| //===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based |
| // register allocator for LLVM. This allocator works by constructing a PBQP |
| // problem representing the register allocation problem under consideration, |
| // solving this using a PBQP solver, and mapping the solution back to a |
| // register assignment. If any variables are selected for spilling then spill |
| // code is inserted and the process repeated. |
| // |
| // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned |
| // for register allocation. For more information on PBQP for register |
| // allocation, see the following papers: |
| // |
| // (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with |
| // PBQP. In Proceedings of the 7th Joint Modular Languages Conference |
| // (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. |
| // |
| // (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular |
| // architectures. In Proceedings of the Joint Conference on Languages, |
| // Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, |
| // NY, USA, 139-148. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "regalloc" |
| |
| #include "PBQP/HeuristicSolver.h" |
| #include "PBQP/Graph.h" |
| #include "PBQP/Heuristics/Briggs.h" |
| #include "RenderMachineFunction.h" |
| #include "Splitter.h" |
| #include "VirtRegMap.h" |
| #include "VirtRegRewriter.h" |
| #include "llvm/CodeGen/CalcSpillWeights.h" |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h" |
| #include "llvm/CodeGen/LiveStackAnalysis.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/RegAllocRegistry.h" |
| #include "llvm/CodeGen/RegisterCoalescer.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <limits> |
| #include <map> |
| #include <memory> |
| #include <set> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| static RegisterRegAlloc |
| registerPBQPRepAlloc("pbqp", "PBQP register allocator", |
| llvm::createPBQPRegisterAllocator); |
| |
| static cl::opt<bool> |
| pbqpCoalescing("pbqp-coalescing", |
| cl::desc("Attempt coalescing during PBQP register allocation."), |
| cl::init(false), cl::Hidden); |
| |
| static cl::opt<bool> |
| pbqpPreSplitting("pbqp-pre-splitting", |
| cl::desc("Pre-splite before PBQP register allocation."), |
| cl::init(false), cl::Hidden); |
| |
| namespace { |
| |
| /// |
| /// PBQP based allocators solve the register allocation problem by mapping |
| /// register allocation problems to Partitioned Boolean Quadratic |
| /// Programming problems. |
| class PBQPRegAlloc : public MachineFunctionPass { |
| public: |
| |
| static char ID; |
| |
| /// Construct a PBQP register allocator. |
| PBQPRegAlloc() : MachineFunctionPass(&ID) {} |
| |
| /// Return the pass name. |
| virtual const char* getPassName() const { |
| return "PBQP Register Allocator"; |
| } |
| |
| /// PBQP analysis usage. |
| virtual void getAnalysisUsage(AnalysisUsage &au) const { |
| au.addRequired<SlotIndexes>(); |
| au.addPreserved<SlotIndexes>(); |
| au.addRequired<LiveIntervals>(); |
| //au.addRequiredID(SplitCriticalEdgesID); |
| au.addRequired<RegisterCoalescer>(); |
| au.addRequired<CalculateSpillWeights>(); |
| au.addRequired<LiveStacks>(); |
| au.addPreserved<LiveStacks>(); |
| au.addRequired<MachineLoopInfo>(); |
| au.addPreserved<MachineLoopInfo>(); |
| if (pbqpPreSplitting) |
| au.addRequired<LoopSplitter>(); |
| au.addRequired<VirtRegMap>(); |
| au.addRequired<RenderMachineFunction>(); |
| MachineFunctionPass::getAnalysisUsage(au); |
| } |
| |
| /// Perform register allocation |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| private: |
| |
| class LIOrdering { |
| public: |
| bool operator()(const LiveInterval *li1, const LiveInterval *li2) const { |
| return li1->reg < li2->reg; |
| } |
| }; |
| |
| typedef std::map<const LiveInterval*, unsigned, LIOrdering> LI2NodeMap; |
| typedef std::vector<const LiveInterval*> Node2LIMap; |
| typedef std::vector<unsigned> AllowedSet; |
| typedef std::vector<AllowedSet> AllowedSetMap; |
| typedef std::set<unsigned> RegSet; |
| typedef std::pair<unsigned, unsigned> RegPair; |
| typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap; |
| |
| typedef std::set<LiveInterval*, LIOrdering> LiveIntervalSet; |
| |
| typedef std::vector<PBQP::Graph::NodeItr> NodeVector; |
| |
| MachineFunction *mf; |
| const TargetMachine *tm; |
| const TargetRegisterInfo *tri; |
| const TargetInstrInfo *tii; |
| const MachineLoopInfo *loopInfo; |
| MachineRegisterInfo *mri; |
| |
| LiveIntervals *lis; |
| LiveStacks *lss; |
| VirtRegMap *vrm; |
| |
| LI2NodeMap li2Node; |
| Node2LIMap node2LI; |
| AllowedSetMap allowedSets; |
| LiveIntervalSet vregIntervalsToAlloc, |
| emptyVRegIntervals; |
| NodeVector problemNodes; |
| |
| |
| /// Builds a PBQP cost vector. |
| template <typename RegContainer> |
| PBQP::Vector buildCostVector(unsigned vReg, |
| const RegContainer &allowed, |
| const CoalesceMap &cealesces, |
| PBQP::PBQPNum spillCost) const; |
| |
| /// \brief Builds a PBQP interference matrix. |
| /// |
| /// @return Either a pointer to a non-zero PBQP matrix representing the |
| /// allocation option costs, or a null pointer for a zero matrix. |
| /// |
| /// Expects allowed sets for two interfering LiveIntervals. These allowed |
| /// sets should contain only allocable registers from the LiveInterval's |
| /// register class, with any interfering pre-colored registers removed. |
| template <typename RegContainer> |
| PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1, |
| const RegContainer &allowed2) const; |
| |
| /// |
| /// Expects allowed sets for two potentially coalescable LiveIntervals, |
| /// and an estimated benefit due to coalescing. The allowed sets should |
| /// contain only allocable registers from the LiveInterval's register |
| /// classes, with any interfering pre-colored registers removed. |
| template <typename RegContainer> |
| PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1, |
| const RegContainer &allowed2, |
| PBQP::PBQPNum cBenefit) const; |
| |
| /// \brief Finds coalescing opportunities and returns them as a map. |
| /// |
| /// Any entries in the map are guaranteed coalescable, even if their |
| /// corresponding live intervals overlap. |
| CoalesceMap findCoalesces(); |
| |
| /// \brief Finds the initial set of vreg intervals to allocate. |
| void findVRegIntervalsToAlloc(); |
| |
| /// \brief Constructs a PBQP problem representation of the register |
| /// allocation problem for this function. |
| /// |
| /// @return a PBQP solver object for the register allocation problem. |
| PBQP::Graph constructPBQPProblem(); |
| |
| /// \brief Adds a stack interval if the given live interval has been |
| /// spilled. Used to support stack slot coloring. |
| void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri); |
| |
| /// \brief Given a solved PBQP problem maps this solution back to a register |
| /// assignment. |
| bool mapPBQPToRegAlloc(const PBQP::Solution &solution); |
| |
| /// \brief Postprocessing before final spilling. Sets basic block "live in" |
| /// variables. |
| void finalizeAlloc() const; |
| |
| }; |
| |
| char PBQPRegAlloc::ID = 0; |
| } |
| |
| |
| template <typename RegContainer> |
| PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg, |
| const RegContainer &allowed, |
| const CoalesceMap &coalesces, |
| PBQP::PBQPNum spillCost) const { |
| |
| typedef typename RegContainer::const_iterator AllowedItr; |
| |
| // Allocate vector. Additional element (0th) used for spill option |
| PBQP::Vector v(allowed.size() + 1, 0); |
| |
| v[0] = spillCost; |
| |
| // Iterate over the allowed registers inserting coalesce benefits if there |
| // are any. |
| unsigned ai = 0; |
| for (AllowedItr itr = allowed.begin(), end = allowed.end(); |
| itr != end; ++itr, ++ai) { |
| |
| unsigned pReg = *itr; |
| |
| CoalesceMap::const_iterator cmItr = |
| coalesces.find(RegPair(vReg, pReg)); |
| |
| // No coalesce - on to the next preg. |
| if (cmItr == coalesces.end()) |
| continue; |
| |
| // We have a coalesce - insert the benefit. |
| v[ai + 1] = -cmItr->second; |
| } |
| |
| return v; |
| } |
| |
| template <typename RegContainer> |
| PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix( |
| const RegContainer &allowed1, const RegContainer &allowed2) const { |
| |
| typedef typename RegContainer::const_iterator RegContainerIterator; |
| |
| // Construct a PBQP matrix representing the cost of allocation options. The |
| // rows and columns correspond to the allocation options for the two live |
| // intervals. Elements will be infinite where corresponding registers alias, |
| // since we cannot allocate aliasing registers to interfering live intervals. |
| // All other elements (non-aliasing combinations) will have zero cost. Note |
| // that the spill option (element 0,0) has zero cost, since we can allocate |
| // both intervals to memory safely (the cost for each individual allocation |
| // to memory is accounted for by the cost vectors for each live interval). |
| PBQP::Matrix *m = |
| new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0); |
| |
| // Assume this is a zero matrix until proven otherwise. Zero matrices occur |
| // between interfering live ranges with non-overlapping register sets (e.g. |
| // non-overlapping reg classes, or disjoint sets of allowed regs within the |
| // same class). The term "overlapping" is used advisedly: sets which do not |
| // intersect, but contain registers which alias, will have non-zero matrices. |
| // We optimize zero matrices away to improve solver speed. |
| bool isZeroMatrix = true; |
| |
| |
| // Row index. Starts at 1, since the 0th row is for the spill option, which |
| // is always zero. |
| unsigned ri = 1; |
| |
| // Iterate over allowed sets, insert infinities where required. |
| for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end(); |
| a1Itr != a1End; ++a1Itr) { |
| |
| // Column index, starts at 1 as for row index. |
| unsigned ci = 1; |
| unsigned reg1 = *a1Itr; |
| |
| for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end(); |
| a2Itr != a2End; ++a2Itr) { |
| |
| unsigned reg2 = *a2Itr; |
| |
| // If the row/column regs are identical or alias insert an infinity. |
| if (tri->regsOverlap(reg1, reg2)) { |
| (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity(); |
| isZeroMatrix = false; |
| } |
| |
| ++ci; |
| } |
| |
| ++ri; |
| } |
| |
| // If this turns out to be a zero matrix... |
| if (isZeroMatrix) { |
| // free it and return null. |
| delete m; |
| return 0; |
| } |
| |
| // ...otherwise return the cost matrix. |
| return m; |
| } |
| |
| template <typename RegContainer> |
| PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix( |
| const RegContainer &allowed1, const RegContainer &allowed2, |
| PBQP::PBQPNum cBenefit) const { |
| |
| typedef typename RegContainer::const_iterator RegContainerIterator; |
| |
| // Construct a PBQP Matrix representing the benefits of coalescing. As with |
| // interference matrices the rows and columns represent allowed registers |
| // for the LiveIntervals which are (potentially) to be coalesced. The amount |
| // -cBenefit will be placed in any element representing the same register |
| // for both intervals. |
| PBQP::Matrix *m = |
| new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0); |
| |
| // Reset costs to zero. |
| m->reset(0); |
| |
| // Assume the matrix is zero till proven otherwise. Zero matrices will be |
| // optimized away as in the interference case. |
| bool isZeroMatrix = true; |
| |
| // Row index. Starts at 1, since the 0th row is for the spill option, which |
| // is always zero. |
| unsigned ri = 1; |
| |
| // Iterate over the allowed sets, insert coalescing benefits where |
| // appropriate. |
| for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end(); |
| a1Itr != a1End; ++a1Itr) { |
| |
| // Column index, starts at 1 as for row index. |
| unsigned ci = 1; |
| unsigned reg1 = *a1Itr; |
| |
| for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end(); |
| a2Itr != a2End; ++a2Itr) { |
| |
| // If the row and column represent the same register insert a beneficial |
| // cost to preference this allocation - it would allow us to eliminate a |
| // move instruction. |
| if (reg1 == *a2Itr) { |
| (*m)[ri][ci] = -cBenefit; |
| isZeroMatrix = false; |
| } |
| |
| ++ci; |
| } |
| |
| ++ri; |
| } |
| |
| // If this turns out to be a zero matrix... |
| if (isZeroMatrix) { |
| // ...free it and return null. |
| delete m; |
| return 0; |
| } |
| |
| return m; |
| } |
| |
| PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() { |
| |
| typedef MachineFunction::const_iterator MFIterator; |
| typedef MachineBasicBlock::const_iterator MBBIterator; |
| typedef LiveInterval::const_vni_iterator VNIIterator; |
| |
| CoalesceMap coalescesFound; |
| |
| // To find coalesces we need to iterate over the function looking for |
| // copy instructions. |
| for (MFIterator bbItr = mf->begin(), bbEnd = mf->end(); |
| bbItr != bbEnd; ++bbItr) { |
| |
| const MachineBasicBlock *mbb = &*bbItr; |
| |
| for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end(); |
| iItr != iEnd; ++iItr) { |
| |
| const MachineInstr *instr = &*iItr; |
| |
| // If this isn't a copy then continue to the next instruction. |
| if (!instr->isCopy()) |
| continue; |
| |
| unsigned srcReg = instr->getOperand(1).getReg(); |
| unsigned dstReg = instr->getOperand(0).getReg(); |
| |
| // If the registers are already the same our job is nice and easy. |
| if (dstReg == srcReg) |
| continue; |
| |
| bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg), |
| dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg); |
| |
| // If both registers are physical then we can't coalesce. |
| if (srcRegIsPhysical && dstRegIsPhysical) |
| continue; |
| |
| // If it's a copy that includes two virtual register but the source and |
| // destination classes differ then we can't coalesce. |
| if (!srcRegIsPhysical && !dstRegIsPhysical && |
| mri->getRegClass(srcReg) != mri->getRegClass(dstReg)) |
| continue; |
| |
| // If one is physical and one is virtual, check that the physical is |
| // allocatable in the class of the virtual. |
| if (srcRegIsPhysical && !dstRegIsPhysical) { |
| const TargetRegisterClass *dstRegClass = mri->getRegClass(dstReg); |
| if (std::find(dstRegClass->allocation_order_begin(*mf), |
| dstRegClass->allocation_order_end(*mf), srcReg) == |
| dstRegClass->allocation_order_end(*mf)) |
| continue; |
| } |
| if (!srcRegIsPhysical && dstRegIsPhysical) { |
| const TargetRegisterClass *srcRegClass = mri->getRegClass(srcReg); |
| if (std::find(srcRegClass->allocation_order_begin(*mf), |
| srcRegClass->allocation_order_end(*mf), dstReg) == |
| srcRegClass->allocation_order_end(*mf)) |
| continue; |
| } |
| |
| // If we've made it here we have a copy with compatible register classes. |
| // We can probably coalesce, but we need to consider overlap. |
| const LiveInterval *srcLI = &lis->getInterval(srcReg), |
| *dstLI = &lis->getInterval(dstReg); |
| |
| if (srcLI->overlaps(*dstLI)) { |
| // Even in the case of an overlap we might still be able to coalesce, |
| // but we need to make sure that no definition of either range occurs |
| // while the other range is live. |
| |
| // Otherwise start by assuming we're ok. |
| bool badDef = false; |
| |
| // Test all defs of the source range. |
| for (VNIIterator |
| vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end(); |
| vniItr != vniEnd; ++vniItr) { |
| |
| // If we find a poorly defined def we err on the side of caution. |
| if (!(*vniItr)->def.isValid()) { |
| badDef = true; |
| break; |
| } |
| |
| // If we find a def that kills the coalescing opportunity then |
| // record it and break from the loop. |
| if (dstLI->liveAt((*vniItr)->def)) { |
| badDef = true; |
| break; |
| } |
| } |
| |
| // If we have a bad def give up, continue to the next instruction. |
| if (badDef) |
| continue; |
| |
| // Otherwise test definitions of the destination range. |
| for (VNIIterator |
| vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end(); |
| vniItr != vniEnd; ++vniItr) { |
| |
| // We want to make sure we skip the copy instruction itself. |
| if ((*vniItr)->getCopy() == instr) |
| continue; |
| |
| if (!(*vniItr)->def.isValid()) { |
| badDef = true; |
| break; |
| } |
| |
| if (srcLI->liveAt((*vniItr)->def)) { |
| badDef = true; |
| break; |
| } |
| } |
| |
| // As before a bad def we give up and continue to the next instr. |
| if (badDef) |
| continue; |
| } |
| |
| // If we make it to here then either the ranges didn't overlap, or they |
| // did, but none of their definitions would prevent us from coalescing. |
| // We're good to go with the coalesce. |
| |
| float cBenefit = std::pow(10.0f, (float)loopInfo->getLoopDepth(mbb)) / 5.0; |
| |
| coalescesFound[RegPair(srcReg, dstReg)] = cBenefit; |
| coalescesFound[RegPair(dstReg, srcReg)] = cBenefit; |
| } |
| |
| } |
| |
| return coalescesFound; |
| } |
| |
| void PBQPRegAlloc::findVRegIntervalsToAlloc() { |
| |
| // Iterate over all live ranges. |
| for (LiveIntervals::iterator itr = lis->begin(), end = lis->end(); |
| itr != end; ++itr) { |
| |
| // Ignore physical ones. |
| if (TargetRegisterInfo::isPhysicalRegister(itr->first)) |
| continue; |
| |
| LiveInterval *li = itr->second; |
| |
| // If this live interval is non-empty we will use pbqp to allocate it. |
| // Empty intervals we allocate in a simple post-processing stage in |
| // finalizeAlloc. |
| if (!li->empty()) { |
| vregIntervalsToAlloc.insert(li); |
| } |
| else { |
| emptyVRegIntervals.insert(li); |
| } |
| } |
| } |
| |
| PBQP::Graph PBQPRegAlloc::constructPBQPProblem() { |
| |
| typedef std::vector<const LiveInterval*> LIVector; |
| typedef std::vector<unsigned> RegVector; |
| |
| // This will store the physical intervals for easy reference. |
| LIVector physIntervals; |
| |
| // Start by clearing the old node <-> live interval mappings & allowed sets |
| li2Node.clear(); |
| node2LI.clear(); |
| allowedSets.clear(); |
| |
| // Populate physIntervals, update preg use: |
| for (LiveIntervals::iterator itr = lis->begin(), end = lis->end(); |
| itr != end; ++itr) { |
| |
| if (TargetRegisterInfo::isPhysicalRegister(itr->first)) { |
| physIntervals.push_back(itr->second); |
| mri->setPhysRegUsed(itr->second->reg); |
| } |
| } |
| |
| // Iterate over vreg intervals, construct live interval <-> node number |
| // mappings. |
| for (LiveIntervalSet::const_iterator |
| itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end(); |
| itr != end; ++itr) { |
| const LiveInterval *li = *itr; |
| |
| li2Node[li] = node2LI.size(); |
| node2LI.push_back(li); |
| } |
| |
| // Get the set of potential coalesces. |
| CoalesceMap coalesces; |
| |
| if (pbqpCoalescing) { |
| coalesces = findCoalesces(); |
| } |
| |
| // Construct a PBQP solver for this problem |
| PBQP::Graph problem; |
| problemNodes.resize(vregIntervalsToAlloc.size()); |
| |
| // Resize allowedSets container appropriately. |
| allowedSets.resize(vregIntervalsToAlloc.size()); |
| |
| // Iterate over virtual register intervals to compute allowed sets... |
| for (unsigned node = 0; node < node2LI.size(); ++node) { |
| |
| // Grab pointers to the interval and its register class. |
| const LiveInterval *li = node2LI[node]; |
| const TargetRegisterClass *liRC = mri->getRegClass(li->reg); |
| |
| // Start by assuming all allocable registers in the class are allowed... |
| RegVector liAllowed(liRC->allocation_order_begin(*mf), |
| liRC->allocation_order_end(*mf)); |
| |
| // Eliminate the physical registers which overlap with this range, along |
| // with all their aliases. |
| for (LIVector::iterator pItr = physIntervals.begin(), |
| pEnd = physIntervals.end(); pItr != pEnd; ++pItr) { |
| |
| if (!li->overlaps(**pItr)) |
| continue; |
| |
| unsigned pReg = (*pItr)->reg; |
| |
| // If we get here then the live intervals overlap, but we're still ok |
| // if they're coalescable. |
| if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end()) |
| continue; |
| |
| // If we get here then we have a genuine exclusion. |
| |
| // Remove the overlapping reg... |
| RegVector::iterator eraseItr = |
| std::find(liAllowed.begin(), liAllowed.end(), pReg); |
| |
| if (eraseItr != liAllowed.end()) |
| liAllowed.erase(eraseItr); |
| |
| const unsigned *aliasItr = tri->getAliasSet(pReg); |
| |
| if (aliasItr != 0) { |
| // ...and its aliases. |
| for (; *aliasItr != 0; ++aliasItr) { |
| RegVector::iterator eraseItr = |
| std::find(liAllowed.begin(), liAllowed.end(), *aliasItr); |
| |
| if (eraseItr != liAllowed.end()) { |
| liAllowed.erase(eraseItr); |
| } |
| } |
| } |
| } |
| |
| // Copy the allowed set into a member vector for use when constructing cost |
| // vectors & matrices, and mapping PBQP solutions back to assignments. |
| allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end()); |
| |
| // Set the spill cost to the interval weight, or epsilon if the |
| // interval weight is zero |
| PBQP::PBQPNum spillCost = (li->weight != 0.0) ? |
| li->weight : std::numeric_limits<PBQP::PBQPNum>::min(); |
| |
| // Build a cost vector for this interval. |
| problemNodes[node] = |
| problem.addNode( |
| buildCostVector(li->reg, allowedSets[node], coalesces, spillCost)); |
| |
| } |
| |
| |
| // Now add the cost matrices... |
| for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) { |
| const LiveInterval *li = node2LI[node1]; |
| |
| // Test for live range overlaps and insert interference matrices. |
| for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) { |
| const LiveInterval *li2 = node2LI[node2]; |
| |
| CoalesceMap::const_iterator cmItr = |
| coalesces.find(RegPair(li->reg, li2->reg)); |
| |
| PBQP::Matrix *m = 0; |
| |
| if (cmItr != coalesces.end()) { |
| m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2], |
| cmItr->second); |
| } |
| else if (li->overlaps(*li2)) { |
| m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]); |
| } |
| |
| if (m != 0) { |
| problem.addEdge(problemNodes[node1], |
| problemNodes[node2], |
| *m); |
| |
| delete m; |
| } |
| } |
| } |
| |
| assert(problem.getNumNodes() == allowedSets.size()); |
| /* |
| std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, " |
| << problem.getNumEdges() << " edges.\n"; |
| |
| problem.printDot(std::cerr); |
| */ |
| // We're done, PBQP problem constructed - return it. |
| return problem; |
| } |
| |
| void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled, |
| MachineRegisterInfo* mri) { |
| int stackSlot = vrm->getStackSlot(spilled->reg); |
| |
| if (stackSlot == VirtRegMap::NO_STACK_SLOT) |
| return; |
| |
| const TargetRegisterClass *RC = mri->getRegClass(spilled->reg); |
| LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC); |
| |
| VNInfo *vni; |
| if (stackInterval.getNumValNums() != 0) |
| vni = stackInterval.getValNumInfo(0); |
| else |
| vni = stackInterval.getNextValue( |
| SlotIndex(), 0, false, lss->getVNInfoAllocator()); |
| |
| LiveInterval &rhsInterval = lis->getInterval(spilled->reg); |
| stackInterval.MergeRangesInAsValue(rhsInterval, vni); |
| } |
| |
| bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) { |
| |
| // Set to true if we have any spills |
| bool anotherRoundNeeded = false; |
| |
| // Clear the existing allocation. |
| vrm->clearAllVirt(); |
| |
| // Iterate over the nodes mapping the PBQP solution to a register assignment. |
| for (unsigned node = 0; node < node2LI.size(); ++node) { |
| unsigned virtReg = node2LI[node]->reg, |
| allocSelection = solution.getSelection(problemNodes[node]); |
| |
| |
| // If the PBQP solution is non-zero it's a physical register... |
| if (allocSelection != 0) { |
| // Get the physical reg, subtracting 1 to account for the spill option. |
| unsigned physReg = allowedSets[node][allocSelection - 1]; |
| |
| DEBUG(dbgs() << "VREG " << virtReg << " -> " |
| << tri->getName(physReg) << "\n"); |
| |
| assert(physReg != 0); |
| |
| // Add to the virt reg map and update the used phys regs. |
| vrm->assignVirt2Phys(virtReg, physReg); |
| } |
| // ...Otherwise it's a spill. |
| else { |
| |
| // Make sure we ignore this virtual reg on the next round |
| // of allocation |
| vregIntervalsToAlloc.erase(&lis->getInterval(virtReg)); |
| |
| // Insert spill ranges for this live range |
| const LiveInterval *spillInterval = node2LI[node]; |
| double oldSpillWeight = spillInterval->weight; |
| SmallVector<LiveInterval*, 8> spillIs; |
| std::vector<LiveInterval*> newSpills = |
| lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm); |
| addStackInterval(spillInterval, mri); |
| |
| (void) oldSpillWeight; |
| DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: " |
| << oldSpillWeight << ", New vregs: "); |
| |
| // Copy any newly inserted live intervals into the list of regs to |
| // allocate. |
| for (std::vector<LiveInterval*>::const_iterator |
| itr = newSpills.begin(), end = newSpills.end(); |
| itr != end; ++itr) { |
| |
| assert(!(*itr)->empty() && "Empty spill range."); |
| |
| DEBUG(dbgs() << (*itr)->reg << " "); |
| |
| vregIntervalsToAlloc.insert(*itr); |
| } |
| |
| DEBUG(dbgs() << ")\n"); |
| |
| // We need another round if spill intervals were added. |
| anotherRoundNeeded |= !newSpills.empty(); |
| } |
| } |
| |
| return !anotherRoundNeeded; |
| } |
| |
| void PBQPRegAlloc::finalizeAlloc() const { |
| typedef LiveIntervals::iterator LIIterator; |
| typedef LiveInterval::Ranges::const_iterator LRIterator; |
| |
| // First allocate registers for the empty intervals. |
| for (LiveIntervalSet::const_iterator |
| itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end(); |
| itr != end; ++itr) { |
| LiveInterval *li = *itr; |
| |
| unsigned physReg = vrm->getRegAllocPref(li->reg); |
| |
| if (physReg == 0) { |
| const TargetRegisterClass *liRC = mri->getRegClass(li->reg); |
| physReg = *liRC->allocation_order_begin(*mf); |
| } |
| |
| vrm->assignVirt2Phys(li->reg, physReg); |
| } |
| |
| // Finally iterate over the basic blocks to compute and set the live-in sets. |
| SmallVector<MachineBasicBlock*, 8> liveInMBBs; |
| MachineBasicBlock *entryMBB = &*mf->begin(); |
| |
| for (LIIterator liItr = lis->begin(), liEnd = lis->end(); |
| liItr != liEnd; ++liItr) { |
| |
| const LiveInterval *li = liItr->second; |
| unsigned reg = 0; |
| |
| // Get the physical register for this interval |
| if (TargetRegisterInfo::isPhysicalRegister(li->reg)) { |
| reg = li->reg; |
| } |
| else if (vrm->isAssignedReg(li->reg)) { |
| reg = vrm->getPhys(li->reg); |
| } |
| else { |
| // Ranges which are assigned a stack slot only are ignored. |
| continue; |
| } |
| |
| if (reg == 0) { |
| // Filter out zero regs - they're for intervals that were spilled. |
| continue; |
| } |
| |
| // Iterate over the ranges of the current interval... |
| for (LRIterator lrItr = li->begin(), lrEnd = li->end(); |
| lrItr != lrEnd; ++lrItr) { |
| |
| // Find the set of basic blocks which this range is live into... |
| if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) { |
| // And add the physreg for this interval to their live-in sets. |
| for (unsigned i = 0; i < liveInMBBs.size(); ++i) { |
| if (liveInMBBs[i] != entryMBB) { |
| if (!liveInMBBs[i]->isLiveIn(reg)) { |
| liveInMBBs[i]->addLiveIn(reg); |
| } |
| } |
| } |
| liveInMBBs.clear(); |
| } |
| } |
| } |
| |
| } |
| |
| bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) { |
| |
| mf = &MF; |
| tm = &mf->getTarget(); |
| tri = tm->getRegisterInfo(); |
| tii = tm->getInstrInfo(); |
| mri = &mf->getRegInfo(); |
| |
| lis = &getAnalysis<LiveIntervals>(); |
| lss = &getAnalysis<LiveStacks>(); |
| loopInfo = &getAnalysis<MachineLoopInfo>(); |
| RenderMachineFunction *rmf = &getAnalysis<RenderMachineFunction>(); |
| |
| vrm = &getAnalysis<VirtRegMap>(); |
| |
| |
| DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n"); |
| |
| // Allocator main loop: |
| // |
| // * Map current regalloc problem to a PBQP problem |
| // * Solve the PBQP problem |
| // * Map the solution back to a register allocation |
| // * Spill if necessary |
| // |
| // This process is continued till no more spills are generated. |
| |
| // Find the vreg intervals in need of allocation. |
| findVRegIntervalsToAlloc(); |
| |
| // If there are non-empty intervals allocate them using pbqp. |
| if (!vregIntervalsToAlloc.empty()) { |
| |
| bool pbqpAllocComplete = false; |
| unsigned round = 0; |
| |
| while (!pbqpAllocComplete) { |
| DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n"); |
| |
| PBQP::Graph problem = constructPBQPProblem(); |
| PBQP::Solution solution = |
| PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem); |
| |
| pbqpAllocComplete = mapPBQPToRegAlloc(solution); |
| |
| ++round; |
| } |
| } |
| |
| // Finalise allocation, allocate empty ranges. |
| finalizeAlloc(); |
| |
| rmf->renderMachineFunction("After PBQP register allocation.", vrm); |
| |
| vregIntervalsToAlloc.clear(); |
| emptyVRegIntervals.clear(); |
| li2Node.clear(); |
| node2LI.clear(); |
| allowedSets.clear(); |
| problemNodes.clear(); |
| |
| DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n"); |
| |
| // Run rewriter |
| std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter()); |
| |
| rewriter->runOnMachineFunction(*mf, *vrm, lis); |
| |
| return true; |
| } |
| |
| FunctionPass* llvm::createPBQPRegisterAllocator() { |
| return new PBQPRegAlloc(); |
| } |
| |
| |
| #undef DEBUG_TYPE |