!"); | 
 |         llvm_report_error("Ran out of registers during register allocation!"); | 
 |       } | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // Find up to 3 registers to consider as spill candidates. | 
 |   unsigned LastCandidate = RegsWeights.size() >= 3 ? 3 : 1; | 
 |   while (LastCandidate > 1) { | 
 |     if (weightsAreClose(RegsWeights[LastCandidate-1].second, minWeight)) | 
 |       break; | 
 |     --LastCandidate; | 
 |   } | 
 |  | 
 |   DEBUG({ | 
 |       errs() << "\t\tregister(s) with min weight(s): "; | 
 |  | 
 |       for (unsigned i = 0; i != LastCandidate; ++i) | 
 |         errs() << tri_->getName(RegsWeights[i].first) | 
 |                << " (" << RegsWeights[i].second << ")\n"; | 
 |     }); | 
 |  | 
 |   // If the current has the minimum weight, we need to spill it and | 
 |   // add any added intervals back to unhandled, and restart | 
 |   // linearscan. | 
 |   if (cur->weight != HUGE_VALF && cur->weight <= minWeight) { | 
 |     DEBUG(errs() << "\t\t\tspilling(c): " << *cur << '\n'); | 
 |     SmallVector<LiveInterval*, 8> spillIs; | 
 |     std::vector<LiveInterval*> added; | 
 |      | 
 |     added = spiller_->spill(cur, spillIs);  | 
 |  | 
 |     std::sort(added.begin(), added.end(), LISorter()); | 
 |     addStackInterval(cur, ls_, li_, mri_, *vrm_); | 
 |     if (added.empty()) | 
 |       return;  // Early exit if all spills were folded. | 
 |  | 
 |     // Merge added with unhandled.  Note that we have already sorted | 
 |     // intervals returned by addIntervalsForSpills by their starting | 
 |     // point. | 
 |     // This also update the NextReloadMap. That is, it adds mapping from a | 
 |     // register defined by a reload from SS to the next reload from SS in the | 
 |     // same basic block. | 
 |     MachineBasicBlock *LastReloadMBB = 0; | 
 |     LiveInterval *LastReload = 0; | 
 |     int LastReloadSS = VirtRegMap::NO_STACK_SLOT; | 
 |     for (unsigned i = 0, e = added.size(); i != e; ++i) { | 
 |       LiveInterval *ReloadLi = added[i]; | 
 |       if (ReloadLi->weight == HUGE_VALF && | 
 |           li_->getApproximateInstructionCount(*ReloadLi) == 0) { | 
 |         SlotIndex ReloadIdx = ReloadLi->beginIndex(); | 
 |         MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx); | 
 |         int ReloadSS = vrm_->getStackSlot(ReloadLi->reg); | 
 |         if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) { | 
 |           // Last reload of same SS is in the same MBB. We want to try to | 
 |           // allocate both reloads the same register and make sure the reg | 
 |           // isn't clobbered in between if at all possible. | 
 |           assert(LastReload->beginIndex() < ReloadIdx); | 
 |           NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg)); | 
 |         } | 
 |         LastReloadMBB = ReloadMBB; | 
 |         LastReload = ReloadLi; | 
 |         LastReloadSS = ReloadSS; | 
 |       } | 
 |       unhandled_.push(ReloadLi); | 
 |     } | 
 |     return; | 
 |   } | 
 |  | 
 |   ++NumBacktracks; | 
 |  | 
 |   // Push the current interval back to unhandled since we are going | 
 |   // to re-run at least this iteration. Since we didn't modify it it | 
 |   // should go back right in the front of the list | 
 |   unhandled_.push(cur); | 
 |  | 
 |   assert(TargetRegisterInfo::isPhysicalRegister(minReg) && | 
 |          "did not choose a register to spill?"); | 
 |  | 
 |   // We spill all intervals aliasing the register with | 
 |   // minimum weight, rollback to the interval with the earliest | 
 |   // start point and let the linear scan algorithm run again | 
 |   SmallVector<LiveInterval*, 8> spillIs; | 
 |  | 
 |   // Determine which intervals have to be spilled. | 
 |   findIntervalsToSpill(cur, RegsWeights, LastCandidate, spillIs); | 
 |  | 
 |   // Set of spilled vregs (used later to rollback properly) | 
 |   SmallSet<unsigned, 8> spilled; | 
 |  | 
 |   // The earliest start of a Spilled interval indicates up to where | 
 |   // in handled we need to roll back | 
 |   assert(!spillIs.empty() && "No spill intervals?");  | 
 |   SlotIndex earliestStart = spillIs[0]->beginIndex(); | 
 |    | 
 |   // Spill live intervals of virtual regs mapped to the physical register we | 
 |   // want to clear (and its aliases).  We only spill those that overlap with the | 
 |   // current interval as the rest do not affect its allocation. we also keep | 
 |   // track of the earliest start of all spilled live intervals since this will | 
 |   // mark our rollback point. | 
 |   std::vector<LiveInterval*> added; | 
 |   while (!spillIs.empty()) { | 
 |     LiveInterval *sli = spillIs.back(); | 
 |     spillIs.pop_back(); | 
 |     DEBUG(errs() << "\t\t\tspilling(a): " << *sli << '\n'); | 
 |     if (sli->beginIndex() < earliestStart) | 
 |       earliestStart = sli->beginIndex(); | 
 |         | 
 |     std::vector<LiveInterval*> newIs; | 
 |     newIs = spiller_->spill(sli, spillIs, &earliestStart); | 
 |     addStackInterval(sli, ls_, li_, mri_, *vrm_); | 
 |     std::copy(newIs.begin(), newIs.end(), std::back_inserter(added)); | 
 |     spilled.insert(sli->reg); | 
 |   } | 
 |  | 
 |   DEBUG(errs() << "\t\trolling back to: " << earliestStart << '\n'); | 
 |  | 
 |   // Scan handled in reverse order up to the earliest start of a | 
 |   // spilled live interval and undo each one, restoring the state of | 
 |   // unhandled. | 
 |   while (!handled_.empty()) { | 
 |     LiveInterval* i = handled_.back(); | 
 |     // If this interval starts before t we are done. | 
 |     if (!i->empty() && i->beginIndex() < earliestStart) | 
 |       break; | 
 |     DEBUG(errs() << "\t\t\tundo changes for: " << *i << '\n'); | 
 |     handled_.pop_back(); | 
 |  | 
 |     // When undoing a live interval allocation we must know if it is active or | 
 |     // inactive to properly update regUse_ and the VirtRegMap. | 
 |     IntervalPtrs::iterator it; | 
 |     if ((it = FindIntervalInVector(active_, i)) != active_.end()) { | 
 |       active_.erase(it); | 
 |       assert(!TargetRegisterInfo::isPhysicalRegister(i->reg)); | 
 |       if (!spilled.count(i->reg)) | 
 |         unhandled_.push(i); | 
 |       delRegUse(vrm_->getPhys(i->reg)); | 
 |       vrm_->clearVirt(i->reg); | 
 |     } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) { | 
 |       inactive_.erase(it); | 
 |       assert(!TargetRegisterInfo::isPhysicalRegister(i->reg)); | 
 |       if (!spilled.count(i->reg)) | 
 |         unhandled_.push(i); | 
 |       vrm_->clearVirt(i->reg); | 
 |     } else { | 
 |       assert(TargetRegisterInfo::isVirtualRegister(i->reg) && | 
 |              "Can only allocate virtual registers!"); | 
 |       vrm_->clearVirt(i->reg); | 
 |       unhandled_.push(i); | 
 |     } | 
 |  | 
 |     DenseMap<unsigned, unsigned>::iterator ii = DowngradeMap.find(i->reg); | 
 |     if (ii == DowngradeMap.end()) | 
 |       // It interval has a preference, it must be defined by a copy. Clear the | 
 |       // preference now since the source interval allocation may have been | 
 |       // undone as well. | 
 |       mri_->setRegAllocationHint(i->reg, 0, 0); | 
 |     else { | 
 |       UpgradeRegister(ii->second); | 
 |     } | 
 |   } | 
 |  | 
 |   // Rewind the iterators in the active, inactive, and fixed lists back to the | 
 |   // point we reverted to. | 
 |   RevertVectorIteratorsTo(active_, earliestStart); | 
 |   RevertVectorIteratorsTo(inactive_, earliestStart); | 
 |   RevertVectorIteratorsTo(fixed_, earliestStart); | 
 |  | 
 |   // Scan the rest and undo each interval that expired after t and | 
 |   // insert it in active (the next iteration of the algorithm will | 
 |   // put it in inactive if required) | 
 |   for (unsigned i = 0, e = handled_.size(); i != e; ++i) { | 
 |     LiveInterval *HI = handled_[i]; | 
 |     if (!HI->expiredAt(earliestStart) && | 
 |         HI->expiredAt(cur->beginIndex())) { | 
 |       DEBUG(errs() << "\t\t\tundo changes for: " << *HI << '\n'); | 
 |       active_.push_back(std::make_pair(HI, HI->begin())); | 
 |       assert(!TargetRegisterInfo::isPhysicalRegister(HI->reg)); | 
 |       addRegUse(vrm_->getPhys(HI->reg)); | 
 |     } | 
 |   } | 
 |  | 
 |   // Merge added with unhandled. | 
 |   // This also update the NextReloadMap. That is, it adds mapping from a | 
 |   // register defined by a reload from SS to the next reload from SS in the | 
 |   // same basic block. | 
 |   MachineBasicBlock *LastReloadMBB = 0; | 
 |   LiveInterval *LastReload = 0; | 
 |   int LastReloadSS = VirtRegMap::NO_STACK_SLOT; | 
 |   std::sort(added.begin(), added.end(), LISorter()); | 
 |   for (unsigned i = 0, e = added.size(); i != e; ++i) { | 
 |     LiveInterval *ReloadLi = added[i]; | 
 |     if (ReloadLi->weight == HUGE_VALF && | 
 |         li_->getApproximateInstructionCount(*ReloadLi) == 0) { | 
 |       SlotIndex ReloadIdx = ReloadLi->beginIndex(); | 
 |       MachineBasicBlock *ReloadMBB = li_->getMBBFromIndex(ReloadIdx); | 
 |       int ReloadSS = vrm_->getStackSlot(ReloadLi->reg); | 
 |       if (LastReloadMBB == ReloadMBB && LastReloadSS == ReloadSS) { | 
 |         // Last reload of same SS is in the same MBB. We want to try to | 
 |         // allocate both reloads the same register and make sure the reg | 
 |         // isn't clobbered in between if at all possible. | 
 |         assert(LastReload->beginIndex() < ReloadIdx); | 
 |         NextReloadMap.insert(std::make_pair(LastReload->reg, ReloadLi->reg)); | 
 |       } | 
 |       LastReloadMBB = ReloadMBB; | 
 |       LastReload = ReloadLi; | 
 |       LastReloadSS = ReloadSS; | 
 |     } | 
 |     unhandled_.push(ReloadLi); | 
 |   } | 
 | } | 
 |  | 
 | unsigned RALinScan::getFreePhysReg(LiveInterval* cur, | 
 |                                    const TargetRegisterClass *RC, | 
 |                                    unsigned MaxInactiveCount, | 
 |                                    SmallVector<unsigned, 256> &inactiveCounts, | 
 |                                    bool SkipDGRegs) { | 
 |   unsigned FreeReg = 0; | 
 |   unsigned FreeRegInactiveCount = 0; | 
 |  | 
 |   std::pair<unsigned, unsigned> Hint = mri_->getRegAllocationHint(cur->reg); | 
 |   // Resolve second part of the hint (if possible) given the current allocation. | 
 |   unsigned physReg = Hint.second; | 
 |   if (physReg && | 
 |       TargetRegisterInfo::isVirtualRegister(physReg) && vrm_->hasPhys(physReg)) | 
 |     physReg = vrm_->getPhys(physReg); | 
 |  | 
 |   TargetRegisterClass::iterator I, E; | 
 |   tie(I, E) = tri_->getAllocationOrder(RC, Hint.first, physReg, *mf_); | 
 |   assert(I != E && "No allocatable register in this register class!"); | 
 |  | 
 |   // Scan for the first available register. | 
 |   for (; I != E; ++I) { | 
 |     unsigned Reg = *I; | 
 |     // Ignore "downgraded" registers. | 
 |     if (SkipDGRegs && DowngradedRegs.count(Reg)) | 
 |       continue; | 
 |     // Skip recently allocated registers. | 
 |     if (isRegAvail(Reg) && !isRecentlyUsed(Reg)) { | 
 |       FreeReg = Reg; | 
 |       if (FreeReg < inactiveCounts.size()) | 
 |         FreeRegInactiveCount = inactiveCounts[FreeReg]; | 
 |       else | 
 |         FreeRegInactiveCount = 0; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // If there are no free regs, or if this reg has the max inactive count, | 
 |   // return this register. | 
 |   if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) { | 
 |     // Remember what register we picked so we can skip it next time. | 
 |     if (FreeReg != 0) recordRecentlyUsed(FreeReg); | 
 |     return FreeReg; | 
 |   } | 
 |  | 
 |   // Continue scanning the registers, looking for the one with the highest | 
 |   // inactive count.  Alkis found that this reduced register pressure very | 
 |   // slightly on X86 (in rev 1.94 of this file), though this should probably be | 
 |   // reevaluated now. | 
 |   for (; I != E; ++I) { | 
 |     unsigned Reg = *I; | 
 |     // Ignore "downgraded" registers. | 
 |     if (SkipDGRegs && DowngradedRegs.count(Reg)) | 
 |       continue; | 
 |     if (isRegAvail(Reg) && Reg < inactiveCounts.size() && | 
 |         FreeRegInactiveCount < inactiveCounts[Reg] && !isRecentlyUsed(Reg)) { | 
 |       FreeReg = Reg; | 
 |       FreeRegInactiveCount = inactiveCounts[Reg]; | 
 |       if (FreeRegInactiveCount == MaxInactiveCount) | 
 |         break;    // We found the one with the max inactive count. | 
 |     } | 
 |   } | 
 |  | 
 |   // Remember what register we picked so we can skip it next time. | 
 |   recordRecentlyUsed(FreeReg); | 
 |  | 
 |   return FreeReg; | 
 | } | 
 |  | 
 | /// getFreePhysReg - return a free physical register for this virtual register | 
 | /// interval if we have one, otherwise return 0. | 
 | unsigned RALinScan::getFreePhysReg(LiveInterval *cur) { | 
 |   SmallVector<unsigned, 256> inactiveCounts; | 
 |   unsigned MaxInactiveCount = 0; | 
 |    | 
 |   const TargetRegisterClass *RC = mri_->getRegClass(cur->reg); | 
 |   const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); | 
 |   | 
 |   for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end(); | 
 |        i != e; ++i) { | 
 |     unsigned reg = i->first->reg; | 
 |     assert(TargetRegisterInfo::isVirtualRegister(reg) && | 
 |            "Can only allocate virtual registers!"); | 
 |  | 
 |     // If this is not in a related reg class to the register we're allocating,  | 
 |     // don't check it. | 
 |     const TargetRegisterClass *RegRC = mri_->getRegClass(reg); | 
 |     if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) { | 
 |       reg = vrm_->getPhys(reg); | 
 |       if (inactiveCounts.size() <= reg) | 
 |         inactiveCounts.resize(reg+1); | 
 |       ++inactiveCounts[reg]; | 
 |       MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]); | 
 |     } | 
 |   } | 
 |  | 
 |   // If copy coalescer has assigned a "preferred" register, check if it's | 
 |   // available first. | 
 |   unsigned Preference = vrm_->getRegAllocPref(cur->reg); | 
 |   if (Preference) { | 
 |     DEBUG(errs() << "(preferred: " << tri_->getName(Preference) << ") "); | 
 |     if (isRegAvail(Preference) &&  | 
 |         RC->contains(Preference)) | 
 |       return Preference; | 
 |   } | 
 |  | 
 |   if (!DowngradedRegs.empty()) { | 
 |     unsigned FreeReg = getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, | 
 |                                       true); | 
 |     if (FreeReg) | 
 |       return FreeReg; | 
 |   } | 
 |   return getFreePhysReg(cur, RC, MaxInactiveCount, inactiveCounts, false); | 
 | } | 
 |  | 
 | FunctionPass* llvm::createLinearScanRegisterAllocator() { | 
 |   return new RALinScan(); | 
 | } |