| //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by the LLVM research group and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LLVM module linker. |
| // |
| // Specifically, this: |
| // * Merges global variables between the two modules |
| // * Uninit + Uninit = Init, Init + Uninit = Init, Init + Init = Error if != |
| // * Merges functions between two modules |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Linker.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/SymbolTable.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/Support/Streams.h" |
| #include "llvm/System/Path.h" |
| using namespace llvm; |
| |
| // Error - Simple wrapper function to conditionally assign to E and return true. |
| // This just makes error return conditions a little bit simpler... |
| static inline bool Error(std::string *E, const std::string &Message) { |
| if (E) *E = Message; |
| return true; |
| } |
| |
| // ToStr - Simple wrapper function to convert a type to a string. |
| static std::string ToStr(const Type *Ty, const Module *M) { |
| std::ostringstream OS; |
| WriteTypeSymbolic(OS, Ty, M); |
| return OS.str(); |
| } |
| |
| // |
| // Function: ResolveTypes() |
| // |
| // Description: |
| // Attempt to link the two specified types together. |
| // |
| // Inputs: |
| // DestTy - The type to which we wish to resolve. |
| // SrcTy - The original type which we want to resolve. |
| // Name - The name of the type. |
| // |
| // Outputs: |
| // DestST - The symbol table in which the new type should be placed. |
| // |
| // Return value: |
| // true - There is an error and the types cannot yet be linked. |
| // false - No errors. |
| // |
| static bool ResolveTypes(const Type *DestTy, const Type *SrcTy, |
| SymbolTable *DestST, const std::string &Name) { |
| if (DestTy == SrcTy) return false; // If already equal, noop |
| |
| // Does the type already exist in the module? |
| if (DestTy && !isa<OpaqueType>(DestTy)) { // Yup, the type already exists... |
| if (const OpaqueType *OT = dyn_cast<OpaqueType>(SrcTy)) { |
| const_cast<OpaqueType*>(OT)->refineAbstractTypeTo(DestTy); |
| } else { |
| return true; // Cannot link types... neither is opaque and not-equal |
| } |
| } else { // Type not in dest module. Add it now. |
| if (DestTy) // Type _is_ in module, just opaque... |
| const_cast<OpaqueType*>(cast<OpaqueType>(DestTy)) |
| ->refineAbstractTypeTo(SrcTy); |
| else if (!Name.empty()) |
| DestST->insert(Name, const_cast<Type*>(SrcTy)); |
| } |
| return false; |
| } |
| |
| static const FunctionType *getFT(const PATypeHolder &TH) { |
| return cast<FunctionType>(TH.get()); |
| } |
| static const StructType *getST(const PATypeHolder &TH) { |
| return cast<StructType>(TH.get()); |
| } |
| |
| // RecursiveResolveTypes - This is just like ResolveTypes, except that it |
| // recurses down into derived types, merging the used types if the parent types |
| // are compatible. |
| static bool RecursiveResolveTypesI(const PATypeHolder &DestTy, |
| const PATypeHolder &SrcTy, |
| SymbolTable *DestST, const std::string &Name, |
| std::vector<std::pair<PATypeHolder, PATypeHolder> > &Pointers) { |
| const Type *SrcTyT = SrcTy.get(); |
| const Type *DestTyT = DestTy.get(); |
| if (DestTyT == SrcTyT) return false; // If already equal, noop |
| |
| // If we found our opaque type, resolve it now! |
| if (isa<OpaqueType>(DestTyT) || isa<OpaqueType>(SrcTyT)) |
| return ResolveTypes(DestTyT, SrcTyT, DestST, Name); |
| |
| // Two types cannot be resolved together if they are of different primitive |
| // type. For example, we cannot resolve an int to a float. |
| if (DestTyT->getTypeID() != SrcTyT->getTypeID()) return true; |
| |
| // Otherwise, resolve the used type used by this derived type... |
| switch (DestTyT->getTypeID()) { |
| case Type::FunctionTyID: { |
| if (cast<FunctionType>(DestTyT)->isVarArg() != |
| cast<FunctionType>(SrcTyT)->isVarArg() || |
| cast<FunctionType>(DestTyT)->getNumContainedTypes() != |
| cast<FunctionType>(SrcTyT)->getNumContainedTypes()) |
| return true; |
| for (unsigned i = 0, e = getFT(DestTy)->getNumContainedTypes(); i != e; ++i) |
| if (RecursiveResolveTypesI(getFT(DestTy)->getContainedType(i), |
| getFT(SrcTy)->getContainedType(i), DestST, "", |
| Pointers)) |
| return true; |
| return false; |
| } |
| case Type::StructTyID: { |
| if (getST(DestTy)->getNumContainedTypes() != |
| getST(SrcTy)->getNumContainedTypes()) return 1; |
| for (unsigned i = 0, e = getST(DestTy)->getNumContainedTypes(); i != e; ++i) |
| if (RecursiveResolveTypesI(getST(DestTy)->getContainedType(i), |
| getST(SrcTy)->getContainedType(i), DestST, "", |
| Pointers)) |
| return true; |
| return false; |
| } |
| case Type::ArrayTyID: { |
| const ArrayType *DAT = cast<ArrayType>(DestTy.get()); |
| const ArrayType *SAT = cast<ArrayType>(SrcTy.get()); |
| if (DAT->getNumElements() != SAT->getNumElements()) return true; |
| return RecursiveResolveTypesI(DAT->getElementType(), SAT->getElementType(), |
| DestST, "", Pointers); |
| } |
| case Type::PointerTyID: { |
| // If this is a pointer type, check to see if we have already seen it. If |
| // so, we are in a recursive branch. Cut off the search now. We cannot use |
| // an associative container for this search, because the type pointers (keys |
| // in the container) change whenever types get resolved... |
| for (unsigned i = 0, e = Pointers.size(); i != e; ++i) |
| if (Pointers[i].first == DestTy) |
| return Pointers[i].second != SrcTy; |
| |
| // Otherwise, add the current pointers to the vector to stop recursion on |
| // this pair. |
| Pointers.push_back(std::make_pair(DestTyT, SrcTyT)); |
| bool Result = |
| RecursiveResolveTypesI(cast<PointerType>(DestTy.get())->getElementType(), |
| cast<PointerType>(SrcTy.get())->getElementType(), |
| DestST, "", Pointers); |
| Pointers.pop_back(); |
| return Result; |
| } |
| default: assert(0 && "Unexpected type!"); return true; |
| } |
| } |
| |
| static bool RecursiveResolveTypes(const PATypeHolder &DestTy, |
| const PATypeHolder &SrcTy, |
| SymbolTable *DestST, const std::string &Name){ |
| std::vector<std::pair<PATypeHolder, PATypeHolder> > PointerTypes; |
| return RecursiveResolveTypesI(DestTy, SrcTy, DestST, Name, PointerTypes); |
| } |
| |
| |
| // LinkTypes - Go through the symbol table of the Src module and see if any |
| // types are named in the src module that are not named in the Dst module. |
| // Make sure there are no type name conflicts. |
| static bool LinkTypes(Module *Dest, const Module *Src, std::string *Err) { |
| SymbolTable *DestST = &Dest->getSymbolTable(); |
| const SymbolTable *SrcST = &Src->getSymbolTable(); |
| |
| // Look for a type plane for Type's... |
| SymbolTable::type_const_iterator TI = SrcST->type_begin(); |
| SymbolTable::type_const_iterator TE = SrcST->type_end(); |
| if (TI == TE) return false; // No named types, do nothing. |
| |
| // Some types cannot be resolved immediately because they depend on other |
| // types being resolved to each other first. This contains a list of types we |
| // are waiting to recheck. |
| std::vector<std::string> DelayedTypesToResolve; |
| |
| for ( ; TI != TE; ++TI ) { |
| const std::string &Name = TI->first; |
| const Type *RHS = TI->second; |
| |
| // Check to see if this type name is already in the dest module... |
| Type *Entry = DestST->lookupType(Name); |
| |
| if (ResolveTypes(Entry, RHS, DestST, Name)) { |
| // They look different, save the types 'till later to resolve. |
| DelayedTypesToResolve.push_back(Name); |
| } |
| } |
| |
| // Iteratively resolve types while we can... |
| while (!DelayedTypesToResolve.empty()) { |
| // Loop over all of the types, attempting to resolve them if possible... |
| unsigned OldSize = DelayedTypesToResolve.size(); |
| |
| // Try direct resolution by name... |
| for (unsigned i = 0; i != DelayedTypesToResolve.size(); ++i) { |
| const std::string &Name = DelayedTypesToResolve[i]; |
| Type *T1 = SrcST->lookupType(Name); |
| Type *T2 = DestST->lookupType(Name); |
| if (!ResolveTypes(T2, T1, DestST, Name)) { |
| // We are making progress! |
| DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i); |
| --i; |
| } |
| } |
| |
| // Did we not eliminate any types? |
| if (DelayedTypesToResolve.size() == OldSize) { |
| // Attempt to resolve subelements of types. This allows us to merge these |
| // two types: { int* } and { opaque* } |
| for (unsigned i = 0, e = DelayedTypesToResolve.size(); i != e; ++i) { |
| const std::string &Name = DelayedTypesToResolve[i]; |
| PATypeHolder T1(SrcST->lookupType(Name)); |
| PATypeHolder T2(DestST->lookupType(Name)); |
| |
| if (!RecursiveResolveTypes(T2, T1, DestST, Name)) { |
| // We are making progress! |
| DelayedTypesToResolve.erase(DelayedTypesToResolve.begin()+i); |
| |
| // Go back to the main loop, perhaps we can resolve directly by name |
| // now... |
| break; |
| } |
| } |
| |
| // If we STILL cannot resolve the types, then there is something wrong. |
| if (DelayedTypesToResolve.size() == OldSize) { |
| // Remove the symbol name from the destination. |
| DelayedTypesToResolve.pop_back(); |
| } |
| } |
| } |
| |
| |
| return false; |
| } |
| |
| static void PrintMap(const std::map<const Value*, Value*> &M) { |
| for (std::map<const Value*, Value*>::const_iterator I = M.begin(), E =M.end(); |
| I != E; ++I) { |
| cerr << " Fr: " << (void*)I->first << " "; |
| I->first->dump(); |
| cerr << " To: " << (void*)I->second << " "; |
| I->second->dump(); |
| cerr << "\n"; |
| } |
| } |
| |
| |
| // RemapOperand - Use ValueMap to convert references from one module to another. |
| // This is somewhat sophisticated in that it can automatically handle constant |
| // references correctly as well. |
| static Value *RemapOperand(const Value *In, |
| std::map<const Value*, Value*> &ValueMap) { |
| std::map<const Value*,Value*>::const_iterator I = ValueMap.find(In); |
| if (I != ValueMap.end()) return I->second; |
| |
| // Check to see if it's a constant that we are interesting in transforming. |
| Value *Result = 0; |
| if (const Constant *CPV = dyn_cast<Constant>(In)) { |
| if ((!isa<DerivedType>(CPV->getType()) && !isa<ConstantExpr>(CPV)) || |
| isa<ConstantAggregateZero>(CPV)) |
| return const_cast<Constant*>(CPV); // Simple constants stay identical. |
| |
| if (const ConstantArray *CPA = dyn_cast<ConstantArray>(CPV)) { |
| std::vector<Constant*> Operands(CPA->getNumOperands()); |
| for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) |
| Operands[i] =cast<Constant>(RemapOperand(CPA->getOperand(i), ValueMap)); |
| Result = ConstantArray::get(cast<ArrayType>(CPA->getType()), Operands); |
| } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(CPV)) { |
| std::vector<Constant*> Operands(CPS->getNumOperands()); |
| for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) |
| Operands[i] =cast<Constant>(RemapOperand(CPS->getOperand(i), ValueMap)); |
| Result = ConstantStruct::get(cast<StructType>(CPS->getType()), Operands); |
| } else if (isa<ConstantPointerNull>(CPV) || isa<UndefValue>(CPV)) { |
| Result = const_cast<Constant*>(CPV); |
| } else if (isa<GlobalValue>(CPV)) { |
| Result = cast<Constant>(RemapOperand(CPV, ValueMap)); |
| } else if (const ConstantPacked *CP = dyn_cast<ConstantPacked>(CPV)) { |
| std::vector<Constant*> Operands(CP->getNumOperands()); |
| for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) |
| Operands[i] = cast<Constant>(RemapOperand(CP->getOperand(i), ValueMap)); |
| Result = ConstantPacked::get(Operands); |
| } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) { |
| std::vector<Constant*> Ops; |
| for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) |
| Ops.push_back(cast<Constant>(RemapOperand(CE->getOperand(i),ValueMap))); |
| Result = CE->getWithOperands(Ops); |
| } else { |
| assert(0 && "Unknown type of derived type constant value!"); |
| } |
| } else if (isa<InlineAsm>(In)) { |
| Result = const_cast<Value*>(In); |
| } |
| |
| // Cache the mapping in our local map structure... |
| if (Result) { |
| ValueMap.insert(std::make_pair(In, Result)); |
| return Result; |
| } |
| |
| |
| cerr << "LinkModules ValueMap: \n"; |
| PrintMap(ValueMap); |
| |
| cerr << "Couldn't remap value: " << (void*)In << " " << *In << "\n"; |
| assert(0 && "Couldn't remap value!"); |
| return 0; |
| } |
| |
| /// ForceRenaming - The LLVM SymbolTable class autorenames globals that conflict |
| /// in the symbol table. This is good for all clients except for us. Go |
| /// through the trouble to force this back. |
| static void ForceRenaming(GlobalValue *GV, const std::string &Name) { |
| assert(GV->getName() != Name && "Can't force rename to self"); |
| SymbolTable &ST = GV->getParent()->getSymbolTable(); |
| |
| // If there is a conflict, rename the conflict. |
| Value *ConflictVal = ST.lookup(GV->getType(), Name); |
| assert(ConflictVal&&"Why do we have to force rename if there is no conflic?"); |
| GlobalValue *ConflictGV = cast<GlobalValue>(ConflictVal); |
| assert(ConflictGV->hasInternalLinkage() && |
| "Not conflicting with a static global, should link instead!"); |
| |
| ConflictGV->setName(""); // Eliminate the conflict |
| GV->setName(Name); // Force the name back |
| ConflictGV->setName(Name); // This will cause ConflictGV to get renamed |
| assert(GV->getName() == Name && ConflictGV->getName() != Name && |
| "ForceRenaming didn't work"); |
| } |
| |
| /// GetLinkageResult - This analyzes the two global values and determines what |
| /// the result will look like in the destination module. In particular, it |
| /// computes the resultant linkage type, computes whether the global in the |
| /// source should be copied over to the destination (replacing the existing |
| /// one), and computes whether this linkage is an error or not. |
| static bool GetLinkageResult(GlobalValue *Dest, GlobalValue *Src, |
| GlobalValue::LinkageTypes <, bool &LinkFromSrc, |
| std::string *Err) { |
| assert((!Dest || !Src->hasInternalLinkage()) && |
| "If Src has internal linkage, Dest shouldn't be set!"); |
| if (!Dest) { |
| // Linking something to nothing. |
| LinkFromSrc = true; |
| LT = Src->getLinkage(); |
| } else if (Src->isExternal()) { |
| // If Src is external or if both Src & Drc are external.. Just link the |
| // external globals, we aren't adding anything. |
| if (Src->hasDLLImportLinkage()) { |
| // If one of GVs has DLLImport linkage, result should be dllimport'ed. |
| if (Dest->isExternal()) { |
| LinkFromSrc = true; |
| LT = Src->getLinkage(); |
| } |
| } else { |
| LinkFromSrc = false; |
| LT = Dest->getLinkage(); |
| } |
| } else if (Dest->isExternal() && !Dest->hasDLLImportLinkage()) { |
| // If Dest is external but Src is not: |
| LinkFromSrc = true; |
| LT = Src->getLinkage(); |
| } else if (Src->hasAppendingLinkage() || Dest->hasAppendingLinkage()) { |
| if (Src->getLinkage() != Dest->getLinkage()) |
| return Error(Err, "Linking globals named '" + Src->getName() + |
| "': can only link appending global with another appending global!"); |
| LinkFromSrc = true; // Special cased. |
| LT = Src->getLinkage(); |
| } else if (Src->hasWeakLinkage() || Src->hasLinkOnceLinkage()) { |
| // At this point we know that Dest has LinkOnce, External*, Weak, DLL* linkage. |
| if ((Dest->hasLinkOnceLinkage() && Src->hasWeakLinkage()) || |
| Dest->hasExternalWeakLinkage()) { |
| LinkFromSrc = true; |
| LT = Src->getLinkage(); |
| } else { |
| LinkFromSrc = false; |
| LT = Dest->getLinkage(); |
| } |
| } else if (Dest->hasWeakLinkage() || Dest->hasLinkOnceLinkage()) { |
| // At this point we know that Src has External* or DLL* linkage. |
| if (Src->hasExternalWeakLinkage()) { |
| LinkFromSrc = false; |
| LT = Dest->getLinkage(); |
| } else { |
| LinkFromSrc = true; |
| LT = GlobalValue::ExternalLinkage; |
| } |
| } else { |
| assert((Dest->hasExternalLinkage() || |
| Dest->hasDLLImportLinkage() || |
| Dest->hasDLLExportLinkage() || |
| Dest->hasExternalWeakLinkage()) && |
| (Src->hasExternalLinkage() || |
| Src->hasDLLImportLinkage() || |
| Src->hasDLLExportLinkage() || |
| Src->hasExternalWeakLinkage()) && |
| "Unexpected linkage type!"); |
| return Error(Err, "Linking globals named '" + Src->getName() + |
| "': symbol multiply defined!"); |
| } |
| return false; |
| } |
| |
| // LinkGlobals - Loop through the global variables in the src module and merge |
| // them into the dest module. |
| static bool LinkGlobals(Module *Dest, Module *Src, |
| std::map<const Value*, Value*> &ValueMap, |
| std::multimap<std::string, GlobalVariable *> &AppendingVars, |
| std::map<std::string, GlobalValue*> &GlobalsByName, |
| std::string *Err) { |
| // We will need a module level symbol table if the src module has a module |
| // level symbol table... |
| SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable(); |
| |
| // Loop over all of the globals in the src module, mapping them over as we go |
| for (Module::global_iterator I = Src->global_begin(), E = Src->global_end(); |
| I != E; ++I) { |
| GlobalVariable *SGV = I; |
| GlobalVariable *DGV = 0; |
| // Check to see if may have to link the global. |
| if (SGV->hasName() && !SGV->hasInternalLinkage()) |
| if (!(DGV = Dest->getGlobalVariable(SGV->getName(), |
| SGV->getType()->getElementType()))) { |
| std::map<std::string, GlobalValue*>::iterator EGV = |
| GlobalsByName.find(SGV->getName()); |
| if (EGV != GlobalsByName.end()) |
| DGV = dyn_cast<GlobalVariable>(EGV->second); |
| if (DGV) |
| // If types don't agree due to opaque types, try to resolve them. |
| RecursiveResolveTypes(SGV->getType(), DGV->getType(),ST, ""); |
| } |
| |
| if (DGV && DGV->hasInternalLinkage()) |
| DGV = 0; |
| |
| assert(SGV->hasInitializer() || |
| SGV->hasExternalLinkage() || SGV->hasDLLImportLinkage() && |
| "Global must either be external or have an initializer!"); |
| |
| GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage; |
| bool LinkFromSrc = false; |
| if (GetLinkageResult(DGV, SGV, NewLinkage, LinkFromSrc, Err)) |
| return true; |
| |
| if (!DGV) { |
| // No linking to be performed, simply create an identical version of the |
| // symbol over in the dest module... the initializer will be filled in |
| // later by LinkGlobalInits... |
| GlobalVariable *NewDGV = |
| new GlobalVariable(SGV->getType()->getElementType(), |
| SGV->isConstant(), SGV->getLinkage(), /*init*/0, |
| SGV->getName(), Dest); |
| // Propagate alignment info. |
| NewDGV->setAlignment(SGV->getAlignment()); |
| |
| // If the LLVM runtime renamed the global, but it is an externally visible |
| // symbol, DGV must be an existing global with internal linkage. Rename |
| // it. |
| if (NewDGV->getName() != SGV->getName() && !NewDGV->hasInternalLinkage()) |
| ForceRenaming(NewDGV, SGV->getName()); |
| |
| // Make sure to remember this mapping... |
| ValueMap.insert(std::make_pair(SGV, NewDGV)); |
| if (SGV->hasAppendingLinkage()) |
| // Keep track that this is an appending variable... |
| AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV)); |
| } else if (DGV->hasAppendingLinkage()) { |
| // No linking is performed yet. Just insert a new copy of the global, and |
| // keep track of the fact that it is an appending variable in the |
| // AppendingVars map. The name is cleared out so that no linkage is |
| // performed. |
| GlobalVariable *NewDGV = |
| new GlobalVariable(SGV->getType()->getElementType(), |
| SGV->isConstant(), SGV->getLinkage(), /*init*/0, |
| "", Dest); |
| |
| // Propagate alignment info. |
| NewDGV->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment())); |
| |
| // Make sure to remember this mapping... |
| ValueMap.insert(std::make_pair(SGV, NewDGV)); |
| |
| // Keep track that this is an appending variable... |
| AppendingVars.insert(std::make_pair(SGV->getName(), NewDGV)); |
| } else { |
| // Propagate alignment info. |
| DGV->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment())); |
| |
| // Otherwise, perform the mapping as instructed by GetLinkageResult. If |
| // the types don't match, and if we are to link from the source, nuke DGV |
| // and create a new one of the appropriate type. |
| if (SGV->getType() != DGV->getType() && LinkFromSrc) { |
| GlobalVariable *NewDGV = |
| new GlobalVariable(SGV->getType()->getElementType(), |
| DGV->isConstant(), DGV->getLinkage()); |
| NewDGV->setAlignment(DGV->getAlignment()); |
| Dest->getGlobalList().insert(DGV, NewDGV); |
| DGV->replaceAllUsesWith(ConstantExpr::getCast(NewDGV, DGV->getType())); |
| DGV->eraseFromParent(); |
| NewDGV->setName(SGV->getName()); |
| DGV = NewDGV; |
| } |
| |
| DGV->setLinkage(NewLinkage); |
| |
| if (LinkFromSrc) { |
| // Inherit const as appropriate |
| DGV->setConstant(SGV->isConstant()); |
| DGV->setInitializer(0); |
| } else { |
| if (SGV->isConstant() && !DGV->isConstant()) { |
| if (DGV->isExternal()) |
| DGV->setConstant(true); |
| } |
| SGV->setLinkage(GlobalValue::ExternalLinkage); |
| SGV->setInitializer(0); |
| } |
| |
| ValueMap.insert(std::make_pair(SGV, |
| ConstantExpr::getCast(DGV, |
| SGV->getType()))); |
| } |
| } |
| return false; |
| } |
| |
| |
| // LinkGlobalInits - Update the initializers in the Dest module now that all |
| // globals that may be referenced are in Dest. |
| static bool LinkGlobalInits(Module *Dest, const Module *Src, |
| std::map<const Value*, Value*> &ValueMap, |
| std::string *Err) { |
| |
| // Loop over all of the globals in the src module, mapping them over as we go |
| for (Module::const_global_iterator I = Src->global_begin(), |
| E = Src->global_end(); I != E; ++I) { |
| const GlobalVariable *SGV = I; |
| |
| if (SGV->hasInitializer()) { // Only process initialized GV's |
| // Figure out what the initializer looks like in the dest module... |
| Constant *SInit = |
| cast<Constant>(RemapOperand(SGV->getInitializer(), ValueMap)); |
| |
| GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[SGV]); |
| if (DGV->hasInitializer()) { |
| if (SGV->hasExternalLinkage()) { |
| if (DGV->getInitializer() != SInit) |
| return Error(Err, "Global Variable Collision on '" + |
| ToStr(SGV->getType(), Src) +"':%"+SGV->getName()+ |
| " - Global variables have different initializers"); |
| } else if (DGV->hasLinkOnceLinkage() || DGV->hasWeakLinkage()) { |
| // Nothing is required, mapped values will take the new global |
| // automatically. |
| } else if (SGV->hasLinkOnceLinkage() || SGV->hasWeakLinkage()) { |
| // Nothing is required, mapped values will take the new global |
| // automatically. |
| } else if (DGV->hasAppendingLinkage()) { |
| assert(0 && "Appending linkage unimplemented!"); |
| } else { |
| assert(0 && "Unknown linkage!"); |
| } |
| } else { |
| // Copy the initializer over now... |
| DGV->setInitializer(SInit); |
| } |
| } |
| } |
| return false; |
| } |
| |
| // LinkFunctionProtos - Link the functions together between the two modules, |
| // without doing function bodies... this just adds external function prototypes |
| // to the Dest function... |
| // |
| static bool LinkFunctionProtos(Module *Dest, const Module *Src, |
| std::map<const Value*, Value*> &ValueMap, |
| std::map<std::string, GlobalValue*> &GlobalsByName, |
| std::string *Err) { |
| SymbolTable *ST = (SymbolTable*)&Dest->getSymbolTable(); |
| |
| // Loop over all of the functions in the src module, mapping them over as we |
| // go |
| for (Module::const_iterator I = Src->begin(), E = Src->end(); I != E; ++I) { |
| const Function *SF = I; // SrcFunction |
| Function *DF = 0; |
| if (SF->hasName() && !SF->hasInternalLinkage()) { |
| // Check to see if may have to link the function. |
| if (!(DF = Dest->getFunction(SF->getName(), SF->getFunctionType()))) { |
| std::map<std::string, GlobalValue*>::iterator EF = |
| GlobalsByName.find(SF->getName()); |
| if (EF != GlobalsByName.end()) |
| DF = dyn_cast<Function>(EF->second); |
| if (DF && RecursiveResolveTypes(SF->getType(), DF->getType(), ST, "")) |
| DF = 0; // FIXME: gross. |
| } |
| } |
| |
| if (!DF || SF->hasInternalLinkage() || DF->hasInternalLinkage()) { |
| // Function does not already exist, simply insert an function signature |
| // identical to SF into the dest module... |
| Function *NewDF = new Function(SF->getFunctionType(), SF->getLinkage(), |
| SF->getName(), Dest); |
| NewDF->setCallingConv(SF->getCallingConv()); |
| |
| // If the LLVM runtime renamed the function, but it is an externally |
| // visible symbol, DF must be an existing function with internal linkage. |
| // Rename it. |
| if (NewDF->getName() != SF->getName() && !NewDF->hasInternalLinkage()) |
| ForceRenaming(NewDF, SF->getName()); |
| |
| // ... and remember this mapping... |
| ValueMap.insert(std::make_pair(SF, NewDF)); |
| } else if (SF->isExternal()) { |
| // If SF is external or if both SF & DF are external.. Just link the |
| // external functions, we aren't adding anything. |
| if (SF->hasDLLImportLinkage()) { |
| if (DF->isExternal()) { |
| ValueMap.insert(std::make_pair(SF, DF)); |
| DF->setLinkage(SF->getLinkage()); |
| } |
| } else { |
| ValueMap.insert(std::make_pair(SF, DF)); |
| } |
| } else if (DF->isExternal() && !DF->hasDLLImportLinkage()) { |
| // If DF is external but SF is not... |
| // Link the external functions, update linkage qualifiers |
| ValueMap.insert(std::make_pair(SF, DF)); |
| DF->setLinkage(SF->getLinkage()); |
| } else if (SF->hasWeakLinkage() || SF->hasLinkOnceLinkage()) { |
| // At this point we know that DF has LinkOnce, Weak, or External* linkage. |
| ValueMap.insert(std::make_pair(SF, DF)); |
| |
| // Linkonce+Weak = Weak |
| // *+External Weak = * |
| if ((DF->hasLinkOnceLinkage() && SF->hasWeakLinkage()) || |
| DF->hasExternalWeakLinkage()) |
| DF->setLinkage(SF->getLinkage()); |
| |
| |
| } else if (DF->hasWeakLinkage() || DF->hasLinkOnceLinkage()) { |
| // At this point we know that SF has LinkOnce or External* linkage. |
| ValueMap.insert(std::make_pair(SF, DF)); |
| if (!SF->hasLinkOnceLinkage() && !SF->hasExternalWeakLinkage()) |
| // Don't inherit linkonce & external weak linkage |
| DF->setLinkage(SF->getLinkage()); |
| } else if (SF->getLinkage() != DF->getLinkage()) { |
| return Error(Err, "Functions named '" + SF->getName() + |
| "' have different linkage specifiers!"); |
| } else if (SF->hasExternalLinkage()) { |
| // The function is defined in both modules!! |
| return Error(Err, "Function '" + |
| ToStr(SF->getFunctionType(), Src) + "':\"" + |
| SF->getName() + "\" - Function is already defined!"); |
| } else { |
| assert(0 && "Unknown linkage configuration found!"); |
| } |
| } |
| return false; |
| } |
| |
| // LinkFunctionBody - Copy the source function over into the dest function and |
| // fix up references to values. At this point we know that Dest is an external |
| // function, and that Src is not. |
| static bool LinkFunctionBody(Function *Dest, Function *Src, |
| std::map<const Value*, Value*> &GlobalMap, |
| std::string *Err) { |
| assert(Src && Dest && Dest->isExternal() && !Src->isExternal()); |
| |
| // Go through and convert function arguments over, remembering the mapping. |
| Function::arg_iterator DI = Dest->arg_begin(); |
| for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); |
| I != E; ++I, ++DI) { |
| DI->setName(I->getName()); // Copy the name information over... |
| |
| // Add a mapping to our local map |
| GlobalMap.insert(std::make_pair(I, DI)); |
| } |
| |
| // Splice the body of the source function into the dest function. |
| Dest->getBasicBlockList().splice(Dest->end(), Src->getBasicBlockList()); |
| |
| // At this point, all of the instructions and values of the function are now |
| // copied over. The only problem is that they are still referencing values in |
| // the Source function as operands. Loop through all of the operands of the |
| // functions and patch them up to point to the local versions... |
| // |
| for (Function::iterator BB = Dest->begin(), BE = Dest->end(); BB != BE; ++BB) |
| for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) |
| for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); |
| OI != OE; ++OI) |
| if (!isa<Instruction>(*OI) && !isa<BasicBlock>(*OI)) |
| *OI = RemapOperand(*OI, GlobalMap); |
| |
| // There is no need to map the arguments anymore. |
| for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end(); |
| I != E; ++I) |
| GlobalMap.erase(I); |
| |
| return false; |
| } |
| |
| |
| // LinkFunctionBodies - Link in the function bodies that are defined in the |
| // source module into the DestModule. This consists basically of copying the |
| // function over and fixing up references to values. |
| static bool LinkFunctionBodies(Module *Dest, Module *Src, |
| std::map<const Value*, Value*> &ValueMap, |
| std::string *Err) { |
| |
| // Loop over all of the functions in the src module, mapping them over as we |
| // go |
| for (Module::iterator SF = Src->begin(), E = Src->end(); SF != E; ++SF) { |
| if (!SF->isExternal()) { // No body if function is external |
| Function *DF = cast<Function>(ValueMap[SF]); // Destination function |
| |
| // DF not external SF external? |
| if (DF->isExternal()) { |
| // Only provide the function body if there isn't one already. |
| if (LinkFunctionBody(DF, SF, ValueMap, Err)) |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| // LinkAppendingVars - If there were any appending global variables, link them |
| // together now. Return true on error. |
| static bool LinkAppendingVars(Module *M, |
| std::multimap<std::string, GlobalVariable *> &AppendingVars, |
| std::string *ErrorMsg) { |
| if (AppendingVars.empty()) return false; // Nothing to do. |
| |
| // Loop over the multimap of appending vars, processing any variables with the |
| // same name, forming a new appending global variable with both of the |
| // initializers merged together, then rewrite references to the old variables |
| // and delete them. |
| std::vector<Constant*> Inits; |
| while (AppendingVars.size() > 1) { |
| // Get the first two elements in the map... |
| std::multimap<std::string, |
| GlobalVariable*>::iterator Second = AppendingVars.begin(), First=Second++; |
| |
| // If the first two elements are for different names, there is no pair... |
| // Otherwise there is a pair, so link them together... |
| if (First->first == Second->first) { |
| GlobalVariable *G1 = First->second, *G2 = Second->second; |
| const ArrayType *T1 = cast<ArrayType>(G1->getType()->getElementType()); |
| const ArrayType *T2 = cast<ArrayType>(G2->getType()->getElementType()); |
| |
| // Check to see that they two arrays agree on type... |
| if (T1->getElementType() != T2->getElementType()) |
| return Error(ErrorMsg, |
| "Appending variables with different element types need to be linked!"); |
| if (G1->isConstant() != G2->isConstant()) |
| return Error(ErrorMsg, |
| "Appending variables linked with different const'ness!"); |
| |
| unsigned NewSize = T1->getNumElements() + T2->getNumElements(); |
| ArrayType *NewType = ArrayType::get(T1->getElementType(), NewSize); |
| |
| G1->setName(""); // Clear G1's name in case of a conflict! |
| |
| // Create the new global variable... |
| GlobalVariable *NG = |
| new GlobalVariable(NewType, G1->isConstant(), G1->getLinkage(), |
| /*init*/0, First->first, M); |
| |
| // Merge the initializer... |
| Inits.reserve(NewSize); |
| if (ConstantArray *I = dyn_cast<ConstantArray>(G1->getInitializer())) { |
| for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i) |
| Inits.push_back(I->getOperand(i)); |
| } else { |
| assert(isa<ConstantAggregateZero>(G1->getInitializer())); |
| Constant *CV = Constant::getNullValue(T1->getElementType()); |
| for (unsigned i = 0, e = T1->getNumElements(); i != e; ++i) |
| Inits.push_back(CV); |
| } |
| if (ConstantArray *I = dyn_cast<ConstantArray>(G2->getInitializer())) { |
| for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i) |
| Inits.push_back(I->getOperand(i)); |
| } else { |
| assert(isa<ConstantAggregateZero>(G2->getInitializer())); |
| Constant *CV = Constant::getNullValue(T2->getElementType()); |
| for (unsigned i = 0, e = T2->getNumElements(); i != e; ++i) |
| Inits.push_back(CV); |
| } |
| NG->setInitializer(ConstantArray::get(NewType, Inits)); |
| Inits.clear(); |
| |
| // Replace any uses of the two global variables with uses of the new |
| // global... |
| |
| // FIXME: This should rewrite simple/straight-forward uses such as |
| // getelementptr instructions to not use the Cast! |
| G1->replaceAllUsesWith(ConstantExpr::getCast(NG, G1->getType())); |
| G2->replaceAllUsesWith(ConstantExpr::getCast(NG, G2->getType())); |
| |
| // Remove the two globals from the module now... |
| M->getGlobalList().erase(G1); |
| M->getGlobalList().erase(G2); |
| |
| // Put the new global into the AppendingVars map so that we can handle |
| // linking of more than two vars... |
| Second->second = NG; |
| } |
| AppendingVars.erase(First); |
| } |
| |
| return false; |
| } |
| |
| |
| // LinkModules - This function links two modules together, with the resulting |
| // left module modified to be the composite of the two input modules. If an |
| // error occurs, true is returned and ErrorMsg (if not null) is set to indicate |
| // the problem. Upon failure, the Dest module could be in a modified state, and |
| // shouldn't be relied on to be consistent. |
| bool |
| Linker::LinkModules(Module *Dest, Module *Src, std::string *ErrorMsg) { |
| assert(Dest != 0 && "Invalid Destination module"); |
| assert(Src != 0 && "Invalid Source Module"); |
| |
| if (Dest->getEndianness() == Module::AnyEndianness) |
| Dest->setEndianness(Src->getEndianness()); |
| if (Dest->getPointerSize() == Module::AnyPointerSize) |
| Dest->setPointerSize(Src->getPointerSize()); |
| if (Dest->getTargetTriple().empty()) |
| Dest->setTargetTriple(Src->getTargetTriple()); |
| |
| if (Src->getEndianness() != Module::AnyEndianness && |
| Dest->getEndianness() != Src->getEndianness()) |
| cerr << "WARNING: Linking two modules of different endianness!\n"; |
| if (Src->getPointerSize() != Module::AnyPointerSize && |
| Dest->getPointerSize() != Src->getPointerSize()) |
| cerr << "WARNING: Linking two modules of different pointer size!\n"; |
| if (!Src->getTargetTriple().empty() && |
| Dest->getTargetTriple() != Src->getTargetTriple()) |
| cerr << "WARNING: Linking two modules of different target triples!\n"; |
| |
| if (!Src->getModuleInlineAsm().empty()) { |
| if (Dest->getModuleInlineAsm().empty()) |
| Dest->setModuleInlineAsm(Src->getModuleInlineAsm()); |
| else |
| Dest->setModuleInlineAsm(Dest->getModuleInlineAsm()+"\n"+ |
| Src->getModuleInlineAsm()); |
| } |
| |
| // Update the destination module's dependent libraries list with the libraries |
| // from the source module. There's no opportunity for duplicates here as the |
| // Module ensures that duplicate insertions are discarded. |
| Module::lib_iterator SI = Src->lib_begin(); |
| Module::lib_iterator SE = Src->lib_end(); |
| while ( SI != SE ) { |
| Dest->addLibrary(*SI); |
| ++SI; |
| } |
| |
| // LinkTypes - Go through the symbol table of the Src module and see if any |
| // types are named in the src module that are not named in the Dst module. |
| // Make sure there are no type name conflicts. |
| if (LinkTypes(Dest, Src, ErrorMsg)) return true; |
| |
| // ValueMap - Mapping of values from what they used to be in Src, to what they |
| // are now in Dest. |
| std::map<const Value*, Value*> ValueMap; |
| |
| // AppendingVars - Keep track of global variables in the destination module |
| // with appending linkage. After the module is linked together, they are |
| // appended and the module is rewritten. |
| std::multimap<std::string, GlobalVariable *> AppendingVars; |
| |
| // GlobalsByName - The LLVM SymbolTable class fights our best efforts at |
| // linking by separating globals by type. Until PR411 is fixed, we replicate |
| // it's functionality here. |
| std::map<std::string, GlobalValue*> GlobalsByName; |
| |
| for (Module::global_iterator I = Dest->global_begin(), E = Dest->global_end(); |
| I != E; ++I) { |
| // Add all of the appending globals already in the Dest module to |
| // AppendingVars. |
| if (I->hasAppendingLinkage()) |
| AppendingVars.insert(std::make_pair(I->getName(), I)); |
| |
| // Keep track of all globals by name. |
| if (!I->hasInternalLinkage() && I->hasName()) |
| GlobalsByName[I->getName()] = I; |
| } |
| |
| // Keep track of all globals by name. |
| for (Module::iterator I = Dest->begin(), E = Dest->end(); I != E; ++I) |
| if (!I->hasInternalLinkage() && I->hasName()) |
| GlobalsByName[I->getName()] = I; |
| |
| // Insert all of the globals in src into the Dest module... without linking |
| // initializers (which could refer to functions not yet mapped over). |
| if (LinkGlobals(Dest, Src, ValueMap, AppendingVars, GlobalsByName, ErrorMsg)) |
| return true; |
| |
| // Link the functions together between the two modules, without doing function |
| // bodies... this just adds external function prototypes to the Dest |
| // function... We do this so that when we begin processing function bodies, |
| // all of the global values that may be referenced are available in our |
| // ValueMap. |
| if (LinkFunctionProtos(Dest, Src, ValueMap, GlobalsByName, ErrorMsg)) |
| return true; |
| |
| // Update the initializers in the Dest module now that all globals that may |
| // be referenced are in Dest. |
| if (LinkGlobalInits(Dest, Src, ValueMap, ErrorMsg)) return true; |
| |
| // Link in the function bodies that are defined in the source module into the |
| // DestModule. This consists basically of copying the function over and |
| // fixing up references to values. |
| if (LinkFunctionBodies(Dest, Src, ValueMap, ErrorMsg)) return true; |
| |
| // If there were any appending global variables, link them together now. |
| if (LinkAppendingVars(Dest, AppendingVars, ErrorMsg)) return true; |
| |
| // If the source library's module id is in the dependent library list of the |
| // destination library, remove it since that module is now linked in. |
| sys::Path modId; |
| modId.set(Src->getModuleIdentifier()); |
| if (!modId.isEmpty()) |
| Dest->removeLibrary(modId.getBasename()); |
| |
| return false; |
| } |
| |
| // vim: sw=2 |