| //===-------- InlineSpiller.cpp - Insert spills and restores inline -------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The inline spiller modifies the machine function directly instead of |
| // inserting spills and restores in VirtRegMap. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "spiller" |
| #include "Spiller.h" |
| #include "SplitKit.h" |
| #include "VirtRegMap.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| namespace { |
| class InlineSpiller : public Spiller { |
| MachineFunction &mf_; |
| LiveIntervals &lis_; |
| MachineLoopInfo &loops_; |
| VirtRegMap &vrm_; |
| MachineFrameInfo &mfi_; |
| MachineRegisterInfo &mri_; |
| const TargetInstrInfo &tii_; |
| const TargetRegisterInfo &tri_; |
| const BitVector reserved_; |
| |
| SplitAnalysis splitAnalysis_; |
| |
| // Variables that are valid during spill(), but used by multiple methods. |
| LiveInterval *li_; |
| std::vector<LiveInterval*> *newIntervals_; |
| const TargetRegisterClass *rc_; |
| int stackSlot_; |
| const SmallVectorImpl<LiveInterval*> *spillIs_; |
| |
| // Values of the current interval that can potentially remat. |
| SmallPtrSet<VNInfo*, 8> reMattable_; |
| |
| // Values in reMattable_ that failed to remat at some point. |
| SmallPtrSet<VNInfo*, 8> usedValues_; |
| |
| ~InlineSpiller() {} |
| |
| public: |
| InlineSpiller(MachineFunctionPass &pass, |
| MachineFunction &mf, |
| VirtRegMap &vrm) |
| : mf_(mf), |
| lis_(pass.getAnalysis<LiveIntervals>()), |
| loops_(pass.getAnalysis<MachineLoopInfo>()), |
| vrm_(vrm), |
| mfi_(*mf.getFrameInfo()), |
| mri_(mf.getRegInfo()), |
| tii_(*mf.getTarget().getInstrInfo()), |
| tri_(*mf.getTarget().getRegisterInfo()), |
| reserved_(tri_.getReservedRegs(mf_)), |
| splitAnalysis_(mf, lis_, loops_) {} |
| |
| void spill(LiveInterval *li, |
| std::vector<LiveInterval*> &newIntervals, |
| SmallVectorImpl<LiveInterval*> &spillIs, |
| SlotIndex *earliestIndex); |
| |
| private: |
| bool split(); |
| |
| bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx, |
| SlotIndex UseIdx); |
| bool reMaterializeFor(MachineBasicBlock::iterator MI); |
| void reMaterializeAll(); |
| |
| bool foldMemoryOperand(MachineBasicBlock::iterator MI, |
| const SmallVectorImpl<unsigned> &Ops); |
| void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI); |
| void insertSpill(LiveInterval &NewLI, MachineBasicBlock::iterator MI); |
| }; |
| } |
| |
| namespace llvm { |
| Spiller *createInlineSpiller(MachineFunctionPass &pass, |
| MachineFunction &mf, |
| VirtRegMap &vrm) { |
| return new InlineSpiller(pass, mf, vrm); |
| } |
| } |
| |
| /// split - try splitting the current interval into pieces that may allocate |
| /// separately. Return true if successful. |
| bool InlineSpiller::split() { |
| // FIXME: Add intra-MBB splitting. |
| if (lis_.intervalIsInOneMBB(*li_)) |
| return false; |
| |
| splitAnalysis_.analyze(li_); |
| |
| if (const MachineLoop *loop = splitAnalysis_.getBestSplitLoop()) { |
| SplitEditor(splitAnalysis_, lis_, vrm_).splitAroundLoop(loop); |
| return true; |
| } |
| return false; |
| } |
| |
| /// allUsesAvailableAt - Return true if all registers used by OrigMI at |
| /// OrigIdx are also available with the same value at UseIdx. |
| bool InlineSpiller::allUsesAvailableAt(const MachineInstr *OrigMI, |
| SlotIndex OrigIdx, |
| SlotIndex UseIdx) { |
| OrigIdx = OrigIdx.getUseIndex(); |
| UseIdx = UseIdx.getUseIndex(); |
| for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = OrigMI->getOperand(i); |
| if (!MO.isReg() || !MO.getReg() || MO.getReg() == li_->reg) |
| continue; |
| // Reserved registers are OK. |
| if (MO.isUndef() || !lis_.hasInterval(MO.getReg())) |
| continue; |
| // We don't want to move any defs. |
| if (MO.isDef()) |
| return false; |
| // We cannot depend on virtual registers in spillIs_. They will be spilled. |
| for (unsigned si = 0, se = spillIs_->size(); si != se; ++si) |
| if ((*spillIs_)[si]->reg == MO.getReg()) |
| return false; |
| |
| LiveInterval &LI = lis_.getInterval(MO.getReg()); |
| const VNInfo *OVNI = LI.getVNInfoAt(OrigIdx); |
| if (!OVNI) |
| continue; |
| if (OVNI != LI.getVNInfoAt(UseIdx)) |
| return false; |
| } |
| return true; |
| } |
| |
| /// reMaterializeFor - Attempt to rematerialize li_->reg before MI instead of |
| /// reloading it. |
| bool InlineSpiller::reMaterializeFor(MachineBasicBlock::iterator MI) { |
| SlotIndex UseIdx = lis_.getInstructionIndex(MI).getUseIndex(); |
| VNInfo *OrigVNI = li_->getVNInfoAt(UseIdx); |
| if (!OrigVNI) { |
| DEBUG(dbgs() << "\tadding <undef> flags: "); |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isUse() && MO.getReg() == li_->reg) |
| MO.setIsUndef(); |
| } |
| DEBUG(dbgs() << UseIdx << '\t' << *MI); |
| return true; |
| } |
| if (!reMattable_.count(OrigVNI)) { |
| DEBUG(dbgs() << "\tusing non-remat valno " << OrigVNI->id << ": " |
| << UseIdx << '\t' << *MI); |
| return false; |
| } |
| MachineInstr *OrigMI = lis_.getInstructionFromIndex(OrigVNI->def); |
| if (!allUsesAvailableAt(OrigMI, OrigVNI->def, UseIdx)) { |
| usedValues_.insert(OrigVNI); |
| DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI); |
| return false; |
| } |
| |
| // If the instruction also writes li_->reg, it had better not require the same |
| // register for uses and defs. |
| bool Reads, Writes; |
| SmallVector<unsigned, 8> Ops; |
| tie(Reads, Writes) = MI->readsWritesVirtualRegister(li_->reg, &Ops); |
| if (Writes) { |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(Ops[i]); |
| if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) { |
| usedValues_.insert(OrigVNI); |
| DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI); |
| return false; |
| } |
| } |
| } |
| |
| // Alocate a new register for the remat. |
| unsigned NewVReg = mri_.createVirtualRegister(rc_); |
| vrm_.grow(); |
| LiveInterval &NewLI = lis_.getOrCreateInterval(NewVReg); |
| NewLI.markNotSpillable(); |
| newIntervals_->push_back(&NewLI); |
| |
| // Finally we can rematerialize OrigMI before MI. |
| MachineBasicBlock &MBB = *MI->getParent(); |
| tii_.reMaterialize(MBB, MI, NewLI.reg, 0, OrigMI, tri_); |
| MachineBasicBlock::iterator RematMI = MI; |
| SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(--RematMI).getDefIndex(); |
| DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' << *RematMI); |
| |
| // Replace operands |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(Ops[i]); |
| if (MO.isReg() && MO.isUse() && MO.getReg() == li_->reg) { |
| MO.setReg(NewVReg); |
| MO.setIsKill(); |
| } |
| } |
| DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI); |
| |
| VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, true, |
| lis_.getVNInfoAllocator()); |
| NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI)); |
| DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); |
| return true; |
| } |
| |
| /// reMaterializeAll - Try to rematerialize as many uses of li_ as possible, |
| /// and trim the live ranges after. |
| void InlineSpiller::reMaterializeAll() { |
| // Do a quick scan of the interval values to find if any are remattable. |
| reMattable_.clear(); |
| usedValues_.clear(); |
| for (LiveInterval::const_vni_iterator I = li_->vni_begin(), |
| E = li_->vni_end(); I != E; ++I) { |
| VNInfo *VNI = *I; |
| if (VNI->isUnused() || !VNI->isDefAccurate()) |
| continue; |
| MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def); |
| if (!DefMI || !tii_.isTriviallyReMaterializable(DefMI)) |
| continue; |
| reMattable_.insert(VNI); |
| } |
| |
| // Often, no defs are remattable. |
| if (reMattable_.empty()) |
| return; |
| |
| // Try to remat before all uses of li_->reg. |
| bool anyRemat = false; |
| for (MachineRegisterInfo::use_nodbg_iterator |
| RI = mri_.use_nodbg_begin(li_->reg); |
| MachineInstr *MI = RI.skipInstruction();) |
| anyRemat |= reMaterializeFor(MI); |
| |
| if (!anyRemat) |
| return; |
| |
| // Remove any values that were completely rematted. |
| bool anyRemoved = false; |
| for (SmallPtrSet<VNInfo*, 8>::iterator I = reMattable_.begin(), |
| E = reMattable_.end(); I != E; ++I) { |
| VNInfo *VNI = *I; |
| if (VNI->hasPHIKill() || usedValues_.count(VNI)) |
| continue; |
| MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def); |
| DEBUG(dbgs() << "\tremoving dead def: " << VNI->def << '\t' << *DefMI); |
| lis_.RemoveMachineInstrFromMaps(DefMI); |
| vrm_.RemoveMachineInstrFromMaps(DefMI); |
| DefMI->eraseFromParent(); |
| li_->removeValNo(VNI); |
| anyRemoved = true; |
| } |
| |
| if (!anyRemoved) |
| return; |
| |
| // Removing values may cause debug uses where li_ is not live. |
| for (MachineRegisterInfo::use_iterator RI = mri_.use_begin(li_->reg); |
| MachineInstr *MI = RI.skipInstruction();) { |
| if (!MI->isDebugValue()) |
| continue; |
| // Try to preserve the debug value if li_ is live immediately after it. |
| MachineBasicBlock::iterator NextMI = MI; |
| ++NextMI; |
| if (NextMI != MI->getParent()->end() && !lis_.isNotInMIMap(NextMI)) { |
| SlotIndex NearIdx = lis_.getInstructionIndex(NextMI); |
| if (li_->liveAt(NearIdx)) |
| continue; |
| } |
| DEBUG(dbgs() << "Removing debug info due to remat:" << "\t" << *MI); |
| MI->eraseFromParent(); |
| } |
| } |
| |
| /// foldMemoryOperand - Try folding stack slot references in Ops into MI. |
| /// Return true on success, and MI will be erased. |
| bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI, |
| const SmallVectorImpl<unsigned> &Ops) { |
| // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied |
| // operands. |
| SmallVector<unsigned, 8> FoldOps; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| unsigned Idx = Ops[i]; |
| MachineOperand &MO = MI->getOperand(Idx); |
| if (MO.isImplicit()) |
| continue; |
| // FIXME: Teach targets to deal with subregs. |
| if (MO.getSubReg()) |
| return false; |
| // Tied use operands should not be passed to foldMemoryOperand. |
| if (!MI->isRegTiedToDefOperand(Idx)) |
| FoldOps.push_back(Idx); |
| } |
| |
| MachineInstr *FoldMI = tii_.foldMemoryOperand(MI, FoldOps, stackSlot_); |
| if (!FoldMI) |
| return false; |
| lis_.ReplaceMachineInstrInMaps(MI, FoldMI); |
| vrm_.addSpillSlotUse(stackSlot_, FoldMI); |
| MI->eraseFromParent(); |
| DEBUG(dbgs() << "\tfolded: " << *FoldMI); |
| return true; |
| } |
| |
| /// insertReload - Insert a reload of NewLI.reg before MI. |
| void InlineSpiller::insertReload(LiveInterval &NewLI, |
| MachineBasicBlock::iterator MI) { |
| MachineBasicBlock &MBB = *MI->getParent(); |
| SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex(); |
| tii_.loadRegFromStackSlot(MBB, MI, NewLI.reg, stackSlot_, rc_, &tri_); |
| --MI; // Point to load instruction. |
| SlotIndex LoadIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); |
| vrm_.addSpillSlotUse(stackSlot_, MI); |
| DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI); |
| VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0, true, |
| lis_.getVNInfoAllocator()); |
| NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI)); |
| } |
| |
| /// insertSpill - Insert a spill of NewLI.reg after MI. |
| void InlineSpiller::insertSpill(LiveInterval &NewLI, |
| MachineBasicBlock::iterator MI) { |
| MachineBasicBlock &MBB = *MI->getParent(); |
| SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex(); |
| tii_.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, stackSlot_, rc_, &tri_); |
| --MI; // Point to store instruction. |
| SlotIndex StoreIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex(); |
| vrm_.addSpillSlotUse(stackSlot_, MI); |
| DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI); |
| VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, true, |
| lis_.getVNInfoAllocator()); |
| NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI)); |
| } |
| |
| void InlineSpiller::spill(LiveInterval *li, |
| std::vector<LiveInterval*> &newIntervals, |
| SmallVectorImpl<LiveInterval*> &spillIs, |
| SlotIndex *earliestIndex) { |
| DEBUG(dbgs() << "Inline spilling " << *li << "\n"); |
| assert(li->isSpillable() && "Attempting to spill already spilled value."); |
| assert(!li->isStackSlot() && "Trying to spill a stack slot."); |
| |
| li_ = li; |
| newIntervals_ = &newIntervals; |
| rc_ = mri_.getRegClass(li->reg); |
| spillIs_ = &spillIs; |
| |
| if (split()) |
| return; |
| |
| reMaterializeAll(); |
| |
| // Remat may handle everything. |
| if (li_->empty()) |
| return; |
| |
| stackSlot_ = vrm_.assignVirt2StackSlot(li->reg); |
| |
| // Iterate over instructions using register. |
| for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(li->reg); |
| MachineInstr *MI = RI.skipInstruction();) { |
| |
| // Debug values are not allowed to affect codegen. |
| if (MI->isDebugValue()) { |
| // Modify DBG_VALUE now that the value is in a spill slot. |
| uint64_t Offset = MI->getOperand(1).getImm(); |
| const MDNode *MDPtr = MI->getOperand(2).getMetadata(); |
| DebugLoc DL = MI->getDebugLoc(); |
| if (MachineInstr *NewDV = tii_.emitFrameIndexDebugValue(mf_, stackSlot_, |
| Offset, MDPtr, DL)) { |
| DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI); |
| MachineBasicBlock *MBB = MI->getParent(); |
| MBB->insert(MBB->erase(MI), NewDV); |
| } else { |
| DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI); |
| MI->eraseFromParent(); |
| } |
| continue; |
| } |
| |
| // Analyze instruction. |
| bool Reads, Writes; |
| SmallVector<unsigned, 8> Ops; |
| tie(Reads, Writes) = MI->readsWritesVirtualRegister(li->reg, &Ops); |
| |
| // Attempt to fold memory ops. |
| if (foldMemoryOperand(MI, Ops)) |
| continue; |
| |
| // Allocate interval around instruction. |
| // FIXME: Infer regclass from instruction alone. |
| unsigned NewVReg = mri_.createVirtualRegister(rc_); |
| vrm_.grow(); |
| LiveInterval &NewLI = lis_.getOrCreateInterval(NewVReg); |
| NewLI.markNotSpillable(); |
| |
| if (Reads) |
| insertReload(NewLI, MI); |
| |
| // Rewrite instruction operands. |
| bool hasLiveDef = false; |
| for (unsigned i = 0, e = Ops.size(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(Ops[i]); |
| MO.setReg(NewVReg); |
| if (MO.isUse()) { |
| if (!MI->isRegTiedToDefOperand(Ops[i])) |
| MO.setIsKill(); |
| } else { |
| if (!MO.isDead()) |
| hasLiveDef = true; |
| } |
| } |
| |
| // FIXME: Use a second vreg if instruction has no tied ops. |
| if (Writes && hasLiveDef) |
| insertSpill(NewLI, MI); |
| |
| DEBUG(dbgs() << "\tinterval: " << NewLI << '\n'); |
| newIntervals.push_back(&NewLI); |
| } |
| } |