| //===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass performs loop invariant code motion on machine instructions. We |
| // attempt to remove as much code from the body of a loop as possible. |
| // |
| // This pass does not attempt to throttle itself to limit register pressure. |
| // The register allocation phases are expected to perform rematerialization |
| // to recover when register pressure is high. |
| // |
| // This pass is not intended to be a replacement or a complete alternative |
| // for the LLVM-IR-level LICM pass. It is only designed to hoist simple |
| // constructs that are not exposed before lowering and instruction selection. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "machine-licm" |
| #include "llvm/CodeGen/Passes.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/Target/TargetRegisterInfo.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops"); |
| STATISTIC(NumCSEed, "Number of hoisted machine instructions CSEed"); |
| STATISTIC(NumPostRAHoisted, |
| "Number of machine instructions hoisted out of loops post regalloc"); |
| |
| namespace { |
| class MachineLICM : public MachineFunctionPass { |
| bool PreRegAlloc; |
| |
| const TargetMachine *TM; |
| const TargetInstrInfo *TII; |
| const TargetRegisterInfo *TRI; |
| const MachineFrameInfo *MFI; |
| MachineRegisterInfo *RegInfo; |
| |
| // Various analyses that we use... |
| AliasAnalysis *AA; // Alias analysis info. |
| MachineLoopInfo *MLI; // Current MachineLoopInfo |
| MachineDominatorTree *DT; // Machine dominator tree for the cur loop |
| |
| // State that is updated as we process loops |
| bool Changed; // True if a loop is changed. |
| bool FirstInLoop; // True if it's the first LICM in the loop. |
| MachineLoop *CurLoop; // The current loop we are working on. |
| MachineBasicBlock *CurPreheader; // The preheader for CurLoop. |
| |
| BitVector AllocatableSet; |
| |
| // For each opcode, keep a list of potential CSE instructions. |
| DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap; |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| MachineLICM() : |
| MachineFunctionPass(&ID), PreRegAlloc(true) {} |
| |
| explicit MachineLICM(bool PreRA) : |
| MachineFunctionPass(&ID), PreRegAlloc(PreRA) {} |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| const char *getPassName() const { return "Machine Instruction LICM"; } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesCFG(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<AliasAnalysis>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| virtual void releaseMemory() { |
| CSEMap.clear(); |
| } |
| |
| private: |
| /// CandidateInfo - Keep track of information about hoisting candidates. |
| struct CandidateInfo { |
| MachineInstr *MI; |
| unsigned Def; |
| int FI; |
| CandidateInfo(MachineInstr *mi, unsigned def, int fi) |
| : MI(mi), Def(def), FI(fi) {} |
| }; |
| |
| /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop |
| /// invariants out to the preheader. |
| void HoistRegionPostRA(); |
| |
| /// HoistPostRA - When an instruction is found to only use loop invariant |
| /// operands that is safe to hoist, this instruction is called to do the |
| /// dirty work. |
| void HoistPostRA(MachineInstr *MI, unsigned Def); |
| |
| /// ProcessMI - Examine the instruction for potentai LICM candidate. Also |
| /// gather register def and frame object update information. |
| void ProcessMI(MachineInstr *MI, unsigned *PhysRegDefs, |
| SmallSet<int, 32> &StoredFIs, |
| SmallVector<CandidateInfo, 32> &Candidates); |
| |
| /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the |
| /// current loop. |
| void AddToLiveIns(unsigned Reg); |
| |
| /// IsLICMCandidate - Returns true if the instruction may be a suitable |
| /// candidate for LICM. e.g. If the instruction is a call, then it's |
| /// obviously not safe to hoist it. |
| bool IsLICMCandidate(MachineInstr &I); |
| |
| /// IsLoopInvariantInst - Returns true if the instruction is loop |
| /// invariant. I.e., all virtual register operands are defined outside of |
| /// the loop, physical registers aren't accessed (explicitly or implicitly), |
| /// and the instruction is hoistable. |
| /// |
| bool IsLoopInvariantInst(MachineInstr &I); |
| |
| /// IsProfitableToHoist - Return true if it is potentially profitable to |
| /// hoist the given loop invariant. |
| bool IsProfitableToHoist(MachineInstr &MI); |
| |
| /// HoistRegion - Walk the specified region of the CFG (defined by all |
| /// blocks dominated by the specified block, and that are in the current |
| /// loop) in depth first order w.r.t the DominatorTree. This allows us to |
| /// visit definitions before uses, allowing us to hoist a loop body in one |
| /// pass without iteration. |
| /// |
| void HoistRegion(MachineDomTreeNode *N); |
| |
| /// isLoadFromConstantMemory - Return true if the given instruction is a |
| /// load from constant memory. |
| bool isLoadFromConstantMemory(MachineInstr *MI); |
| |
| /// ExtractHoistableLoad - Unfold a load from the given machineinstr if |
| /// the load itself could be hoisted. Return the unfolded and hoistable |
| /// load, or null if the load couldn't be unfolded or if it wouldn't |
| /// be hoistable. |
| MachineInstr *ExtractHoistableLoad(MachineInstr *MI); |
| |
| /// LookForDuplicate - Find an instruction amount PrevMIs that is a |
| /// duplicate of MI. Return this instruction if it's found. |
| const MachineInstr *LookForDuplicate(const MachineInstr *MI, |
| std::vector<const MachineInstr*> &PrevMIs); |
| |
| /// EliminateCSE - Given a LICM'ed instruction, look for an instruction on |
| /// the preheader that compute the same value. If it's found, do a RAU on |
| /// with the definition of the existing instruction rather than hoisting |
| /// the instruction to the preheader. |
| bool EliminateCSE(MachineInstr *MI, |
| DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI); |
| |
| /// Hoist - When an instruction is found to only use loop invariant operands |
| /// that is safe to hoist, this instruction is called to do the dirty work. |
| /// |
| void Hoist(MachineInstr *MI); |
| |
| /// InitCSEMap - Initialize the CSE map with instructions that are in the |
| /// current loop preheader that may become duplicates of instructions that |
| /// are hoisted out of the loop. |
| void InitCSEMap(MachineBasicBlock *BB); |
| |
| /// getCurPreheader - Get the preheader for the current loop, splitting |
| /// a critical edge if needed. |
| MachineBasicBlock *getCurPreheader(); |
| }; |
| } // end anonymous namespace |
| |
| char MachineLICM::ID = 0; |
| INITIALIZE_PASS(MachineLICM, "machinelicm", |
| "Machine Loop Invariant Code Motion", false, false); |
| |
| FunctionPass *llvm::createMachineLICMPass(bool PreRegAlloc) { |
| return new MachineLICM(PreRegAlloc); |
| } |
| |
| /// LoopIsOuterMostWithPredecessor - Test if the given loop is the outer-most |
| /// loop that has a unique predecessor. |
| static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) { |
| // Check whether this loop even has a unique predecessor. |
| if (!CurLoop->getLoopPredecessor()) |
| return false; |
| // Ok, now check to see if any of its outer loops do. |
| for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop()) |
| if (L->getLoopPredecessor()) |
| return false; |
| // None of them did, so this is the outermost with a unique predecessor. |
| return true; |
| } |
| |
| bool MachineLICM::runOnMachineFunction(MachineFunction &MF) { |
| if (PreRegAlloc) |
| DEBUG(dbgs() << "******** Pre-regalloc Machine LICM ********\n"); |
| else |
| DEBUG(dbgs() << "******** Post-regalloc Machine LICM ********\n"); |
| |
| Changed = FirstInLoop = false; |
| TM = &MF.getTarget(); |
| TII = TM->getInstrInfo(); |
| TRI = TM->getRegisterInfo(); |
| MFI = MF.getFrameInfo(); |
| RegInfo = &MF.getRegInfo(); |
| AllocatableSet = TRI->getAllocatableSet(MF); |
| |
| // Get our Loop information... |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| DT = &getAnalysis<MachineDominatorTree>(); |
| AA = &getAnalysis<AliasAnalysis>(); |
| |
| SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); |
| while (!Worklist.empty()) { |
| CurLoop = Worklist.pop_back_val(); |
| CurPreheader = 0; |
| |
| // If this is done before regalloc, only visit outer-most preheader-sporting |
| // loops. |
| if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) { |
| Worklist.append(CurLoop->begin(), CurLoop->end()); |
| continue; |
| } |
| |
| if (!PreRegAlloc) |
| HoistRegionPostRA(); |
| else { |
| // CSEMap is initialized for loop header when the first instruction is |
| // being hoisted. |
| MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader()); |
| FirstInLoop = true; |
| HoistRegion(N); |
| CSEMap.clear(); |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// InstructionStoresToFI - Return true if instruction stores to the |
| /// specified frame. |
| static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { |
| for (MachineInstr::mmo_iterator o = MI->memoperands_begin(), |
| oe = MI->memoperands_end(); o != oe; ++o) { |
| if (!(*o)->isStore() || !(*o)->getValue()) |
| continue; |
| if (const FixedStackPseudoSourceValue *Value = |
| dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) { |
| if (Value->getFrameIndex() == FI) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// ProcessMI - Examine the instruction for potentai LICM candidate. Also |
| /// gather register def and frame object update information. |
| void MachineLICM::ProcessMI(MachineInstr *MI, |
| unsigned *PhysRegDefs, |
| SmallSet<int, 32> &StoredFIs, |
| SmallVector<CandidateInfo, 32> &Candidates) { |
| bool RuledOut = false; |
| bool HasNonInvariantUse = false; |
| unsigned Def = 0; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (MO.isFI()) { |
| // Remember if the instruction stores to the frame index. |
| int FI = MO.getIndex(); |
| if (!StoredFIs.count(FI) && |
| MFI->isSpillSlotObjectIndex(FI) && |
| InstructionStoresToFI(MI, FI)) |
| StoredFIs.insert(FI); |
| HasNonInvariantUse = true; |
| continue; |
| } |
| |
| if (!MO.isReg()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| if (!Reg) |
| continue; |
| assert(TargetRegisterInfo::isPhysicalRegister(Reg) && |
| "Not expecting virtual register!"); |
| |
| if (!MO.isDef()) { |
| if (Reg && PhysRegDefs[Reg]) |
| // If it's using a non-loop-invariant register, then it's obviously not |
| // safe to hoist. |
| HasNonInvariantUse = true; |
| continue; |
| } |
| |
| if (MO.isImplicit()) { |
| ++PhysRegDefs[Reg]; |
| for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) |
| ++PhysRegDefs[*AS]; |
| if (!MO.isDead()) |
| // Non-dead implicit def? This cannot be hoisted. |
| RuledOut = true; |
| // No need to check if a dead implicit def is also defined by |
| // another instruction. |
| continue; |
| } |
| |
| // FIXME: For now, avoid instructions with multiple defs, unless |
| // it's a dead implicit def. |
| if (Def) |
| RuledOut = true; |
| else |
| Def = Reg; |
| |
| // If we have already seen another instruction that defines the same |
| // register, then this is not safe. |
| if (++PhysRegDefs[Reg] > 1) |
| // MI defined register is seen defined by another instruction in |
| // the loop, it cannot be a LICM candidate. |
| RuledOut = true; |
| for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) |
| if (++PhysRegDefs[*AS] > 1) |
| RuledOut = true; |
| } |
| |
| // Only consider reloads for now and remats which do not have register |
| // operands. FIXME: Consider unfold load folding instructions. |
| if (Def && !RuledOut) { |
| int FI = INT_MIN; |
| if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) || |
| (TII->isLoadFromStackSlot(MI, FI) && MFI->isSpillSlotObjectIndex(FI))) |
| Candidates.push_back(CandidateInfo(MI, Def, FI)); |
| } |
| } |
| |
| /// HoistRegionPostRA - Walk the specified region of the CFG and hoist loop |
| /// invariants out to the preheader. |
| void MachineLICM::HoistRegionPostRA() { |
| unsigned NumRegs = TRI->getNumRegs(); |
| unsigned *PhysRegDefs = new unsigned[NumRegs]; |
| std::fill(PhysRegDefs, PhysRegDefs + NumRegs, 0); |
| |
| SmallVector<CandidateInfo, 32> Candidates; |
| SmallSet<int, 32> StoredFIs; |
| |
| // Walk the entire region, count number of defs for each register, and |
| // collect potential LICM candidates. |
| const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks(); |
| for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { |
| MachineBasicBlock *BB = Blocks[i]; |
| // Conservatively treat live-in's as an external def. |
| // FIXME: That means a reload that're reused in successor block(s) will not |
| // be LICM'ed. |
| for (MachineBasicBlock::livein_iterator I = BB->livein_begin(), |
| E = BB->livein_end(); I != E; ++I) { |
| unsigned Reg = *I; |
| ++PhysRegDefs[Reg]; |
| for (const unsigned *AS = TRI->getAliasSet(Reg); *AS; ++AS) |
| ++PhysRegDefs[*AS]; |
| } |
| |
| for (MachineBasicBlock::iterator |
| MII = BB->begin(), E = BB->end(); MII != E; ++MII) { |
| MachineInstr *MI = &*MII; |
| ProcessMI(MI, PhysRegDefs, StoredFIs, Candidates); |
| } |
| } |
| |
| // Now evaluate whether the potential candidates qualify. |
| // 1. Check if the candidate defined register is defined by another |
| // instruction in the loop. |
| // 2. If the candidate is a load from stack slot (always true for now), |
| // check if the slot is stored anywhere in the loop. |
| for (unsigned i = 0, e = Candidates.size(); i != e; ++i) { |
| if (Candidates[i].FI != INT_MIN && |
| StoredFIs.count(Candidates[i].FI)) |
| continue; |
| |
| if (PhysRegDefs[Candidates[i].Def] == 1) { |
| bool Safe = true; |
| MachineInstr *MI = Candidates[i].MI; |
| for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) { |
| const MachineOperand &MO = MI->getOperand(j); |
| if (!MO.isReg() || MO.isDef() || !MO.getReg()) |
| continue; |
| if (PhysRegDefs[MO.getReg()]) { |
| // If it's using a non-loop-invariant register, then it's obviously |
| // not safe to hoist. |
| Safe = false; |
| break; |
| } |
| } |
| if (Safe) |
| HoistPostRA(MI, Candidates[i].Def); |
| } |
| } |
| |
| delete[] PhysRegDefs; |
| } |
| |
| /// AddToLiveIns - Add register 'Reg' to the livein sets of BBs in the current |
| /// loop, and make sure it is not killed by any instructions in the loop. |
| void MachineLICM::AddToLiveIns(unsigned Reg) { |
| const std::vector<MachineBasicBlock*> Blocks = CurLoop->getBlocks(); |
| for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { |
| MachineBasicBlock *BB = Blocks[i]; |
| if (!BB->isLiveIn(Reg)) |
| BB->addLiveIn(Reg); |
| for (MachineBasicBlock::iterator |
| MII = BB->begin(), E = BB->end(); MII != E; ++MII) { |
| MachineInstr *MI = &*MII; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue; |
| if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg())) |
| MO.setIsKill(false); |
| } |
| } |
| } |
| } |
| |
| /// HoistPostRA - When an instruction is found to only use loop invariant |
| /// operands that is safe to hoist, this instruction is called to do the |
| /// dirty work. |
| void MachineLICM::HoistPostRA(MachineInstr *MI, unsigned Def) { |
| MachineBasicBlock *Preheader = getCurPreheader(); |
| if (!Preheader) return; |
| |
| // Now move the instructions to the predecessor, inserting it before any |
| // terminator instructions. |
| DEBUG({ |
| dbgs() << "Hoisting " << *MI; |
| if (Preheader->getBasicBlock()) |
| dbgs() << " to MachineBasicBlock " |
| << Preheader->getName(); |
| if (MI->getParent()->getBasicBlock()) |
| dbgs() << " from MachineBasicBlock " |
| << MI->getParent()->getName(); |
| dbgs() << "\n"; |
| }); |
| |
| // Splice the instruction to the preheader. |
| MachineBasicBlock *MBB = MI->getParent(); |
| Preheader->splice(Preheader->getFirstTerminator(), MBB, MI); |
| |
| // Add register to livein list to all the BBs in the current loop since a |
| // loop invariant must be kept live throughout the whole loop. This is |
| // important to ensure later passes do not scavenge the def register. |
| AddToLiveIns(Def); |
| |
| ++NumPostRAHoisted; |
| Changed = true; |
| } |
| |
| /// HoistRegion - Walk the specified region of the CFG (defined by all blocks |
| /// dominated by the specified block, and that are in the current loop) in depth |
| /// first order w.r.t the DominatorTree. This allows us to visit definitions |
| /// before uses, allowing us to hoist a loop body in one pass without iteration. |
| /// |
| void MachineLICM::HoistRegion(MachineDomTreeNode *N) { |
| assert(N != 0 && "Null dominator tree node?"); |
| MachineBasicBlock *BB = N->getBlock(); |
| |
| // If this subregion is not in the top level loop at all, exit. |
| if (!CurLoop->contains(BB)) return; |
| |
| for (MachineBasicBlock::iterator |
| MII = BB->begin(), E = BB->end(); MII != E; ) { |
| MachineBasicBlock::iterator NextMII = MII; ++NextMII; |
| Hoist(&*MII); |
| MII = NextMII; |
| } |
| |
| // Don't hoist things out of a large switch statement. This often causes |
| // code to be hoisted that wasn't going to be executed, and increases |
| // register pressure in a situation where it's likely to matter. |
| if (BB->succ_size() < 25) { |
| const std::vector<MachineDomTreeNode*> &Children = N->getChildren(); |
| for (unsigned I = 0, E = Children.size(); I != E; ++I) |
| HoistRegion(Children[I]); |
| } |
| } |
| |
| /// IsLICMCandidate - Returns true if the instruction may be a suitable |
| /// candidate for LICM. e.g. If the instruction is a call, then it's obviously |
| /// not safe to hoist it. |
| bool MachineLICM::IsLICMCandidate(MachineInstr &I) { |
| // Check if it's safe to move the instruction. |
| bool DontMoveAcrossStore = true; |
| if (!I.isSafeToMove(TII, AA, DontMoveAcrossStore)) |
| return false; |
| |
| return true; |
| } |
| |
| /// IsLoopInvariantInst - Returns true if the instruction is loop |
| /// invariant. I.e., all virtual register operands are defined outside of the |
| /// loop, physical registers aren't accessed explicitly, and there are no side |
| /// effects that aren't captured by the operands or other flags. |
| /// |
| bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) { |
| if (!IsLICMCandidate(I)) |
| return false; |
| |
| // The instruction is loop invariant if all of its operands are. |
| for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = I.getOperand(i); |
| |
| if (!MO.isReg()) |
| continue; |
| |
| unsigned Reg = MO.getReg(); |
| if (Reg == 0) continue; |
| |
| // Don't hoist an instruction that uses or defines a physical register. |
| if (TargetRegisterInfo::isPhysicalRegister(Reg)) { |
| if (MO.isUse()) { |
| // If the physreg has no defs anywhere, it's just an ambient register |
| // and we can freely move its uses. Alternatively, if it's allocatable, |
| // it could get allocated to something with a def during allocation. |
| if (!RegInfo->def_empty(Reg)) |
| return false; |
| if (AllocatableSet.test(Reg)) |
| return false; |
| // Check for a def among the register's aliases too. |
| for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) { |
| unsigned AliasReg = *Alias; |
| if (!RegInfo->def_empty(AliasReg)) |
| return false; |
| if (AllocatableSet.test(AliasReg)) |
| return false; |
| } |
| // Otherwise it's safe to move. |
| continue; |
| } else if (!MO.isDead()) { |
| // A def that isn't dead. We can't move it. |
| return false; |
| } else if (CurLoop->getHeader()->isLiveIn(Reg)) { |
| // If the reg is live into the loop, we can't hoist an instruction |
| // which would clobber it. |
| return false; |
| } |
| } |
| |
| if (!MO.isUse()) |
| continue; |
| |
| assert(RegInfo->getVRegDef(Reg) && |
| "Machine instr not mapped for this vreg?!"); |
| |
| // If the loop contains the definition of an operand, then the instruction |
| // isn't loop invariant. |
| if (CurLoop->contains(RegInfo->getVRegDef(Reg))) |
| return false; |
| } |
| |
| // If we got this far, the instruction is loop invariant! |
| return true; |
| } |
| |
| |
| /// HasPHIUses - Return true if the specified register has any PHI use. |
| static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) { |
| for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg), |
| UE = RegInfo->use_end(); UI != UE; ++UI) { |
| MachineInstr *UseMI = &*UI; |
| if (UseMI->isPHI()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// isLoadFromConstantMemory - Return true if the given instruction is a |
| /// load from constant memory. Machine LICM will hoist these even if they are |
| /// not re-materializable. |
| bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) { |
| if (!MI->getDesc().mayLoad()) return false; |
| if (!MI->hasOneMemOperand()) return false; |
| MachineMemOperand *MMO = *MI->memoperands_begin(); |
| if (MMO->isVolatile()) return false; |
| if (!MMO->getValue()) return false; |
| const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue()); |
| if (PSV) { |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| return PSV->isConstant(MF.getFrameInfo()); |
| } else { |
| return AA->pointsToConstantMemory(MMO->getValue()); |
| } |
| } |
| |
| /// IsProfitableToHoist - Return true if it is potentially profitable to hoist |
| /// the given loop invariant. |
| bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) { |
| // FIXME: For now, only hoist re-materilizable instructions. LICM will |
| // increase register pressure. We want to make sure it doesn't increase |
| // spilling. |
| // Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting |
| // these tend to help performance in low register pressure situation. The |
| // trade off is it may cause spill in high pressure situation. It will end up |
| // adding a store in the loop preheader. But the reload is no more expensive. |
| // The side benefit is these loads are frequently CSE'ed. |
| if (!TII->isTriviallyReMaterializable(&MI, AA)) { |
| if (!isLoadFromConstantMemory(&MI)) |
| return false; |
| } |
| |
| // If result(s) of this instruction is used by PHIs, then don't hoist it. |
| // The presence of joins makes it difficult for current register allocator |
| // implementation to perform remat. |
| for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| if (HasPHIUses(MO.getReg(), RegInfo)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) { |
| // If not, we may be able to unfold a load and hoist that. |
| // First test whether the instruction is loading from an amenable |
| // memory location. |
| if (!isLoadFromConstantMemory(MI)) |
| return 0; |
| |
| // Next determine the register class for a temporary register. |
| unsigned LoadRegIndex; |
| unsigned NewOpc = |
| TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(), |
| /*UnfoldLoad=*/true, |
| /*UnfoldStore=*/false, |
| &LoadRegIndex); |
| if (NewOpc == 0) return 0; |
| const TargetInstrDesc &TID = TII->get(NewOpc); |
| if (TID.getNumDefs() != 1) return 0; |
| const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI); |
| // Ok, we're unfolding. Create a temporary register and do the unfold. |
| unsigned Reg = RegInfo->createVirtualRegister(RC); |
| |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| SmallVector<MachineInstr *, 2> NewMIs; |
| bool Success = |
| TII->unfoldMemoryOperand(MF, MI, Reg, |
| /*UnfoldLoad=*/true, /*UnfoldStore=*/false, |
| NewMIs); |
| (void)Success; |
| assert(Success && |
| "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " |
| "succeeded!"); |
| assert(NewMIs.size() == 2 && |
| "Unfolded a load into multiple instructions!"); |
| MachineBasicBlock *MBB = MI->getParent(); |
| MBB->insert(MI, NewMIs[0]); |
| MBB->insert(MI, NewMIs[1]); |
| // If unfolding produced a load that wasn't loop-invariant or profitable to |
| // hoist, discard the new instructions and bail. |
| if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) { |
| NewMIs[0]->eraseFromParent(); |
| NewMIs[1]->eraseFromParent(); |
| return 0; |
| } |
| // Otherwise we successfully unfolded a load that we can hoist. |
| MI->eraseFromParent(); |
| return NewMIs[0]; |
| } |
| |
| void MachineLICM::InitCSEMap(MachineBasicBlock *BB) { |
| for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) { |
| const MachineInstr *MI = &*I; |
| // FIXME: For now, only hoist re-materilizable instructions. LICM will |
| // increase register pressure. We want to make sure it doesn't increase |
| // spilling. |
| if (TII->isTriviallyReMaterializable(MI, AA)) { |
| unsigned Opcode = MI->getOpcode(); |
| DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator |
| CI = CSEMap.find(Opcode); |
| if (CI != CSEMap.end()) |
| CI->second.push_back(MI); |
| else { |
| std::vector<const MachineInstr*> CSEMIs; |
| CSEMIs.push_back(MI); |
| CSEMap.insert(std::make_pair(Opcode, CSEMIs)); |
| } |
| } |
| } |
| } |
| |
| const MachineInstr* |
| MachineLICM::LookForDuplicate(const MachineInstr *MI, |
| std::vector<const MachineInstr*> &PrevMIs) { |
| for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) { |
| const MachineInstr *PrevMI = PrevMIs[i]; |
| if (TII->produceSameValue(MI, PrevMI)) |
| return PrevMI; |
| } |
| return 0; |
| } |
| |
| bool MachineLICM::EliminateCSE(MachineInstr *MI, |
| DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) { |
| // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate |
| // the undef property onto uses. |
| if (CI == CSEMap.end() || MI->isImplicitDef()) |
| return false; |
| |
| if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) { |
| DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); |
| |
| // Replace virtual registers defined by MI by their counterparts defined |
| // by Dup. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| |
| // Physical registers may not differ here. |
| assert((!MO.isReg() || MO.getReg() == 0 || |
| !TargetRegisterInfo::isPhysicalRegister(MO.getReg()) || |
| MO.getReg() == Dup->getOperand(i).getReg()) && |
| "Instructions with different phys regs are not identical!"); |
| |
| if (MO.isReg() && MO.isDef() && |
| !TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { |
| RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg()); |
| RegInfo->clearKillFlags(Dup->getOperand(i).getReg()); |
| } |
| } |
| MI->eraseFromParent(); |
| ++NumCSEed; |
| return true; |
| } |
| return false; |
| } |
| |
| /// Hoist - When an instruction is found to use only loop invariant operands |
| /// that are safe to hoist, this instruction is called to do the dirty work. |
| /// |
| void MachineLICM::Hoist(MachineInstr *MI) { |
| MachineBasicBlock *Preheader = getCurPreheader(); |
| if (!Preheader) return; |
| |
| // First check whether we should hoist this instruction. |
| if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) { |
| // If not, try unfolding a hoistable load. |
| MI = ExtractHoistableLoad(MI); |
| if (!MI) return; |
| } |
| |
| // Now move the instructions to the predecessor, inserting it before any |
| // terminator instructions. |
| DEBUG({ |
| dbgs() << "Hoisting " << *MI; |
| if (Preheader->getBasicBlock()) |
| dbgs() << " to MachineBasicBlock " |
| << Preheader->getName(); |
| if (MI->getParent()->getBasicBlock()) |
| dbgs() << " from MachineBasicBlock " |
| << MI->getParent()->getName(); |
| dbgs() << "\n"; |
| }); |
| |
| // If this is the first instruction being hoisted to the preheader, |
| // initialize the CSE map with potential common expressions. |
| if (FirstInLoop) { |
| InitCSEMap(Preheader); |
| FirstInLoop = false; |
| } |
| |
| // Look for opportunity to CSE the hoisted instruction. |
| unsigned Opcode = MI->getOpcode(); |
| DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator |
| CI = CSEMap.find(Opcode); |
| if (!EliminateCSE(MI, CI)) { |
| // Otherwise, splice the instruction to the preheader. |
| Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI); |
| |
| // Clear the kill flags of any register this instruction defines, |
| // since they may need to be live throughout the entire loop |
| // rather than just live for part of it. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| MachineOperand &MO = MI->getOperand(i); |
| if (MO.isReg() && MO.isDef() && !MO.isDead()) |
| RegInfo->clearKillFlags(MO.getReg()); |
| } |
| |
| // Add to the CSE map. |
| if (CI != CSEMap.end()) |
| CI->second.push_back(MI); |
| else { |
| std::vector<const MachineInstr*> CSEMIs; |
| CSEMIs.push_back(MI); |
| CSEMap.insert(std::make_pair(Opcode, CSEMIs)); |
| } |
| } |
| |
| ++NumHoisted; |
| Changed = true; |
| } |
| |
| MachineBasicBlock *MachineLICM::getCurPreheader() { |
| // Determine the block to which to hoist instructions. If we can't find a |
| // suitable loop predecessor, we can't do any hoisting. |
| |
| // If we've tried to get a preheader and failed, don't try again. |
| if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1)) |
| return 0; |
| |
| if (!CurPreheader) { |
| CurPreheader = CurLoop->getLoopPreheader(); |
| if (!CurPreheader) { |
| MachineBasicBlock *Pred = CurLoop->getLoopPredecessor(); |
| if (!Pred) { |
| CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); |
| return 0; |
| } |
| |
| CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), this); |
| if (!CurPreheader) { |
| CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1); |
| return 0; |
| } |
| } |
| } |
| return CurPreheader; |
| } |