| //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that X86 uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86.h" |
| #include "X86InstrBuilder.h" |
| #include "X86ISelLowering.h" |
| #include "X86TargetMachine.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/ADT/VectorExtras.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Target/TargetOptions.h" |
| using namespace llvm; |
| |
| // FIXME: temporary. |
| #include "llvm/Support/CommandLine.h" |
| static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden, |
| cl::desc("Enable fastcc on X86")); |
| |
| X86TargetLowering::X86TargetLowering(TargetMachine &TM) |
| : TargetLowering(TM) { |
| Subtarget = &TM.getSubtarget<X86Subtarget>(); |
| X86ScalarSSE = Subtarget->hasSSE2(); |
| |
| // Set up the TargetLowering object. |
| |
| // X86 is weird, it always uses i8 for shift amounts and setcc results. |
| setShiftAmountType(MVT::i8); |
| setSetCCResultType(MVT::i8); |
| setSetCCResultContents(ZeroOrOneSetCCResult); |
| setSchedulingPreference(SchedulingForRegPressure); |
| setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0 |
| setStackPointerRegisterToSaveRestore(X86::ESP); |
| |
| if (!Subtarget->isTargetDarwin()) |
| // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. |
| setUseUnderscoreSetJmpLongJmp(true); |
| |
| // Add legal addressing mode scale values. |
| addLegalAddressScale(8); |
| addLegalAddressScale(4); |
| addLegalAddressScale(2); |
| // Enter the ones which require both scale + index last. These are more |
| // expensive. |
| addLegalAddressScale(9); |
| addLegalAddressScale(5); |
| addLegalAddressScale(3); |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i8, X86::GR8RegisterClass); |
| addRegisterClass(MVT::i16, X86::GR16RegisterClass); |
| addRegisterClass(MVT::i32, X86::GR32RegisterClass); |
| |
| // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this |
| // operation. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); |
| setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); |
| |
| if (X86ScalarSSE) |
| // No SSE i64 SINT_TO_FP, so expand i32 UINT_TO_FP instead. |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand); |
| else |
| setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); |
| |
| // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); |
| // SSE has no i16 to fp conversion, only i32 |
| if (X86ScalarSSE) |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); |
| else { |
| setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); |
| setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); |
| } |
| |
| // We can handle SINT_TO_FP and FP_TO_SINT from/to i64 even though i64 |
| // isn't legal. |
| setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); |
| |
| // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have |
| // this operation. |
| setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); |
| |
| if (X86ScalarSSE) { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); |
| } else { |
| setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); |
| setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); |
| } |
| |
| // Handle FP_TO_UINT by promoting the destination to a larger signed |
| // conversion. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); |
| setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); |
| |
| if (X86ScalarSSE && !Subtarget->hasSSE3()) |
| // Expand FP_TO_UINT into a select. |
| // FIXME: We would like to use a Custom expander here eventually to do |
| // the optimal thing for SSE vs. the default expansion in the legalizer. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); |
| else |
| // With SSE3 we can use fisttpll to convert to a signed i64. |
| setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); |
| |
| setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); |
| setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); |
| |
| setOperationAction(ISD::BRCOND , MVT::Other, Custom); |
| setOperationAction(ISD::BR_CC , MVT::Other, Expand); |
| setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); |
| setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); |
| setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); |
| setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand); |
| setOperationAction(ISD::FREM , MVT::f64 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i8 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i8 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i8 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i16 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i16 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i16 , Expand); |
| setOperationAction(ISD::CTPOP , MVT::i32 , Expand); |
| setOperationAction(ISD::CTTZ , MVT::i32 , Expand); |
| setOperationAction(ISD::CTLZ , MVT::i32 , Expand); |
| setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); |
| setOperationAction(ISD::BSWAP , MVT::i16 , Expand); |
| |
| // These should be promoted to a larger select which is supported. |
| setOperationAction(ISD::SELECT , MVT::i1 , Promote); |
| setOperationAction(ISD::SELECT , MVT::i8 , Promote); |
| |
| // X86 wants to expand cmov itself. |
| setOperationAction(ISD::SELECT , MVT::i16 , Custom); |
| setOperationAction(ISD::SELECT , MVT::i32 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f32 , Custom); |
| setOperationAction(ISD::SELECT , MVT::f64 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i8 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i16 , Custom); |
| setOperationAction(ISD::SETCC , MVT::i32 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f32 , Custom); |
| setOperationAction(ISD::SETCC , MVT::f64 , Custom); |
| // X86 ret instruction may pop stack. |
| setOperationAction(ISD::RET , MVT::Other, Custom); |
| // Darwin ABI issue. |
| setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); |
| setOperationAction(ISD::JumpTable , MVT::i32 , Custom); |
| setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); |
| setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); |
| // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) |
| setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); |
| setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); |
| setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); |
| // X86 wants to expand memset / memcpy itself. |
| setOperationAction(ISD::MEMSET , MVT::Other, Custom); |
| setOperationAction(ISD::MEMCPY , MVT::Other, Custom); |
| |
| // We don't have line number support yet. |
| setOperationAction(ISD::LOCATION, MVT::Other, Expand); |
| setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); |
| // FIXME - use subtarget debug flags |
| if (!Subtarget->isTargetDarwin()) |
| setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand); |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VAARG , MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand); |
| |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| |
| if (X86ScalarSSE) { |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f32, X86::FR32RegisterClass); |
| addRegisterClass(MVT::f64, X86::FR64RegisterClass); |
| |
| // Use ANDPD to simulate FABS. |
| setOperationAction(ISD::FABS , MVT::f64, Custom); |
| setOperationAction(ISD::FABS , MVT::f32, Custom); |
| |
| // Use XORP to simulate FNEG. |
| setOperationAction(ISD::FNEG , MVT::f64, Custom); |
| setOperationAction(ISD::FNEG , MVT::f32, Custom); |
| |
| // We don't support sin/cos/fmod |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FREM , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FREM , MVT::f32, Expand); |
| |
| // Expand FP immediates into loads from the stack, except for the special |
| // cases we handle. |
| setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Expand); |
| addLegalFPImmediate(+0.0); // xorps / xorpd |
| } else { |
| // Set up the FP register classes. |
| addRegisterClass(MVT::f64, X86::RFPRegisterClass); |
| |
| setOperationAction(ISD::UNDEF, MVT::f64, Expand); |
| |
| if (!UnsafeFPMath) { |
| setOperationAction(ISD::FSIN , MVT::f64 , Expand); |
| setOperationAction(ISD::FCOS , MVT::f64 , Expand); |
| } |
| |
| setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| addLegalFPImmediate(+0.0); // FLD0 |
| addLegalFPImmediate(+1.0); // FLD1 |
| addLegalFPImmediate(-0.0); // FLD0/FCHS |
| addLegalFPImmediate(-1.0); // FLD1/FCHS |
| } |
| |
| // First set operation action for all vector types to expand. Then we |
| // will selectively turn on ones that can be effectively codegen'd. |
| for (unsigned VT = (unsigned)MVT::Vector + 1; |
| VT != (unsigned)MVT::LAST_VALUETYPE; VT++) { |
| setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand); |
| } |
| |
| if (Subtarget->hasMMX()) { |
| addRegisterClass(MVT::v8i8, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v4i16, X86::VR64RegisterClass); |
| addRegisterClass(MVT::v2i32, X86::VR64RegisterClass); |
| |
| // FIXME: add MMX packed arithmetics |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Expand); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Expand); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Expand); |
| } |
| |
| if (Subtarget->hasSSE1()) { |
| addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); |
| |
| setOperationAction(ISD::AND, MVT::v4f32, Legal); |
| setOperationAction(ISD::OR, MVT::v4f32, Legal); |
| setOperationAction(ISD::XOR, MVT::v4f32, Legal); |
| setOperationAction(ISD::ADD, MVT::v4f32, Legal); |
| setOperationAction(ISD::SUB, MVT::v4f32, Legal); |
| setOperationAction(ISD::MUL, MVT::v4f32, Legal); |
| setOperationAction(ISD::LOAD, MVT::v4f32, Legal); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::v4f32, Custom); |
| } |
| |
| if (Subtarget->hasSSE2()) { |
| addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); |
| addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); |
| |
| setOperationAction(ISD::ADD, MVT::v2f64, Legal); |
| setOperationAction(ISD::ADD, MVT::v16i8, Legal); |
| setOperationAction(ISD::ADD, MVT::v8i16, Legal); |
| setOperationAction(ISD::ADD, MVT::v4i32, Legal); |
| setOperationAction(ISD::SUB, MVT::v2f64, Legal); |
| setOperationAction(ISD::SUB, MVT::v16i8, Legal); |
| setOperationAction(ISD::SUB, MVT::v8i16, Legal); |
| setOperationAction(ISD::SUB, MVT::v4i32, Legal); |
| setOperationAction(ISD::MUL, MVT::v8i16, Legal); |
| setOperationAction(ISD::MUL, MVT::v2f64, Legal); |
| |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); |
| setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); |
| // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones. |
| setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); |
| |
| // Custom lower build_vector, vector_shuffle, and extract_vector_elt. |
| for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { |
| setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom); |
| } |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); |
| setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); |
| setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); |
| setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); |
| |
| // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. |
| for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) { |
| setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64); |
| setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64); |
| setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64); |
| setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64); |
| setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote); |
| AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64); |
| } |
| |
| // Custom lower v2i64 and v2f64 selects. |
| setOperationAction(ISD::LOAD, MVT::v2f64, Legal); |
| setOperationAction(ISD::LOAD, MVT::v2i64, Legal); |
| setOperationAction(ISD::SELECT, MVT::v2f64, Custom); |
| setOperationAction(ISD::SELECT, MVT::v2i64, Custom); |
| } |
| |
| // We want to custom lower some of our intrinsics. |
| setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); |
| |
| computeRegisterProperties(); |
| |
| // FIXME: These should be based on subtarget info. Plus, the values should |
| // be smaller when we are in optimizing for size mode. |
| maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores |
| maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores |
| maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores |
| allowUnalignedMemoryAccesses = true; // x86 supports it! |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // C Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| |
| /// AddLiveIn - This helper function adds the specified physical register to the |
| /// MachineFunction as a live in value. It also creates a corresponding virtual |
| /// register for it. |
| static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, |
| TargetRegisterClass *RC) { |
| assert(RC->contains(PReg) && "Not the correct regclass!"); |
| unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); |
| MF.addLiveIn(PReg, VReg); |
| return VReg; |
| } |
| |
| /// HowToPassCCCArgument - Returns how an formal argument of the specified type |
| /// should be passed. If it is through stack, returns the size of the stack |
| /// slot; if it is through XMM register, returns the number of XMM registers |
| /// are needed. |
| static void |
| HowToPassCCCArgument(MVT::ValueType ObjectVT, unsigned NumXMMRegs, |
| unsigned &ObjSize, unsigned &ObjXMMRegs) { |
| NumXMMRegs = 0; |
| |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i8: ObjSize = 1; break; |
| case MVT::i16: ObjSize = 2; break; |
| case MVT::i32: ObjSize = 4; break; |
| case MVT::i64: ObjSize = 8; break; |
| case MVT::f32: ObjSize = 4; break; |
| case MVT::f64: ObjSize = 8; break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 4) |
| ObjXMMRegs = 1; |
| else |
| ObjSize = 16; |
| break; |
| } |
| } |
| |
| SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG) { |
| unsigned NumArgs = Op.Val->getNumValues() - 1; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| SDOperand Root = Op.getOperand(0); |
| std::vector<SDOperand> ArgValues; |
| |
| // Add DAG nodes to load the arguments... On entry to a function on the X86, |
| // the stack frame looks like this: |
| // |
| // [ESP] -- return address |
| // [ESP + 4] -- first argument (leftmost lexically) |
| // [ESP + 8] -- second argument, if first argument is <= 4 bytes in size |
| // ... |
| // |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 |
| }; |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| MVT::ValueType ObjectVT = Op.getValue(i).getValueType(); |
| unsigned ArgIncrement = 4; |
| unsigned ObjSize = 0; |
| unsigned ObjXMMRegs = 0; |
| HowToPassCCCArgument(ObjectVT, NumXMMRegs, ObjSize, ObjXMMRegs); |
| if (ObjSize > 4) |
| ArgIncrement = ObjSize; |
| |
| SDOperand ArgValue; |
| if (ObjXMMRegs) { |
| // Passed in a XMM register. |
| unsigned Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], |
| X86::VR128RegisterClass); |
| ArgValue= DAG.getCopyFromReg(Root, Reg, ObjectVT); |
| ArgValues.push_back(ArgValue); |
| NumXMMRegs += ObjXMMRegs; |
| } else { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| if (ObjSize == 16) |
| ArgOffset = ((ArgOffset + 15) / 16) * 16; |
| // Create the frame index object for this incoming parameter... |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, |
| DAG.getSrcValue(NULL)); |
| ArgValues.push_back(ArgValue); |
| ArgOffset += ArgIncrement; // Move on to the next argument... |
| } |
| } |
| |
| ArgValues.push_back(Root); |
| |
| // If the function takes variable number of arguments, make a frame index for |
| // the start of the first vararg value... for expansion of llvm.va_start. |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| if (isVarArg) |
| VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); |
| ReturnAddrIndex = 0; // No return address slot generated yet. |
| BytesToPopOnReturn = 0; // Callee pops nothing. |
| BytesCallerReserves = ArgOffset; |
| |
| // If this is a struct return on Darwin/X86, the callee pops the hidden struct |
| // pointer. |
| if (MF.getFunction()->getCallingConv() == CallingConv::CSRet && |
| Subtarget->isTargetDarwin()) |
| BytesToPopOnReturn = 4; |
| |
| // Return the new list of results. |
| std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(), |
| Op.Val->value_end()); |
| return DAG.getNode(ISD::MERGE_VALUES, RetVTs, ArgValues); |
| } |
| |
| |
| SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Chain = Op.getOperand(0); |
| unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0; |
| SDOperand Callee = Op.getOperand(4); |
| MVT::ValueType RetVT= Op.Val->getValueType(0); |
| unsigned NumOps = (Op.getNumOperands() - 5) / 2; |
| |
| // Keep track of the number of XMM regs passed so far. |
| unsigned NumXMMRegs = 0; |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 |
| }; |
| |
| // Count how many bytes are to be pushed on the stack. |
| unsigned NumBytes = 0; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| |
| switch (Arg.getValueType()) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| case MVT::f32: |
| NumBytes += 4; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| NumBytes += 8; |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 4) |
| ++NumXMMRegs; |
| else { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| NumBytes = ((NumBytes + 15) / 16) * 16; |
| NumBytes += 16; |
| } |
| break; |
| } |
| } |
| |
| Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| unsigned ArgOffset = 0; |
| NumXMMRegs = 0; |
| std::vector<std::pair<unsigned, SDOperand> > RegsToPass; |
| std::vector<SDOperand> MemOpChains; |
| SDOperand StackPtr = DAG.getRegister(X86::ESP, getPointerTy()); |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| |
| switch (Arg.getValueType()) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i8: |
| case MVT::i16: { |
| // Promote the integer to 32 bits. If the input type is signed use a |
| // sign extend, otherwise use a zero extend. |
| unsigned ExtOp = |
| dyn_cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue() ? |
| ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; |
| Arg = DAG.getNode(ExtOp, MVT::i32, Arg); |
| } |
| // Fallthrough |
| |
| case MVT::i32: |
| case MVT::f32: { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Arg, PtrOff, DAG.getSrcValue(NULL))); |
| ArgOffset += 4; |
| break; |
| } |
| case MVT::i64: |
| case MVT::f64: { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Arg, PtrOff, DAG.getSrcValue(NULL))); |
| ArgOffset += 8; |
| break; |
| } |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 4) { |
| RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg)); |
| NumXMMRegs++; |
| } else { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| ArgOffset = ((ArgOffset + 15) / 16) * 16; |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Arg, PtrOff, DAG.getSrcValue(NULL))); |
| ArgOffset += 16; |
| } |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOpChains); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into registers. |
| SDOperand InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); |
| else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| |
| std::vector<MVT::ValueType> NodeTys; |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| if (InFlag.Val) |
| Ops.push_back(InFlag); |
| |
| Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, |
| NodeTys, Ops); |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| unsigned NumBytesForCalleeToPush = 0; |
| |
| // If this is is a call to a struct-return function on Darwin/X86, the callee |
| // pops the hidden struct pointer, so we have to push it back. |
| if (CallingConv == CallingConv::CSRet && Subtarget->isTargetDarwin()) |
| NumBytesForCalleeToPush = 4; |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| if (RetVT != MVT::Other) |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy())); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); |
| if (RetVT != MVT::Other) |
| InFlag = Chain.getValue(1); |
| |
| std::vector<SDOperand> ResultVals; |
| NodeTys.clear(); |
| switch (RetVT) { |
| default: assert(0 && "Unknown value type to return!"); |
| case MVT::Other: break; |
| case MVT::i8: |
| Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i8); |
| break; |
| case MVT::i16: |
| Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i16); |
| break; |
| case MVT::i32: |
| if (Op.Val->getValueType(1) == MVT::i32) { |
| Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32, |
| Chain.getValue(2)).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i32); |
| } else { |
| Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| } |
| NodeTys.push_back(MVT::i32); |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(RetVT); |
| break; |
| case MVT::f32: |
| case MVT::f64: { |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(InFlag); |
| SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); |
| Chain = RetVal.getValue(1); |
| InFlag = RetVal.getValue(2); |
| if (X86ScalarSSE) { |
| // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(RetVal); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(RetVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::FST, Tys, Ops); |
| RetVal = DAG.getLoad(RetVT, Chain, StackSlot, |
| DAG.getSrcValue(NULL)); |
| Chain = RetVal.getValue(1); |
| } |
| |
| if (RetVT == MVT::f32 && !X86ScalarSSE) |
| // FIXME: we would really like to remember that this FP_ROUND |
| // operation is okay to eliminate if we allow excess FP precision. |
| RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); |
| ResultVals.push_back(RetVal); |
| NodeTys.push_back(RetVT); |
| break; |
| } |
| } |
| |
| // If the function returns void, just return the chain. |
| if (ResultVals.empty()) |
| return Chain; |
| |
| // Otherwise, merge everything together with a MERGE_VALUES node. |
| NodeTys.push_back(MVT::Other); |
| ResultVals.push_back(Chain); |
| SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, ResultVals); |
| return Res.getValue(Op.ResNo); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Fast Calling Convention implementation |
| //===----------------------------------------------------------------------===// |
| // |
| // The X86 'fast' calling convention passes up to two integer arguments in |
| // registers (an appropriate portion of EAX/EDX), passes arguments in C order, |
| // and requires that the callee pop its arguments off the stack (allowing proper |
| // tail calls), and has the same return value conventions as C calling convs. |
| // |
| // This calling convention always arranges for the callee pop value to be 8n+4 |
| // bytes, which is needed for tail recursion elimination and stack alignment |
| // reasons. |
| // |
| // Note that this can be enhanced in the future to pass fp vals in registers |
| // (when we have a global fp allocator) and do other tricks. |
| // |
| |
| // FASTCC_NUM_INT_ARGS_INREGS - This is the max number of integer arguments |
| // to pass in registers. 0 is none, 1 is is "use EAX", 2 is "use EAX and |
| // EDX". Anything more is illegal. |
| // |
| // FIXME: The linscan register allocator currently has problem with |
| // coalescing. At the time of this writing, whenever it decides to coalesce |
| // a physreg with a virtreg, this increases the size of the physreg's live |
| // range, and the live range cannot ever be reduced. This causes problems if |
| // too many physregs are coaleced with virtregs, which can cause the register |
| // allocator to wedge itself. |
| // |
| // This code triggers this problem more often if we pass args in registers, |
| // so disable it until this is fixed. |
| // |
| // NOTE: this isn't marked const, so that GCC doesn't emit annoying warnings |
| // about code being dead. |
| // |
| static unsigned FASTCC_NUM_INT_ARGS_INREGS = 0; |
| |
| |
| /// HowToPassFastCCArgument - Returns how an formal argument of the specified |
| /// type should be passed. If it is through stack, returns the size of the stack |
| /// slot; if it is through integer or XMM register, returns the number of |
| /// integer or XMM registers are needed. |
| static void |
| HowToPassFastCCArgument(MVT::ValueType ObjectVT, |
| unsigned NumIntRegs, unsigned NumXMMRegs, |
| unsigned &ObjSize, unsigned &ObjIntRegs, |
| unsigned &ObjXMMRegs) { |
| ObjSize = 0; |
| NumIntRegs = 0; |
| NumXMMRegs = 0; |
| |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i8: |
| if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) |
| ObjIntRegs = 1; |
| else |
| ObjSize = 1; |
| break; |
| case MVT::i16: |
| if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) |
| ObjIntRegs = 1; |
| else |
| ObjSize = 2; |
| break; |
| case MVT::i32: |
| if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) |
| ObjIntRegs = 1; |
| else |
| ObjSize = 4; |
| break; |
| case MVT::i64: |
| if (NumIntRegs+2 <= FASTCC_NUM_INT_ARGS_INREGS) { |
| ObjIntRegs = 2; |
| } else if (NumIntRegs+1 <= FASTCC_NUM_INT_ARGS_INREGS) { |
| ObjIntRegs = 1; |
| ObjSize = 4; |
| } else |
| ObjSize = 8; |
| case MVT::f32: |
| ObjSize = 4; |
| break; |
| case MVT::f64: |
| ObjSize = 8; |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 4) |
| ObjXMMRegs = 1; |
| else |
| ObjSize = 16; |
| break; |
| } |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) { |
| unsigned NumArgs = Op.Val->getNumValues()-1; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| SDOperand Root = Op.getOperand(0); |
| std::vector<SDOperand> ArgValues; |
| |
| // Add DAG nodes to load the arguments... On entry to a function the stack |
| // frame looks like this: |
| // |
| // [ESP] -- return address |
| // [ESP + 4] -- first nonreg argument (leftmost lexically) |
| // [ESP + 8] -- second nonreg argument, if 1st argument is <= 4 bytes in size |
| // ... |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| |
| // Keep track of the number of integer regs passed so far. This can be either |
| // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both |
| // used). |
| unsigned NumIntRegs = 0; |
| unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. |
| |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 |
| }; |
| |
| for (unsigned i = 0; i < NumArgs; ++i) { |
| MVT::ValueType ObjectVT = Op.getValue(i).getValueType(); |
| unsigned ArgIncrement = 4; |
| unsigned ObjSize = 0; |
| unsigned ObjIntRegs = 0; |
| unsigned ObjXMMRegs = 0; |
| |
| HowToPassFastCCArgument(ObjectVT, NumIntRegs, NumXMMRegs, |
| ObjSize, ObjIntRegs, ObjXMMRegs); |
| if (ObjSize > 4) |
| ArgIncrement = ObjSize; |
| |
| unsigned Reg; |
| SDOperand ArgValue; |
| if (ObjIntRegs || ObjXMMRegs) { |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i8: |
| Reg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL, |
| X86::GR8RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i8); |
| break; |
| case MVT::i16: |
| Reg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX, |
| X86::GR16RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i16); |
| break; |
| case MVT::i32: |
| Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX, |
| X86::GR32RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32); |
| break; |
| case MVT::i64: |
| Reg = AddLiveIn(MF, NumIntRegs ? X86::EDX : X86::EAX, |
| X86::GR32RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, MVT::i32); |
| if (ObjIntRegs == 2) { |
| Reg = AddLiveIn(MF, X86::EDX, X86::GR32RegisterClass); |
| SDOperand ArgValue2 = DAG.getCopyFromReg(Root, Reg, MVT::i32); |
| ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2); |
| } |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| Reg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs], X86::VR128RegisterClass); |
| ArgValue = DAG.getCopyFromReg(Root, Reg, ObjectVT); |
| break; |
| } |
| NumIntRegs += ObjIntRegs; |
| NumXMMRegs += ObjXMMRegs; |
| } |
| |
| if (ObjSize) { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| if (ObjSize == 16) |
| ArgOffset = ((ArgOffset + 15) / 16) * 16; |
| // Create the SelectionDAG nodes corresponding to a load from this |
| // parameter. |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy()); |
| if (ObjectVT == MVT::i64 && ObjIntRegs) { |
| SDOperand ArgValue2 = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, |
| DAG.getSrcValue(NULL)); |
| ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2); |
| } else |
| ArgValue = DAG.getLoad(Op.Val->getValueType(i), Root, FIN, |
| DAG.getSrcValue(NULL)); |
| ArgOffset += ArgIncrement; // Move on to the next argument. |
| } |
| |
| ArgValues.push_back(ArgValue); |
| } |
| |
| ArgValues.push_back(Root); |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are aligned. |
| if ((ArgOffset & 7) == 0) |
| ArgOffset += 4; |
| |
| VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs. |
| ReturnAddrIndex = 0; // No return address slot generated yet. |
| BytesToPopOnReturn = ArgOffset; // Callee pops all stack arguments. |
| BytesCallerReserves = 0; |
| |
| // Finally, inform the code generator which regs we return values in. |
| switch (getValueType(MF.getFunction()->getReturnType())) { |
| default: assert(0 && "Unknown type!"); |
| case MVT::isVoid: break; |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| MF.addLiveOut(X86::EAX); |
| break; |
| case MVT::i64: |
| MF.addLiveOut(X86::EAX); |
| MF.addLiveOut(X86::EDX); |
| break; |
| case MVT::f32: |
| case MVT::f64: |
| MF.addLiveOut(X86::ST0); |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| MF.addLiveOut(X86::XMM0); |
| break; |
| } |
| |
| // Return the new list of results. |
| std::vector<MVT::ValueType> RetVTs(Op.Val->value_begin(), |
| Op.Val->value_end()); |
| return DAG.getNode(ISD::MERGE_VALUES, RetVTs, ArgValues); |
| } |
| |
| SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Chain = Op.getOperand(0); |
| unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0; |
| SDOperand Callee = Op.getOperand(4); |
| MVT::ValueType RetVT= Op.Val->getValueType(0); |
| unsigned NumOps = (Op.getNumOperands() - 5) / 2; |
| |
| // Count how many bytes are to be pushed on the stack. |
| unsigned NumBytes = 0; |
| |
| // Keep track of the number of integer regs passed so far. This can be either |
| // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both |
| // used). |
| unsigned NumIntRegs = 0; |
| unsigned NumXMMRegs = 0; // XMM regs used for parameter passing. |
| |
| static const unsigned GPRArgRegs[][2] = { |
| { X86::AL, X86::DL }, |
| { X86::AX, X86::DX }, |
| { X86::EAX, X86::EDX } |
| }; |
| static const unsigned XMMArgRegs[] = { |
| X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 |
| }; |
| |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| |
| switch (Arg.getValueType()) { |
| default: assert(0 && "Unknown value type!"); |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) { |
| ++NumIntRegs; |
| break; |
| } |
| // Fall through |
| case MVT::f32: |
| NumBytes += 4; |
| break; |
| case MVT::f64: |
| NumBytes += 8; |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 4) |
| NumXMMRegs++; |
| else { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| NumBytes = ((NumBytes + 15) / 16) * 16; |
| NumBytes += 16; |
| } |
| break; |
| } |
| } |
| |
| // Make sure the instruction takes 8n+4 bytes to make sure the start of the |
| // arguments and the arguments after the retaddr has been pushed are aligned. |
| if ((NumBytes & 7) == 0) |
| NumBytes += 4; |
| |
| Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy())); |
| |
| // Arguments go on the stack in reverse order, as specified by the ABI. |
| unsigned ArgOffset = 0; |
| NumIntRegs = 0; |
| std::vector<std::pair<unsigned, SDOperand> > RegsToPass; |
| std::vector<SDOperand> MemOpChains; |
| SDOperand StackPtr = DAG.getRegister(X86::ESP, getPointerTy()); |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| |
| switch (Arg.getValueType()) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i8: |
| case MVT::i16: |
| case MVT::i32: |
| if (NumIntRegs < FASTCC_NUM_INT_ARGS_INREGS) { |
| RegsToPass.push_back( |
| std::make_pair(GPRArgRegs[Arg.getValueType()-MVT::i8][NumIntRegs], |
| Arg)); |
| ++NumIntRegs; |
| break; |
| } |
| // Fall through |
| case MVT::f32: { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Arg, PtrOff, DAG.getSrcValue(NULL))); |
| ArgOffset += 4; |
| break; |
| } |
| case MVT::f64: { |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Arg, PtrOff, DAG.getSrcValue(NULL))); |
| ArgOffset += 8; |
| break; |
| } |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| if (NumXMMRegs < 4) { |
| RegsToPass.push_back(std::make_pair(XMMArgRegs[NumXMMRegs], Arg)); |
| NumXMMRegs++; |
| } else { |
| // XMM arguments have to be aligned on 16-byte boundary. |
| ArgOffset = ((ArgOffset + 15) / 16) * 16; |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); |
| PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, |
| Arg, PtrOff, DAG.getSrcValue(NULL))); |
| ArgOffset += 16; |
| } |
| } |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOpChains); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into registers. |
| SDOperand InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // If the callee is a GlobalAddress node (quite common, every direct call is) |
| // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); |
| else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| |
| std::vector<MVT::ValueType> NodeTys; |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| if (InFlag.Val) |
| Ops.push_back(InFlag); |
| |
| // FIXME: Do not generate X86ISD::TAILCALL for now. |
| Chain = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, |
| NodeTys, Ops); |
| InFlag = Chain.getValue(1); |
| |
| NodeTys.clear(); |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| if (RetVT != MVT::Other) |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, Ops); |
| if (RetVT != MVT::Other) |
| InFlag = Chain.getValue(1); |
| |
| std::vector<SDOperand> ResultVals; |
| NodeTys.clear(); |
| switch (RetVT) { |
| default: assert(0 && "Unknown value type to return!"); |
| case MVT::Other: break; |
| case MVT::i8: |
| Chain = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i8); |
| break; |
| case MVT::i16: |
| Chain = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i16); |
| break; |
| case MVT::i32: |
| if (Op.Val->getValueType(1) == MVT::i32) { |
| Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| Chain = DAG.getCopyFromReg(Chain, X86::EDX, MVT::i32, |
| Chain.getValue(2)).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i32); |
| } else { |
| Chain = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| } |
| NodeTys.push_back(MVT::i32); |
| break; |
| case MVT::v16i8: |
| case MVT::v8i16: |
| case MVT::v4i32: |
| case MVT::v2i64: |
| case MVT::v4f32: |
| case MVT::v2f64: |
| Chain = DAG.getCopyFromReg(Chain, X86::XMM0, RetVT, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(RetVT); |
| break; |
| case MVT::f32: |
| case MVT::f64: { |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(InFlag); |
| SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); |
| Chain = RetVal.getValue(1); |
| InFlag = RetVal.getValue(2); |
| if (X86ScalarSSE) { |
| // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(RetVal); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(RetVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::FST, Tys, Ops); |
| RetVal = DAG.getLoad(RetVT, Chain, StackSlot, |
| DAG.getSrcValue(NULL)); |
| Chain = RetVal.getValue(1); |
| } |
| |
| if (RetVT == MVT::f32 && !X86ScalarSSE) |
| // FIXME: we would really like to remember that this FP_ROUND |
| // operation is okay to eliminate if we allow excess FP precision. |
| RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); |
| ResultVals.push_back(RetVal); |
| NodeTys.push_back(RetVT); |
| break; |
| } |
| } |
| |
| |
| // If the function returns void, just return the chain. |
| if (ResultVals.empty()) |
| return Chain; |
| |
| // Otherwise, merge everything together with a MERGE_VALUES node. |
| NodeTys.push_back(MVT::Other); |
| ResultVals.push_back(Chain); |
| SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, ResultVals); |
| return Res.getValue(Op.ResNo); |
| } |
| |
| SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { |
| if (ReturnAddrIndex == 0) { |
| // Set up a frame object for the return address. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); |
| } |
| |
| return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32); |
| } |
| |
| |
| |
| std::pair<SDOperand, SDOperand> X86TargetLowering:: |
| LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, |
| SelectionDAG &DAG) { |
| SDOperand Result; |
| if (Depth) // Depths > 0 not supported yet! |
| Result = DAG.getConstant(0, getPointerTy()); |
| else { |
| SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); |
| if (!isFrameAddress) |
| // Just load the return address |
| Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI, |
| DAG.getSrcValue(NULL)); |
| else |
| Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI, |
| DAG.getConstant(4, MVT::i32)); |
| } |
| return std::make_pair(Result, Chain); |
| } |
| |
| /// getCondBrOpcodeForX86CC - Returns the X86 conditional branch opcode |
| /// which corresponds to the condition code. |
| static unsigned getCondBrOpcodeForX86CC(unsigned X86CC) { |
| switch (X86CC) { |
| default: assert(0 && "Unknown X86 conditional code!"); |
| case X86ISD::COND_A: return X86::JA; |
| case X86ISD::COND_AE: return X86::JAE; |
| case X86ISD::COND_B: return X86::JB; |
| case X86ISD::COND_BE: return X86::JBE; |
| case X86ISD::COND_E: return X86::JE; |
| case X86ISD::COND_G: return X86::JG; |
| case X86ISD::COND_GE: return X86::JGE; |
| case X86ISD::COND_L: return X86::JL; |
| case X86ISD::COND_LE: return X86::JLE; |
| case X86ISD::COND_NE: return X86::JNE; |
| case X86ISD::COND_NO: return X86::JNO; |
| case X86ISD::COND_NP: return X86::JNP; |
| case X86ISD::COND_NS: return X86::JNS; |
| case X86ISD::COND_O: return X86::JO; |
| case X86ISD::COND_P: return X86::JP; |
| case X86ISD::COND_S: return X86::JS; |
| } |
| } |
| |
| /// translateX86CC - do a one to one translation of a ISD::CondCode to the X86 |
| /// specific condition code. It returns a false if it cannot do a direct |
| /// translation. X86CC is the translated CondCode. Flip is set to true if the |
| /// the order of comparison operands should be flipped. |
| static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP, |
| unsigned &X86CC, bool &Flip) { |
| Flip = false; |
| X86CC = X86ISD::COND_INVALID; |
| if (!isFP) { |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETEQ: X86CC = X86ISD::COND_E; break; |
| case ISD::SETGT: X86CC = X86ISD::COND_G; break; |
| case ISD::SETGE: X86CC = X86ISD::COND_GE; break; |
| case ISD::SETLT: X86CC = X86ISD::COND_L; break; |
| case ISD::SETLE: X86CC = X86ISD::COND_LE; break; |
| case ISD::SETNE: X86CC = X86ISD::COND_NE; break; |
| case ISD::SETULT: X86CC = X86ISD::COND_B; break; |
| case ISD::SETUGT: X86CC = X86ISD::COND_A; break; |
| case ISD::SETULE: X86CC = X86ISD::COND_BE; break; |
| case ISD::SETUGE: X86CC = X86ISD::COND_AE; break; |
| } |
| } else { |
| // On a floating point condition, the flags are set as follows: |
| // ZF PF CF op |
| // 0 | 0 | 0 | X > Y |
| // 0 | 0 | 1 | X < Y |
| // 1 | 0 | 0 | X == Y |
| // 1 | 1 | 1 | unordered |
| switch (SetCCOpcode) { |
| default: break; |
| case ISD::SETUEQ: |
| case ISD::SETEQ: X86CC = X86ISD::COND_E; break; |
| case ISD::SETOLT: Flip = true; // Fallthrough |
| case ISD::SETOGT: |
| case ISD::SETGT: X86CC = X86ISD::COND_A; break; |
| case ISD::SETOLE: Flip = true; // Fallthrough |
| case ISD::SETOGE: |
| case ISD::SETGE: X86CC = X86ISD::COND_AE; break; |
| case ISD::SETUGT: Flip = true; // Fallthrough |
| case ISD::SETULT: |
| case ISD::SETLT: X86CC = X86ISD::COND_B; break; |
| case ISD::SETUGE: Flip = true; // Fallthrough |
| case ISD::SETULE: |
| case ISD::SETLE: X86CC = X86ISD::COND_BE; break; |
| case ISD::SETONE: |
| case ISD::SETNE: X86CC = X86ISD::COND_NE; break; |
| case ISD::SETUO: X86CC = X86ISD::COND_P; break; |
| case ISD::SETO: X86CC = X86ISD::COND_NP; break; |
| } |
| } |
| |
| return X86CC != X86ISD::COND_INVALID; |
| } |
| |
| static bool translateX86CC(SDOperand CC, bool isFP, unsigned &X86CC, |
| bool &Flip) { |
| return translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC, Flip); |
| } |
| |
| /// hasFPCMov - is there a floating point cmov for the specific X86 condition |
| /// code. Current x86 isa includes the following FP cmov instructions: |
| /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. |
| static bool hasFPCMov(unsigned X86CC) { |
| switch (X86CC) { |
| default: |
| return false; |
| case X86ISD::COND_B: |
| case X86ISD::COND_BE: |
| case X86ISD::COND_E: |
| case X86ISD::COND_P: |
| case X86ISD::COND_A: |
| case X86ISD::COND_AE: |
| case X86ISD::COND_NE: |
| case X86ISD::COND_NP: |
| return true; |
| } |
| } |
| |
| MachineBasicBlock * |
| X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, |
| MachineBasicBlock *BB) { |
| switch (MI->getOpcode()) { |
| default: assert(false && "Unexpected instr type to insert"); |
| case X86::CMOV_FR32: |
| case X86::CMOV_FR64: |
| case X86::CMOV_V4F32: |
| case X86::CMOV_V2F64: |
| case X86::CMOV_V2I64: { |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| unsigned Opc = getCondBrOpcodeForX86CC(MI->getOperand(3).getImmedValue()); |
| BuildMI(BB, Opc, 1).addMBB(sinkMBB); |
| MachineFunction *F = BB->getParent(); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges by first adding all successors of the current |
| // block to the new block which will contain the Phi node for the select. |
| for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), |
| e = BB->succ_end(); i != e; ++i) |
| sinkMBB->addSuccessor(*i); |
| // Next, remove all successors of the current block, and add the true |
| // and fallthrough blocks as its successors. |
| while(!BB->succ_empty()) |
| BB->removeSuccessor(BB->succ_begin()); |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| |
| delete MI; // The pseudo instruction is gone now. |
| return BB; |
| } |
| |
| case X86::FP_TO_INT16_IN_MEM: |
| case X86::FP_TO_INT32_IN_MEM: |
| case X86::FP_TO_INT64_IN_MEM: { |
| // Change the floating point control register to use "round towards zero" |
| // mode when truncating to an integer value. |
| MachineFunction *F = BB->getParent(); |
| int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); |
| addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); |
| |
| // Load the old value of the high byte of the control word... |
| unsigned OldCW = |
| F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass); |
| addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx); |
| |
| // Set the high part to be round to zero... |
| addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F); |
| |
| // Reload the modified control word now... |
| addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); |
| |
| // Restore the memory image of control word to original value |
| addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW); |
| |
| // Get the X86 opcode to use. |
| unsigned Opc; |
| switch (MI->getOpcode()) { |
| default: assert(0 && "illegal opcode!"); |
| case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break; |
| case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break; |
| case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break; |
| } |
| |
| X86AddressMode AM; |
| MachineOperand &Op = MI->getOperand(0); |
| if (Op.isRegister()) { |
| AM.BaseType = X86AddressMode::RegBase; |
| AM.Base.Reg = Op.getReg(); |
| } else { |
| AM.BaseType = X86AddressMode::FrameIndexBase; |
| AM.Base.FrameIndex = Op.getFrameIndex(); |
| } |
| Op = MI->getOperand(1); |
| if (Op.isImmediate()) |
| AM.Scale = Op.getImmedValue(); |
| Op = MI->getOperand(2); |
| if (Op.isImmediate()) |
| AM.IndexReg = Op.getImmedValue(); |
| Op = MI->getOperand(3); |
| if (Op.isGlobalAddress()) { |
| AM.GV = Op.getGlobal(); |
| } else { |
| AM.Disp = Op.getImmedValue(); |
| } |
| addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(MI->getOperand(4).getReg()); |
| |
| // Reload the original control word now. |
| addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); |
| |
| delete MI; // The pseudo instruction is gone now. |
| return BB; |
| } |
| } |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // X86 Custom Lowering Hooks |
| //===----------------------------------------------------------------------===// |
| |
| /// DarwinGVRequiresExtraLoad - true if accessing the GV requires an extra |
| /// load. For Darwin, external and weak symbols are indirect, loading the value |
| /// at address GV rather then the value of GV itself. This means that the |
| /// GlobalAddress must be in the base or index register of the address, not the |
| /// GV offset field. |
| static bool DarwinGVRequiresExtraLoad(GlobalValue *GV) { |
| return (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || |
| (GV->isExternal() && !GV->hasNotBeenReadFromBytecode())); |
| } |
| |
| /// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return |
| /// true if Op is undef or if its value falls within the specified range (L, H]. |
| static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) { |
| if (Op.getOpcode() == ISD::UNDEF) |
| return true; |
| |
| unsigned Val = cast<ConstantSDNode>(Op)->getValue(); |
| return (Val >= Low && Val < Hi); |
| } |
| |
| /// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return |
| /// true if Op is undef or if its value equal to the specified value. |
| static bool isUndefOrEqual(SDOperand Op, unsigned Val) { |
| if (Op.getOpcode() == ISD::UNDEF) |
| return true; |
| return cast<ConstantSDNode>(Op)->getValue() == Val; |
| } |
| |
| /// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFD. |
| bool X86::isPSHUFDMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Check if the value doesn't reference the second vector. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| if (cast<ConstantSDNode>(Arg)->getValue() >= 4) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFHW. |
| bool X86::isPSHUFHWMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 8) |
| return false; |
| |
| // Lower quadword copied in order. |
| for (unsigned i = 0; i != 4; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| if (cast<ConstantSDNode>(Arg)->getValue() != i) |
| return false; |
| } |
| |
| // Upper quadword shuffled. |
| for (unsigned i = 4; i != 8; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val < 4 || Val > 7) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to PSHUFLW. |
| bool X86::isPSHUFLWMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 8) |
| return false; |
| |
| // Upper quadword copied in order. |
| for (unsigned i = 4; i != 8; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i)) |
| return false; |
| |
| // Lower quadword shuffled. |
| for (unsigned i = 0; i != 4; ++i) |
| if (!isUndefOrInRange(N->getOperand(i), 0, 4)) |
| return false; |
| |
| return true; |
| } |
| |
| /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to SHUFP*. |
| static bool isSHUFPMask(std::vector<SDOperand> &N) { |
| unsigned NumElems = N.size(); |
| if (NumElems != 2 && NumElems != 4) return false; |
| |
| unsigned Half = NumElems / 2; |
| for (unsigned i = 0; i < Half; ++i) |
| if (!isUndefOrInRange(N[i], 0, NumElems)) |
| return false; |
| for (unsigned i = Half; i < NumElems; ++i) |
| if (!isUndefOrInRange(N[i], NumElems, NumElems*2)) |
| return false; |
| |
| return true; |
| } |
| |
| bool X86::isSHUFPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| return ::isSHUFPMask(Ops); |
| } |
| |
| /// isCommutedSHUFP - Returns true if the shuffle mask is except |
| /// the reverse of what x86 shuffles want. x86 shuffles requires the lower |
| /// half elements to come from vector 1 (which would equal the dest.) and |
| /// the upper half to come from vector 2. |
| static bool isCommutedSHUFP(std::vector<SDOperand> &Ops) { |
| unsigned NumElems = Ops.size(); |
| if (NumElems != 2 && NumElems != 4) return false; |
| |
| unsigned Half = NumElems / 2; |
| for (unsigned i = 0; i < Half; ++i) |
| if (!isUndefOrInRange(Ops[i], NumElems, NumElems*2)) |
| return false; |
| for (unsigned i = Half; i < NumElems; ++i) |
| if (!isUndefOrInRange(Ops[i], 0, NumElems)) |
| return false; |
| return true; |
| } |
| |
| static bool isCommutedSHUFP(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| return isCommutedSHUFP(Ops); |
| } |
| |
| /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVHLPS. |
| bool X86::isMOVHLPSMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 |
| return isUndefOrEqual(N->getOperand(0), 6) && |
| isUndefOrEqual(N->getOperand(1), 7) && |
| isUndefOrEqual(N->getOperand(2), 2) && |
| isUndefOrEqual(N->getOperand(3), 3); |
| } |
| |
| /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. |
| bool X86::isMOVLPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| unsigned NumElems = N->getNumOperands(); |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| |
| for (unsigned i = 0; i < NumElems/2; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i + NumElems)) |
| return false; |
| |
| for (unsigned i = NumElems/2; i < NumElems; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i)) |
| return false; |
| |
| return true; |
| } |
| |
| /// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVHP{S|D} |
| /// and MOVLHPS. |
| bool X86::isMOVHPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| unsigned NumElems = N->getNumOperands(); |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| |
| for (unsigned i = 0; i < NumElems/2; ++i) |
| if (!isUndefOrEqual(N->getOperand(i), i)) |
| return false; |
| |
| for (unsigned i = 0; i < NumElems/2; ++i) { |
| SDOperand Arg = N->getOperand(i + NumElems/2); |
| if (!isUndefOrEqual(Arg, i + NumElems)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKL. |
| bool static isUNPCKLMask(std::vector<SDOperand> &N, bool V2IsSplat = false) { |
| unsigned NumElems = N.size(); |
| if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { |
| SDOperand BitI = N[i]; |
| SDOperand BitI1 = N[i+1]; |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (V2IsSplat) { |
| if (isUndefOrEqual(BitI1, NumElems)) |
| return false; |
| } else { |
| if (!isUndefOrEqual(BitI1, j + NumElems)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| return ::isUNPCKLMask(Ops, V2IsSplat); |
| } |
| |
| /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to UNPCKH. |
| bool static isUNPCKHMask(std::vector<SDOperand> &N, bool V2IsSplat = false) { |
| unsigned NumElems = N.size(); |
| if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { |
| SDOperand BitI = N[i]; |
| SDOperand BitI1 = N[i+1]; |
| if (!isUndefOrEqual(BitI, j + NumElems/2)) |
| return false; |
| if (V2IsSplat) { |
| if (isUndefOrEqual(BitI1, NumElems)) |
| return false; |
| } else { |
| if (!isUndefOrEqual(BitI1, j + NumElems/2 + NumElems)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| return ::isUNPCKHMask(Ops, V2IsSplat); |
| } |
| |
| /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form |
| /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, |
| /// <0, 0, 1, 1> |
| bool X86::isUNPCKL_v_undef_Mask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| unsigned NumElems = N->getNumOperands(); |
| if (NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) { |
| SDOperand BitI = N->getOperand(i); |
| SDOperand BitI1 = N->getOperand(i+1); |
| |
| if (!isUndefOrEqual(BitI, j)) |
| return false; |
| if (!isUndefOrEqual(BitI1, j)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSS, |
| /// MOVSD, and MOVD, i.e. setting the lowest element. |
| static bool isMOVLMask(std::vector<SDOperand> &N) { |
| unsigned NumElems = N.size(); |
| if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| if (!isUndefOrEqual(N[0], NumElems)) |
| return false; |
| |
| for (unsigned i = 1; i < NumElems; ++i) { |
| SDOperand Arg = N[i]; |
| if (!isUndefOrEqual(Arg, i)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool X86::isMOVLMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| return ::isMOVLMask(Ops); |
| } |
| |
| /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse |
| /// of what x86 movss want. X86 movs requires the lowest element to be lowest |
| /// element of vector 2 and the other elements to come from vector 1 in order. |
| static bool isCommutedMOVL(std::vector<SDOperand> &Ops, bool V2IsSplat = false) { |
| unsigned NumElems = Ops.size(); |
| if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) |
| return false; |
| |
| if (!isUndefOrEqual(Ops[0], 0)) |
| return false; |
| |
| for (unsigned i = 1; i < NumElems; ++i) { |
| SDOperand Arg = Ops[i]; |
| if (V2IsSplat) { |
| if (!isUndefOrEqual(Arg, NumElems)) |
| return false; |
| } else { |
| if (!isUndefOrEqual(Arg, i+NumElems)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| std::vector<SDOperand> Ops(N->op_begin(), N->op_end()); |
| return isCommutedMOVL(Ops, V2IsSplat); |
| } |
| |
| /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSHDUP. |
| bool X86::isMOVSHDUPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Expect 1, 1, 3, 3 |
| for (unsigned i = 0; i < 2; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val != 1) return false; |
| } |
| |
| bool HasHi = false; |
| for (unsigned i = 2; i < 4; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val != 3) return false; |
| HasHi = true; |
| } |
| |
| // Don't use movshdup if it can be done with a shufps. |
| return HasHi; |
| } |
| |
| /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand |
| /// specifies a shuffle of elements that is suitable for input to MOVSLDUP. |
| bool X86::isMOVSLDUPMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 4) |
| return false; |
| |
| // Expect 0, 0, 2, 2 |
| for (unsigned i = 0; i < 2; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val != 0) return false; |
| } |
| |
| bool HasHi = false; |
| for (unsigned i = 2; i < 4; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val != 2) return false; |
| HasHi = true; |
| } |
| |
| // Don't use movshdup if it can be done with a shufps. |
| return HasHi; |
| } |
| |
| /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies |
| /// a splat of a single element. |
| static bool isSplatMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| // This is a splat operation if each element of the permute is the same, and |
| // if the value doesn't reference the second vector. |
| unsigned NumElems = N->getNumOperands(); |
| SDOperand ElementBase; |
| unsigned i = 0; |
| for (; i != NumElems; ++i) { |
| SDOperand Elt = N->getOperand(i); |
| if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt)) { |
| ElementBase = Elt; |
| break; |
| } |
| } |
| |
| if (!ElementBase.Val) |
| return false; |
| |
| for (; i != NumElems; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| if (Arg != ElementBase) return false; |
| } |
| |
| // Make sure it is a splat of the first vector operand. |
| return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems; |
| } |
| |
| /// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies |
| /// a splat of a single element and it's a 2 or 4 element mask. |
| bool X86::isSplatMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| // We can only splat 64-bit, and 32-bit quantities with a single instruction. |
| if (N->getNumOperands() != 4 && N->getNumOperands() != 2) |
| return false; |
| return ::isSplatMask(N); |
| } |
| |
| /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP* |
| /// instructions. |
| unsigned X86::getShuffleSHUFImmediate(SDNode *N) { |
| unsigned NumOperands = N->getNumOperands(); |
| unsigned Shift = (NumOperands == 4) ? 2 : 1; |
| unsigned Mask = 0; |
| for (unsigned i = 0; i < NumOperands; ++i) { |
| unsigned Val = 0; |
| SDOperand Arg = N->getOperand(NumOperands-i-1); |
| if (Arg.getOpcode() != ISD::UNDEF) |
| Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val >= NumOperands) Val -= NumOperands; |
| Mask |= Val; |
| if (i != NumOperands - 1) |
| Mask <<= Shift; |
| } |
| |
| return Mask; |
| } |
| |
| /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW |
| /// instructions. |
| unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { |
| unsigned Mask = 0; |
| // 8 nodes, but we only care about the last 4. |
| for (unsigned i = 7; i >= 4; --i) { |
| unsigned Val = 0; |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() != ISD::UNDEF) |
| Val = cast<ConstantSDNode>(Arg)->getValue(); |
| Mask |= (Val - 4); |
| if (i != 4) |
| Mask <<= 2; |
| } |
| |
| return Mask; |
| } |
| |
| /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle |
| /// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW |
| /// instructions. |
| unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { |
| unsigned Mask = 0; |
| // 8 nodes, but we only care about the first 4. |
| for (int i = 3; i >= 0; --i) { |
| unsigned Val = 0; |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() != ISD::UNDEF) |
| Val = cast<ConstantSDNode>(Arg)->getValue(); |
| Mask |= Val; |
| if (i != 0) |
| Mask <<= 2; |
| } |
| |
| return Mask; |
| } |
| |
| /// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand |
| /// specifies a 8 element shuffle that can be broken into a pair of |
| /// PSHUFHW and PSHUFLW. |
| static bool isPSHUFHW_PSHUFLWMask(SDNode *N) { |
| assert(N->getOpcode() == ISD::BUILD_VECTOR); |
| |
| if (N->getNumOperands() != 8) |
| return false; |
| |
| // Lower quadword shuffled. |
| for (unsigned i = 0; i != 4; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val > 4) |
| return false; |
| } |
| |
| // Upper quadword shuffled. |
| for (unsigned i = 4; i != 8; ++i) { |
| SDOperand Arg = N->getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) continue; |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val < 4 || Val > 7) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// CommuteVectorShuffle - Swap vector_shuffle operandsas well as |
| /// values in ther permute mask. |
| static SDOperand CommuteVectorShuffle(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand V1 = Op.getOperand(0); |
| SDOperand V2 = Op.getOperand(1); |
| SDOperand Mask = Op.getOperand(2); |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType MaskVT = Mask.getValueType(); |
| MVT::ValueType EltVT = MVT::getVectorBaseType(MaskVT); |
| unsigned NumElems = Mask.getNumOperands(); |
| std::vector<SDOperand> MaskVec; |
| |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Arg = Mask.getOperand(i); |
| if (Arg.getOpcode() == ISD::UNDEF) { |
| MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT)); |
| continue; |
| } |
| assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!"); |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val < NumElems) |
| MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT)); |
| else |
| MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT)); |
| } |
| |
| Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V2, V1, Mask); |
| } |
| |
| /// ShouldXformToMOVHLPS - Return true if the node should be transformed to |
| /// match movhlps. The lower half elements should come from upper half of |
| /// V1 (and in order), and the upper half elements should come from the upper |
| /// half of V2 (and in order). |
| static bool ShouldXformToMOVHLPS(SDNode *Mask) { |
| unsigned NumElems = Mask->getNumOperands(); |
| if (NumElems != 4) |
| return false; |
| for (unsigned i = 0, e = 2; i != e; ++i) |
| if (!isUndefOrEqual(Mask->getOperand(i), i+2)) |
| return false; |
| for (unsigned i = 2; i != 4; ++i) |
| if (!isUndefOrEqual(Mask->getOperand(i), i+4)) |
| return false; |
| return true; |
| } |
| |
| /// isScalarLoadToVector - Returns true if the node is a scalar load that |
| /// is promoted to a vector. |
| static inline bool isScalarLoadToVector(SDNode *N) { |
| if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) { |
| N = N->getOperand(0).Val; |
| return (N->getOpcode() == ISD::LOAD); |
| } |
| return false; |
| } |
| |
| /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to |
| /// match movlp{s|d}. The lower half elements should come from lower half of |
| /// V1 (and in order), and the upper half elements should come from the upper |
| /// half of V2 (and in order). And since V1 will become the source of the |
| /// MOVLP, it must be either a vector load or a scalar load to vector. |
| static bool ShouldXformToMOVLP(SDNode *V1, SDNode *Mask) { |
| if (V1->getOpcode() != ISD::LOAD && !isScalarLoadToVector(V1)) |
| return false; |
| |
| unsigned NumElems = Mask->getNumOperands(); |
| if (NumElems != 2 && NumElems != 4) |
| return false; |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) |
| if (!isUndefOrEqual(Mask->getOperand(i), i)) |
| return false; |
| for (unsigned i = NumElems/2; i != NumElems; ++i) |
| if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems)) |
| return false; |
| return true; |
| } |
| |
| /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are |
| /// all the same. |
| static bool isSplatVector(SDNode *N) { |
| if (N->getOpcode() != ISD::BUILD_VECTOR) |
| return false; |
| |
| SDOperand SplatValue = N->getOperand(0); |
| for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) |
| if (N->getOperand(i) != SplatValue) |
| return false; |
| return true; |
| } |
| |
| /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements |
| /// that point to V2 points to its first element. |
| static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) { |
| assert(Mask.getOpcode() == ISD::BUILD_VECTOR); |
| |
| bool Changed = false; |
| std::vector<SDOperand> MaskVec; |
| unsigned NumElems = Mask.getNumOperands(); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Arg = Mask.getOperand(i); |
| if (Arg.getOpcode() != ISD::UNDEF) { |
| unsigned Val = cast<ConstantSDNode>(Arg)->getValue(); |
| if (Val > NumElems) { |
| Arg = DAG.getConstant(NumElems, Arg.getValueType()); |
| Changed = true; |
| } |
| } |
| MaskVec.push_back(Arg); |
| } |
| |
| if (Changed) |
| Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(), MaskVec); |
| return Mask; |
| } |
| |
| /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd |
| /// operation of specified width. |
| static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) { |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); |
| |
| std::vector<SDOperand> MaskVec; |
| MaskVec.push_back(DAG.getConstant(NumElems, BaseVT)); |
| for (unsigned i = 1; i != NumElems; ++i) |
| MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); |
| } |
| |
| /// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation |
| /// of specified width. |
| static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) { |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); |
| std::vector<SDOperand> MaskVec; |
| for (unsigned i = 0, e = NumElems/2; i != e; ++i) { |
| MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT)); |
| } |
| return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); |
| } |
| |
| /// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation |
| /// of specified width. |
| static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) { |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); |
| unsigned Half = NumElems/2; |
| std::vector<SDOperand> MaskVec; |
| for (unsigned i = 0; i != Half; ++i) { |
| MaskVec.push_back(DAG.getConstant(i + Half, BaseVT)); |
| MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT)); |
| } |
| return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); |
| } |
| |
| /// getZeroVector - Returns a vector of specified type with all zero elements. |
| /// |
| static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) { |
| assert(MVT::isVector(VT) && "Expected a vector type"); |
| unsigned NumElems = getVectorNumElements(VT); |
| MVT::ValueType EVT = MVT::getVectorBaseType(VT); |
| bool isFP = MVT::isFloatingPoint(EVT); |
| SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT); |
| std::vector<SDOperand> ZeroVec(NumElems, Zero); |
| return DAG.getNode(ISD::BUILD_VECTOR, VT, ZeroVec); |
| } |
| |
| /// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32. |
| /// |
| static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand V1 = Op.getOperand(0); |
| SDOperand Mask = Op.getOperand(2); |
| MVT::ValueType VT = Op.getValueType(); |
| unsigned NumElems = Mask.getNumOperands(); |
| Mask = getUnpacklMask(NumElems, DAG); |
| while (NumElems != 4) { |
| V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask); |
| NumElems >>= 1; |
| } |
| V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1); |
| |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| Mask = getZeroVector(MaskVT, DAG); |
| SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1, |
| DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask); |
| return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle); |
| } |
| |
| /// isZeroNode - Returns true if Elt is a constant zero or a floating point |
| /// constant +0.0. |
| static inline bool isZeroNode(SDOperand Elt) { |
| return ((isa<ConstantSDNode>(Elt) && |
| cast<ConstantSDNode>(Elt)->getValue() == 0) || |
| (isa<ConstantFPSDNode>(Elt) && |
| cast<ConstantFPSDNode>(Elt)->isExactlyValue(0.0))); |
| } |
| |
| /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified |
| /// vector and zero or undef vector. |
| static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT, |
| unsigned NumElems, unsigned Idx, |
| bool isZero, SelectionDAG &DAG) { |
| SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT); |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT); |
| SDOperand Zero = DAG.getConstant(0, EVT); |
| std::vector<SDOperand> MaskVec(NumElems, Zero); |
| MaskVec[Idx] = DAG.getConstant(NumElems, EVT); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| } |
| |
| /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. |
| /// |
| static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG) { |
| if (NumNonZero > 8) |
| return SDOperand(); |
| |
| SDOperand V(0, 0); |
| bool First = true; |
| for (unsigned i = 0; i < 16; ++i) { |
| bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; |
| if (ThisIsNonZero && First) { |
| if (NumZero) |
| V = getZeroVector(MVT::v8i16, DAG); |
| else |
| V = DAG.getNode(ISD::UNDEF, MVT::v8i16); |
| First = false; |
| } |
| |
| if ((i & 1) != 0) { |
| SDOperand ThisElt(0, 0), LastElt(0, 0); |
| bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; |
| if (LastIsNonZero) { |
| LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1)); |
| } |
| if (ThisIsNonZero) { |
| ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i)); |
| ThisElt = DAG.getNode(ISD::SHL, MVT::i16, |
| ThisElt, DAG.getConstant(8, MVT::i8)); |
| if (LastIsNonZero) |
| ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt); |
| } else |
| ThisElt = LastElt; |
| |
| if (ThisElt.Val) |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt, |
| DAG.getConstant(i/2, MVT::i32)); |
| } |
| } |
| |
| return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V); |
| } |
| |
| /// LowerBuildVectorv16i8 - Custom lower build_vector of v8i16. |
| /// |
| static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros, |
| unsigned NumNonZero, unsigned NumZero, |
| SelectionDAG &DAG) { |
| if (NumNonZero > 4) |
| return SDOperand(); |
| |
| SDOperand V(0, 0); |
| bool First = true; |
| for (unsigned i = 0; i < 8; ++i) { |
| bool isNonZero = (NonZeros & (1 << i)) != 0; |
| if (isNonZero) { |
| if (First) { |
| if (NumZero) |
| V = getZeroVector(MVT::v8i16, DAG); |
| else |
| V = DAG.getNode(ISD::UNDEF, MVT::v8i16); |
| First = false; |
| } |
| V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i), |
| DAG.getConstant(i, MVT::i32)); |
| } |
| } |
| |
| return V; |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) { |
| // All zero's are handled with pxor. |
| if (ISD::isBuildVectorAllZeros(Op.Val)) |
| return Op; |
| |
| // All one's are handled with pcmpeqd. |
| if (ISD::isBuildVectorAllOnes(Op.Val)) |
| return Op; |
| |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType EVT = MVT::getVectorBaseType(VT); |
| unsigned EVTBits = MVT::getSizeInBits(EVT); |
| |
| unsigned NumElems = Op.getNumOperands(); |
| unsigned NumZero = 0; |
| unsigned NumNonZero = 0; |
| unsigned NonZeros = 0; |
| std::set<SDOperand> Values; |
| for (unsigned i = 0; i < NumElems; ++i) { |
| SDOperand Elt = Op.getOperand(i); |
| if (Elt.getOpcode() != ISD::UNDEF) { |
| Values.insert(Elt); |
| if (isZeroNode(Elt)) |
| NumZero++; |
| else { |
| NonZeros |= (1 << i); |
| NumNonZero++; |
| } |
| } |
| } |
| |
| if (NumNonZero == 0) |
| // Must be a mix of zero and undef. Return a zero vector. |
| return getZeroVector(VT, DAG); |
| |
| // Splat is obviously ok. Let legalizer expand it to a shuffle. |
| if (Values.size() == 1) |
| return SDOperand(); |
| |
| // Special case for single non-zero element. |
| if (NumNonZero == 1) { |
| unsigned Idx = CountTrailingZeros_32(NonZeros); |
| SDOperand Item = Op.getOperand(Idx); |
| Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item); |
| if (Idx == 0) |
| // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. |
| return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx, |
| NumZero > 0, DAG); |
| |
| if (EVTBits == 32) { |
| // Turn it into a shuffle of zero and zero-extended scalar to vector. |
| Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0, |
| DAG); |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT); |
| std::vector<SDOperand> MaskVec; |
| for (unsigned i = 0; i < NumElems; i++) |
| MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT)); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item, |
| DAG.getNode(ISD::UNDEF, VT), Mask); |
| } |
| } |
| |
| // Let legalizer expand 2-widde build_vector's. |
| if (EVTBits == 64) |
| return SDOperand(); |
| |
| // If element VT is < 32 bits, convert it to inserts into a zero vector. |
| if (EVTBits == 8) { |
| SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG); |
| if (V.Val) return V; |
| } |
| |
| if (EVTBits == 16) { |
| SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG); |
| if (V.Val) return V; |
| } |
| |
| // If element VT is == 32 bits, turn it into a number of shuffles. |
| std::vector<SDOperand> V(NumElems); |
| if (NumElems == 4 && NumZero > 0) { |
| for (unsigned i = 0; i < 4; ++i) { |
| bool isZero = !(NonZeros & (1 << i)); |
| if (isZero) |
| V[i] = getZeroVector(VT, DAG); |
| else |
| V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); |
| } |
| |
| for (unsigned i = 0; i < 2; ++i) { |
| switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { |
| default: break; |
| case 0: |
| V[i] = V[i*2]; // Must be a zero vector. |
| break; |
| case 1: |
| V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2], |
| getMOVLMask(NumElems, DAG)); |
| break; |
| case 2: |
| V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], |
| getMOVLMask(NumElems, DAG)); |
| break; |
| case 3: |
| V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1], |
| getUnpacklMask(NumElems, DAG)); |
| break; |
| } |
| } |
| |
| // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd) |
| // clears the upper bits. |
| // FIXME: we can do the same for v4f32 case when we know both parts of |
| // the lower half come from scalar_to_vector (loadf32). We should do |
| // that in post legalizer dag combiner with target specific hooks. |
| if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0) |
| return V[0]; |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType EVT = MVT::getVectorBaseType(MaskVT); |
| std::vector<SDOperand> MaskVec; |
| bool Reverse = (NonZeros & 0x3) == 2; |
| for (unsigned i = 0; i < 2; ++i) |
| if (Reverse) |
| MaskVec.push_back(DAG.getConstant(1-i, EVT)); |
| else |
| MaskVec.push_back(DAG.getConstant(i, EVT)); |
| Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; |
| for (unsigned i = 0; i < 2; ++i) |
| if (Reverse) |
| MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT)); |
| else |
| MaskVec.push_back(DAG.getConstant(i+NumElems, EVT)); |
| SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask); |
| } |
| |
| if (Values.size() > 2) { |
| // Expand into a number of unpckl*. |
| // e.g. for v4f32 |
| // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> |
| // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> |
| // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> |
| SDOperand UnpckMask = getUnpacklMask(NumElems, DAG); |
| for (unsigned i = 0; i < NumElems; ++i) |
| V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i)); |
| NumElems >>= 1; |
| while (NumElems != 0) { |
| for (unsigned i = 0; i < NumElems; ++i) |
| V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems], |
| UnpckMask); |
| NumElems >>= 1; |
| } |
| return V[0]; |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand V1 = Op.getOperand(0); |
| SDOperand V2 = Op.getOperand(1); |
| SDOperand PermMask = Op.getOperand(2); |
| MVT::ValueType VT = Op.getValueType(); |
| unsigned NumElems = PermMask.getNumOperands(); |
| bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; |
| bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; |
| |
| if (isSplatMask(PermMask.Val)) { |
| if (NumElems <= 4) return Op; |
| // Promote it to a v4i32 splat. |
| return PromoteSplat(Op, DAG); |
| } |
| |
| if (X86::isMOVLMask(PermMask.Val)) |
| return (V1IsUndef) ? V2 : Op; |
| |
| if (X86::isMOVSHDUPMask(PermMask.Val) || |
| X86::isMOVSLDUPMask(PermMask.Val) || |
| X86::isMOVHLPSMask(PermMask.Val) || |
| X86::isMOVHPMask(PermMask.Val) || |
| X86::isMOVLPMask(PermMask.Val)) |
| return Op; |
| |
| if (ShouldXformToMOVHLPS(PermMask.Val) || |
| ShouldXformToMOVLP(V1.Val, PermMask.Val)) |
| return CommuteVectorShuffle(Op, DAG); |
| |
| bool V1IsSplat = isSplatVector(V1.Val) || V1.getOpcode() == ISD::UNDEF; |
| bool V2IsSplat = isSplatVector(V2.Val) || V2.getOpcode() == ISD::UNDEF; |
| if (V1IsSplat && !V2IsSplat) { |
| Op = CommuteVectorShuffle(Op, DAG); |
| V1 = Op.getOperand(0); |
| V2 = Op.getOperand(1); |
| PermMask = Op.getOperand(2); |
| V2IsSplat = true; |
| } |
| |
| if (isCommutedMOVL(PermMask.Val, V2IsSplat)) { |
| if (V2IsUndef) return V1; |
| Op = CommuteVectorShuffle(Op, DAG); |
| V1 = Op.getOperand(0); |
| V2 = Op.getOperand(1); |
| PermMask = Op.getOperand(2); |
| if (V2IsSplat) { |
| // V2 is a splat, so the mask may be malformed. That is, it may point |
| // to any V2 element. The instruction selectior won't like this. Get |
| // a corrected mask and commute to form a proper MOVS{S|D}. |
| SDOperand NewMask = getMOVLMask(NumElems, DAG); |
| if (NewMask.Val != PermMask.Val) |
| Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); |
| } |
| return Op; |
| } |
| |
| if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) || |
| X86::isUNPCKLMask(PermMask.Val) || |
| X86::isUNPCKHMask(PermMask.Val)) |
| return Op; |
| |
| if (V2IsSplat) { |
| // Normalize mask so all entries that point to V2 points to its first |
| // element then try to match unpck{h|l} again. If match, return a |
| // new vector_shuffle with the corrected mask. |
| SDOperand NewMask = NormalizeMask(PermMask, DAG); |
| if (NewMask.Val != PermMask.Val) { |
| if (X86::isUNPCKLMask(PermMask.Val, true)) { |
| SDOperand NewMask = getUnpacklMask(NumElems, DAG); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); |
| } else if (X86::isUNPCKHMask(PermMask.Val, true)) { |
| SDOperand NewMask = getUnpackhMask(NumElems, DAG); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask); |
| } |
| } |
| } |
| |
| // Normalize the node to match x86 shuffle ops if needed |
| if (V2.getOpcode() != ISD::UNDEF) |
| if (isCommutedSHUFP(PermMask.Val)) { |
| Op = CommuteVectorShuffle(Op, DAG); |
| V1 = Op.getOperand(0); |
| V2 = Op.getOperand(1); |
| PermMask = Op.getOperand(2); |
| } |
| |
| // If VT is integer, try PSHUF* first, then SHUFP*. |
| if (MVT::isInteger(VT)) { |
| if (X86::isPSHUFDMask(PermMask.Val) || |
| X86::isPSHUFHWMask(PermMask.Val) || |
| X86::isPSHUFLWMask(PermMask.Val)) { |
| if (V2.getOpcode() != ISD::UNDEF) |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, |
| DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); |
| return Op; |
| } |
| |
| if (X86::isSHUFPMask(PermMask.Val)) |
| return Op; |
| |
| // Handle v8i16 shuffle high / low shuffle node pair. |
| if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) { |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems); |
| MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); |
| std::vector<SDOperand> MaskVec; |
| for (unsigned i = 0; i != 4; ++i) |
| MaskVec.push_back(PermMask.getOperand(i)); |
| for (unsigned i = 4; i != 8; ++i) |
| MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); |
| V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| MaskVec.clear(); |
| for (unsigned i = 0; i != 4; ++i) |
| MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| for (unsigned i = 4; i != 8; ++i) |
| MaskVec.push_back(PermMask.getOperand(i)); |
| Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask); |
| } |
| } else { |
| // Floating point cases in the other order. |
| if (X86::isSHUFPMask(PermMask.Val)) |
| return Op; |
| if (X86::isPSHUFDMask(PermMask.Val) || |
| X86::isPSHUFHWMask(PermMask.Val) || |
| X86::isPSHUFLWMask(PermMask.Val)) { |
| if (V2.getOpcode() != ISD::UNDEF) |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, |
| DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask); |
| return Op; |
| } |
| } |
| |
| if (NumElems == 4) { |
| MVT::ValueType MaskVT = PermMask.getValueType(); |
| MVT::ValueType MaskEVT = MVT::getVectorBaseType(MaskVT); |
| std::vector<std::pair<int, int> > Locs; |
| Locs.reserve(NumElems); |
| std::vector<SDOperand> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| std::vector<SDOperand> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| unsigned NumHi = 0; |
| unsigned NumLo = 0; |
| // If no more than two elements come from either vector. This can be |
| // implemented with two shuffles. First shuffle gather the elements. |
| // The second shuffle, which takes the first shuffle as both of its |
| // vector operands, put the elements into the right order. |
| for (unsigned i = 0; i != NumElems; ++i) { |
| SDOperand Elt = PermMask.getOperand(i); |
| if (Elt.getOpcode() == ISD::UNDEF) { |
| Locs[i] = std::make_pair(-1, -1); |
| } else { |
| unsigned Val = cast<ConstantSDNode>(Elt)->getValue(); |
| if (Val < NumElems) { |
| Locs[i] = std::make_pair(0, NumLo); |
| Mask1[NumLo] = Elt; |
| NumLo++; |
| } else { |
| Locs[i] = std::make_pair(1, NumHi); |
| if (2+NumHi < NumElems) |
| Mask1[2+NumHi] = Elt; |
| NumHi++; |
| } |
| } |
| } |
| if (NumLo <= 2 && NumHi <= 2) { |
| V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, Mask1)); |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (Locs[i].first == -1) |
| continue; |
| else { |
| unsigned Idx = (i < NumElems/2) ? 0 : NumElems; |
| Idx += Locs[i].first * (NumElems/2) + Locs[i].second; |
| Mask2[i] = DAG.getConstant(Idx, MaskEVT); |
| } |
| } |
| |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, Mask2)); |
| } |
| |
| // Break it into (shuffle shuffle_hi, shuffle_lo). |
| Locs.clear(); |
| std::vector<SDOperand> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| std::vector<SDOperand> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT)); |
| std::vector<SDOperand> *MaskPtr = &LoMask; |
| unsigned MaskIdx = 0; |
| unsigned LoIdx = 0; |
| unsigned HiIdx = NumElems/2; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (i == NumElems/2) { |
| MaskPtr = &HiMask; |
| MaskIdx = 1; |
| LoIdx = 0; |
| HiIdx = NumElems/2; |
| } |
| SDOperand Elt = PermMask.getOperand(i); |
| if (Elt.getOpcode() == ISD::UNDEF) { |
| Locs[i] = std::make_pair(-1, -1); |
| } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) { |
| Locs[i] = std::make_pair(MaskIdx, LoIdx); |
| (*MaskPtr)[LoIdx] = Elt; |
| LoIdx++; |
| } else { |
| Locs[i] = std::make_pair(MaskIdx, HiIdx); |
| (*MaskPtr)[HiIdx] = Elt; |
| HiIdx++; |
| } |
| } |
| |
| SDOperand LoShuffle = |
| DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, LoMask)); |
| SDOperand HiShuffle = |
| DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, HiMask)); |
| std::vector<SDOperand> MaskOps; |
| for (unsigned i = 0; i != NumElems; ++i) { |
| if (Locs[i].first == -1) { |
| MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT)); |
| } else { |
| unsigned Idx = Locs[i].first * NumElems + Locs[i].second; |
| MaskOps.push_back(DAG.getConstant(Idx, MaskEVT)); |
| } |
| } |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskOps)); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { |
| if (!isa<ConstantSDNode>(Op.getOperand(1))) |
| return SDOperand(); |
| |
| MVT::ValueType VT = Op.getValueType(); |
| // TODO: handle v16i8. |
| if (MVT::getSizeInBits(VT) == 16) { |
| // Transform it so it match pextrw which produces a 32-bit result. |
| MVT::ValueType EVT = (MVT::ValueType)(VT+1); |
| SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT, |
| Op.getOperand(0), Op.getOperand(1)); |
| SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract, |
| DAG.getValueType(VT)); |
| return DAG.getNode(ISD::TRUNCATE, VT, Assert); |
| } else if (MVT::getSizeInBits(VT) == 32) { |
| SDOperand Vec = Op.getOperand(0); |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| if (Idx == 0) |
| return Op; |
| |
| // SHUFPS the element to the lowest double word, then movss. |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| SDOperand IdxNode = DAG.getConstant((Idx < 2) ? Idx : Idx+4, |
| MVT::getVectorBaseType(MaskVT)); |
| std::vector<SDOperand> IdxVec; |
| IdxVec.push_back(DAG.getConstant(Idx, MVT::getVectorBaseType(MaskVT))); |
| IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); |
| IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); |
| IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, IdxVec); |
| Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), |
| Vec, Vec, Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, |
| DAG.getConstant(0, MVT::i32)); |
| } else if (MVT::getSizeInBits(VT) == 64) { |
| SDOperand Vec = Op.getOperand(0); |
| unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| if (Idx == 0) |
| return Op; |
| |
| // UNPCKHPD the element to the lowest double word, then movsd. |
| // Note if the lower 64 bits of the result of the UNPCKHPD is then stored |
| // to a f64mem, the whole operation is folded into a single MOVHPDmr. |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| std::vector<SDOperand> IdxVec; |
| IdxVec.push_back(DAG.getConstant(1, MVT::getVectorBaseType(MaskVT))); |
| IdxVec.push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorBaseType(MaskVT))); |
| SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, IdxVec); |
| Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(), |
| Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec, |
| DAG.getConstant(0, MVT::i32)); |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) { |
| // Transform it so it match pinsrw which expects a 16-bit value in a GR32 |
| // as its second argument. |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType BaseVT = MVT::getVectorBaseType(VT); |
| SDOperand N0 = Op.getOperand(0); |
| SDOperand N1 = Op.getOperand(1); |
| SDOperand N2 = Op.getOperand(2); |
| if (MVT::getSizeInBits(BaseVT) == 16) { |
| if (N1.getValueType() != MVT::i32) |
| N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1); |
| if (N2.getValueType() != MVT::i32) |
| N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(), MVT::i32); |
| return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2); |
| } else if (MVT::getSizeInBits(BaseVT) == 32) { |
| unsigned Idx = cast<ConstantSDNode>(N2)->getValue(); |
| if (Idx == 0) { |
| // Use a movss. |
| N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1); |
| MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4); |
| MVT::ValueType BaseVT = MVT::getVectorBaseType(MaskVT); |
| std::vector<SDOperand> MaskVec; |
| MaskVec.push_back(DAG.getConstant(4, BaseVT)); |
| for (unsigned i = 1; i <= 3; ++i) |
| MaskVec.push_back(DAG.getConstant(i, BaseVT)); |
| return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1, |
| DAG.getNode(ISD::BUILD_VECTOR, MaskVT, MaskVec)); |
| } else { |
| // Use two pinsrw instructions to insert a 32 bit value. |
| Idx <<= 1; |
| if (MVT::isFloatingPoint(N1.getValueType())) { |
| if (N1.getOpcode() == ISD::LOAD) { |
| // Just load directly from f32mem to GR32. |
| N1 = DAG.getLoad(MVT::i32, N1.getOperand(0), N1.getOperand(1), |
| N1.getOperand(2)); |
| } else { |
| N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1); |
| N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1); |
| N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1, |
| DAG.getConstant(0, MVT::i32)); |
| } |
| } |
| N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0); |
| N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1, |
| DAG.getConstant(Idx, MVT::i32)); |
| N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8)); |
| N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1, |
| DAG.getConstant(Idx+1, MVT::i32)); |
| return DAG.getNode(ISD::BIT_CONVERT, VT, N0); |
| } |
| } |
| |
| return SDOperand(); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0)); |
| return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt); |
| } |
| |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as |
| // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is |
| // one of the above mentioned nodes. It has to be wrapped because otherwise |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only |
| // be used to form addressing mode. These wrapped nodes will be selected |
| // into MOV32ri. |
| SDOperand |
| X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), |
| DAG.getTargetConstantPool(CP->get(), getPointerTy(), |
| CP->getAlignment())); |
| if (Subtarget->isTargetDarwin()) { |
| // With PIC, the address is actually $g + Offset. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC) |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), Result); |
| } |
| |
| return Result; |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) { |
| GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), |
| DAG.getTargetGlobalAddress(GV, |
| getPointerTy())); |
| if (Subtarget->isTargetDarwin()) { |
| // With PIC, the address is actually $g + Offset. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC) |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| Result); |
| |
| // For Darwin, external and weak symbols are indirect, so we want to load |
| // the value at address GV, not the value of GV itself. This means that |
| // the GlobalAddress must be in the base or index register of the address, |
| // not the GV offset field. |
| if (getTargetMachine().getRelocationModel() != Reloc::Static && |
| DarwinGVRequiresExtraLoad(GV)) |
| Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), |
| Result, DAG.getSrcValue(NULL)); |
| } |
| |
| return Result; |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) { |
| const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); |
| SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), |
| DAG.getTargetExternalSymbol(Sym, |
| getPointerTy())); |
| if (Subtarget->isTargetDarwin()) { |
| // With PIC, the address is actually $g + Offset. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC) |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && |
| "Not an i64 shift!"); |
| bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; |
| SDOperand ShOpLo = Op.getOperand(0); |
| SDOperand ShOpHi = Op.getOperand(1); |
| SDOperand ShAmt = Op.getOperand(2); |
| SDOperand Tmp1 = isSRA ? DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, |
| DAG.getConstant(31, MVT::i8)) |
| : DAG.getConstant(0, MVT::i32); |
| |
| SDOperand Tmp2, Tmp3; |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt); |
| Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt); |
| } else { |
| Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt); |
| Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt); |
| } |
| |
| SDOperand InFlag = DAG.getNode(X86ISD::TEST, MVT::Flag, |
| ShAmt, DAG.getConstant(32, MVT::i8)); |
| |
| SDOperand Hi, Lo; |
| SDOperand CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); |
| |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::i32); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| if (Op.getOpcode() == ISD::SHL_PARTS) { |
| Ops.push_back(Tmp2); |
| Ops.push_back(Tmp3); |
| Ops.push_back(CC); |
| Ops.push_back(InFlag); |
| Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); |
| InFlag = Hi.getValue(1); |
| |
| Ops.clear(); |
| Ops.push_back(Tmp3); |
| Ops.push_back(Tmp1); |
| Ops.push_back(CC); |
| Ops.push_back(InFlag); |
| Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); |
| } else { |
| Ops.push_back(Tmp2); |
| Ops.push_back(Tmp3); |
| Ops.push_back(CC); |
| Ops.push_back(InFlag); |
| Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); |
| InFlag = Lo.getValue(1); |
| |
| Ops.clear(); |
| Ops.push_back(Tmp3); |
| Ops.push_back(Tmp1); |
| Ops.push_back(CC); |
| Ops.push_back(InFlag); |
| Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); |
| } |
| |
| Tys.clear(); |
| Tys.push_back(MVT::i32); |
| Tys.push_back(MVT::i32); |
| Ops.clear(); |
| Ops.push_back(Lo); |
| Ops.push_back(Hi); |
| return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); |
| } |
| |
| SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getOperand(0).getValueType() <= MVT::i64 && |
| Op.getOperand(0).getValueType() >= MVT::i16 && |
| "Unknown SINT_TO_FP to lower!"); |
| |
| SDOperand Result; |
| MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); |
| unsigned Size = MVT::getSizeInBits(SrcVT)/8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| SDOperand Chain = DAG.getNode(ISD::STORE, MVT::Other, |
| DAG.getEntryNode(), Op.getOperand(0), |
| StackSlot, DAG.getSrcValue(NULL)); |
| |
| // Build the FILD |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| if (X86ScalarSSE) Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(SrcVT)); |
| Result = DAG.getNode(X86ScalarSSE ? X86ISD::FILD_FLAG :X86ISD::FILD, |
| Tys, Ops); |
| |
| if (X86ScalarSSE) { |
| Chain = Result.getValue(1); |
| SDOperand InFlag = Result.getValue(2); |
| |
| // FIXME: Currently the FST is flagged to the FILD_FLAG. This |
| // shouldn't be necessary except that RFP cannot be live across |
| // multiple blocks. When stackifier is fixed, they can be uncoupled. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Result); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(Op.getValueType())); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::FST, Tys, Ops); |
| Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, |
| DAG.getSrcValue(NULL)); |
| } |
| |
| return Result; |
| } |
| |
| SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && |
| "Unknown FP_TO_SINT to lower!"); |
| // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary |
| // stack slot. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; |
| int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); |
| SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| |
| unsigned Opc; |
| switch (Op.getValueType()) { |
| default: assert(0 && "Invalid FP_TO_SINT to lower!"); |
| case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; |
| case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; |
| case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; |
| } |
| |
| SDOperand Chain = DAG.getEntryNode(); |
| SDOperand Value = Op.getOperand(0); |
| if (X86ScalarSSE) { |
| assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!"); |
| Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, StackSlot, |
| DAG.getSrcValue(0)); |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(StackSlot); |
| Ops.push_back(DAG.getValueType(Op.getOperand(0).getValueType())); |
| Value = DAG.getNode(X86ISD::FLD, Tys, Ops); |
| Chain = Value.getValue(1); |
| SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); |
| StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); |
| } |
| |
| // Build the FP_TO_INT*_IN_MEM |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Value); |
| Ops.push_back(StackSlot); |
| SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops); |
| |
| // Load the result. |
| return DAG.getLoad(Op.getValueType(), FIST, StackSlot, |
| DAG.getSrcValue(NULL)); |
| } |
| |
| SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| const Type *OpNTy = MVT::getTypeForValueType(VT); |
| std::vector<Constant*> CV; |
| if (VT == MVT::f64) { |
| CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(~(1ULL << 63)))); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| } else { |
| CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(~(1U << 31)))); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| } |
| Constant *CS = ConstantStruct::get(CV); |
| SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); |
| SDOperand Mask |
| = DAG.getNode(X86ISD::LOAD_PACK, |
| VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); |
| return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask); |
| } |
| |
| SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| const Type *OpNTy = MVT::getTypeForValueType(VT); |
| std::vector<Constant*> CV; |
| if (VT == MVT::f64) { |
| CV.push_back(ConstantFP::get(OpNTy, BitsToDouble(1ULL << 63))); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| } else { |
| CV.push_back(ConstantFP::get(OpNTy, BitsToFloat(1U << 31))); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| CV.push_back(ConstantFP::get(OpNTy, 0.0)); |
| } |
| Constant *CS = ConstantStruct::get(CV); |
| SDOperand CPIdx = DAG.getConstantPool(CS, getPointerTy(), 4); |
| SDOperand Mask = DAG.getNode(X86ISD::LOAD_PACK, |
| VT, DAG.getEntryNode(), CPIdx, DAG.getSrcValue(NULL)); |
| return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask); |
| } |
| |
| SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) { |
| assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); |
| SDOperand Cond; |
| SDOperand CC = Op.getOperand(2); |
| ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType()); |
| bool Flip; |
| unsigned X86CC; |
| if (translateX86CC(CC, isFP, X86CC, Flip)) { |
| if (Flip) |
| Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, |
| Op.getOperand(1), Op.getOperand(0)); |
| else |
| Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, |
| Op.getOperand(0), Op.getOperand(1)); |
| return DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86CC, MVT::i8), Cond); |
| } else { |
| assert(isFP && "Illegal integer SetCC!"); |
| |
| Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, |
| Op.getOperand(0), Op.getOperand(1)); |
| std::vector<MVT::ValueType> Tys; |
| std::vector<SDOperand> Ops; |
| switch (SetCCOpcode) { |
| default: assert(false && "Illegal floating point SetCC!"); |
| case ISD::SETOEQ: { // !PF & ZF |
| Tys.push_back(MVT::i8); |
| Tys.push_back(MVT::Flag); |
| Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8)); |
| Ops.push_back(Cond); |
| SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); |
| SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86ISD::COND_E, MVT::i8), |
| Tmp1.getValue(1)); |
| return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); |
| } |
| case ISD::SETUNE: { // PF | !ZF |
| Tys.push_back(MVT::i8); |
| Tys.push_back(MVT::Flag); |
| Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8)); |
| Ops.push_back(Cond); |
| SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); |
| SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86ISD::COND_NE, MVT::i8), |
| Tmp1.getValue(1)); |
| return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); |
| } |
| } |
| } |
| } |
| |
| SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| bool isFPStack = MVT::isFloatingPoint(VT) && !X86ScalarSSE; |
| bool addTest = false; |
| SDOperand Op0 = Op.getOperand(0); |
| SDOperand Cond, CC; |
| if (Op0.getOpcode() == ISD::SETCC) |
| Op0 = LowerOperation(Op0, DAG); |
| |
| if (Op0.getOpcode() == X86ISD::SETCC) { |
| // If condition flag is set by a X86ISD::CMP, then make a copy of it |
| // (since flag operand cannot be shared). If the X86ISD::SETCC does not |
| // have another use it will be eliminated. |
| // If the X86ISD::SETCC has more than one use, then it's probably better |
| // to use a test instead of duplicating the X86ISD::CMP (for register |
| // pressure reason). |
| unsigned CmpOpc = Op0.getOperand(1).getOpcode(); |
| if (CmpOpc == X86ISD::CMP || CmpOpc == X86ISD::COMI || |
| CmpOpc == X86ISD::UCOMI) { |
| if (!Op0.hasOneUse()) { |
| std::vector<MVT::ValueType> Tys; |
| for (unsigned i = 0; i < Op0.Val->getNumValues(); ++i) |
| Tys.push_back(Op0.Val->getValueType(i)); |
| std::vector<SDOperand> Ops; |
| for (unsigned i = 0; i < Op0.getNumOperands(); ++i) |
| Ops.push_back(Op0.getOperand(i)); |
| Op0 = DAG.getNode(X86ISD::SETCC, Tys, Ops); |
| } |
| |
| CC = Op0.getOperand(0); |
| Cond = Op0.getOperand(1); |
| // Make a copy as flag result cannot be used by more than one. |
| Cond = DAG.getNode(CmpOpc, MVT::Flag, |
| Cond.getOperand(0), Cond.getOperand(1)); |
| addTest = |
| isFPStack && !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended()); |
| } else |
| addTest = true; |
| } else |
| addTest = true; |
| |
| if (addTest) { |
| CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); |
| Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Op0, Op0); |
| } |
| |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(Op.getValueType()); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| // X86ISD::CMOV means set the result (which is operand 1) to the RHS if |
| // condition is true. |
| Ops.push_back(Op.getOperand(2)); |
| Ops.push_back(Op.getOperand(1)); |
| Ops.push_back(CC); |
| Ops.push_back(Cond); |
| return DAG.getNode(X86ISD::CMOV, Tys, Ops); |
| } |
| |
| SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) { |
| bool addTest = false; |
| SDOperand Cond = Op.getOperand(1); |
| SDOperand Dest = Op.getOperand(2); |
| SDOperand CC; |
| if (Cond.getOpcode() == ISD::SETCC) |
| Cond = LowerOperation(Cond, DAG); |
| |
| if (Cond.getOpcode() == X86ISD::SETCC) { |
| // If condition flag is set by a X86ISD::CMP, then make a copy of it |
| // (since flag operand cannot be shared). If the X86ISD::SETCC does not |
| // have another use it will be eliminated. |
| // If the X86ISD::SETCC has more than one use, then it's probably better |
| // to use a test instead of duplicating the X86ISD::CMP (for register |
| // pressure reason). |
| unsigned CmpOpc = Cond.getOperand(1).getOpcode(); |
| if (CmpOpc == X86ISD::CMP || CmpOpc == X86ISD::COMI || |
| CmpOpc == X86ISD::UCOMI) { |
| if (!Cond.hasOneUse()) { |
| std::vector<MVT::ValueType> Tys; |
| for (unsigned i = 0; i < Cond.Val->getNumValues(); ++i) |
| Tys.push_back(Cond.Val->getValueType(i)); |
| std::vector<SDOperand> Ops; |
| for (unsigned i = 0; i < Cond.getNumOperands(); ++i) |
| Ops.push_back(Cond.getOperand(i)); |
| Cond = DAG.getNode(X86ISD::SETCC, Tys, Ops); |
| } |
| |
| CC = Cond.getOperand(0); |
| Cond = Cond.getOperand(1); |
| // Make a copy as flag result cannot be used by more than one. |
| Cond = DAG.getNode(CmpOpc, MVT::Flag, |
| Cond.getOperand(0), Cond.getOperand(1)); |
| } else |
| addTest = true; |
| } else |
| addTest = true; |
| |
| if (addTest) { |
| CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); |
| Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Cond, Cond); |
| } |
| return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), |
| Op.getOperand(0), Op.getOperand(2), CC, Cond); |
| } |
| |
| SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) { |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); |
| SDOperand Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), |
| DAG.getTargetJumpTable(JT->getIndex(), |
| getPointerTy())); |
| if (Subtarget->isTargetDarwin()) { |
| // With PIC, the address is actually $g + Offset. |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC) |
| Result = DAG.getNode(ISD::ADD, getPointerTy(), |
| DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()), |
| Result); |
| } |
| |
| return Result; |
| } |
| |
| SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) { |
| unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| if (CallingConv == CallingConv::Fast && EnableFastCC) |
| return LowerFastCCCallTo(Op, DAG); |
| else |
| return LowerCCCCallTo(Op, DAG); |
| } |
| |
| SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Copy; |
| |
| switch(Op.getNumOperands()) { |
| default: |
| assert(0 && "Do not know how to return this many arguments!"); |
| abort(); |
| case 1: // ret void. |
| return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0), |
| DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); |
| case 3: { |
| MVT::ValueType ArgVT = Op.getOperand(1).getValueType(); |
| |
| if (MVT::isVector(ArgVT)) { |
| // Integer or FP vector result -> XMM0. |
| if (DAG.getMachineFunction().liveout_empty()) |
| DAG.getMachineFunction().addLiveOut(X86::XMM0); |
| Copy = DAG.getCopyToReg(Op.getOperand(0), X86::XMM0, Op.getOperand(1), |
| SDOperand()); |
| } else if (MVT::isInteger(ArgVT)) { |
| // Integer result -> EAX |
| if (DAG.getMachineFunction().liveout_empty()) |
| DAG.getMachineFunction().addLiveOut(X86::EAX); |
| |
| Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EAX, Op.getOperand(1), |
| SDOperand()); |
| } else if (!X86ScalarSSE) { |
| // FP return with fp-stack value. |
| if (DAG.getMachineFunction().liveout_empty()) |
| DAG.getMachineFunction().addLiveOut(X86::ST0); |
| |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Op.getOperand(0)); |
| Ops.push_back(Op.getOperand(1)); |
| Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); |
| } else { |
| // FP return with ScalarSSE (return on fp-stack). |
| if (DAG.getMachineFunction().liveout_empty()) |
| DAG.getMachineFunction().addLiveOut(X86::ST0); |
| |
| SDOperand MemLoc; |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand Value = Op.getOperand(1); |
| |
| if (Value.getOpcode() == ISD::LOAD && |
| (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) { |
| Chain = Value.getOperand(0); |
| MemLoc = Value.getOperand(1); |
| } else { |
| // Spill the value to memory and reload it into top of stack. |
| unsigned Size = MVT::getSizeInBits(ArgVT)/8; |
| MachineFunction &MF = DAG.getMachineFunction(); |
| int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); |
| MemLoc = DAG.getFrameIndex(SSFI, getPointerTy()); |
| Chain = DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), |
| Value, MemLoc, DAG.getSrcValue(0)); |
| } |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::f64); |
| Tys.push_back(MVT::Other); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(MemLoc); |
| Ops.push_back(DAG.getValueType(ArgVT)); |
| Copy = DAG.getNode(X86ISD::FLD, Tys, Ops); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| Ops.clear(); |
| Ops.push_back(Copy.getValue(1)); |
| Ops.push_back(Copy); |
| Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); |
| } |
| break; |
| } |
| case 5: |
| if (DAG.getMachineFunction().liveout_empty()) { |
| DAG.getMachineFunction().addLiveOut(X86::EAX); |
| DAG.getMachineFunction().addLiveOut(X86::EDX); |
| } |
| |
| Copy = DAG.getCopyToReg(Op.getOperand(0), X86::EDX, Op.getOperand(3), |
| SDOperand()); |
| Copy = DAG.getCopyToReg(Copy, X86::EAX,Op.getOperand(1),Copy.getValue(1)); |
| break; |
| } |
| return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, |
| Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16), |
| Copy.getValue(1)); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) { |
| unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| if (CC == CallingConv::Fast && EnableFastCC) |
| return LowerFastCCArguments(Op, DAG); |
| else |
| return LowerCCCArguments(Op, DAG); |
| } |
| |
| SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand InFlag(0, 0); |
| SDOperand Chain = Op.getOperand(0); |
| unsigned Align = |
| (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); |
| if (Align == 0) Align = 1; |
| |
| ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); |
| // If not DWORD aligned, call memset if size is less than the threshold. |
| // It knows how to align to the right boundary first. |
| if ((Align & 3) != 0 || |
| (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) { |
| MVT::ValueType IntPtr = getPointerTy(); |
| const Type *IntPtrTy = getTargetData()->getIntPtrType(); |
| std::vector<std::pair<SDOperand, const Type*> > Args; |
| Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); |
| // Extend the ubyte argument to be an int value for the call. |
| SDOperand Val = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2)); |
| Args.push_back(std::make_pair(Val, IntPtrTy)); |
| Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); |
| std::pair<SDOperand,SDOperand> CallResult = |
| LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, |
| DAG.getExternalSymbol("memset", IntPtr), Args, DAG); |
| return CallResult.second; |
| } |
| |
| MVT::ValueType AVT; |
| SDOperand Count; |
| ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| unsigned BytesLeft = 0; |
| bool TwoRepStos = false; |
| if (ValC) { |
| unsigned ValReg; |
| unsigned Val = ValC->getValue() & 255; |
| |
| // If the value is a constant, then we can potentially use larger sets. |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| AVT = MVT::i16; |
| Count = DAG.getConstant(I->getValue() / 2, MVT::i32); |
| BytesLeft = I->getValue() % 2; |
| Val = (Val << 8) | Val; |
| ValReg = X86::AX; |
| break; |
| case 0: // DWORD aligned |
| AVT = MVT::i32; |
| if (I) { |
| Count = DAG.getConstant(I->getValue() / 4, MVT::i32); |
| BytesLeft = I->getValue() % 4; |
| } else { |
| Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), |
| DAG.getConstant(2, MVT::i8)); |
| TwoRepStos = true; |
| } |
| Val = (Val << 8) | Val; |
| Val = (Val << 16) | Val; |
| ValReg = X86::EAX; |
| break; |
| default: // Byte aligned |
| AVT = MVT::i8; |
| Count = Op.getOperand(3); |
| ValReg = X86::AL; |
| break; |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } else { |
| AVT = MVT::i8; |
| Count = Op.getOperand(3); |
| Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| Chain = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getValueType(AVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::REP_STOS, Tys, Ops); |
| |
| if (TwoRepStos) { |
| InFlag = Chain.getValue(1); |
| Count = Op.getOperand(3); |
| MVT::ValueType CVT = Count.getValueType(); |
| SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, |
| DAG.getConstant(3, CVT)); |
| Chain = DAG.getCopyToReg(Chain, X86::ECX, Left, InFlag); |
| InFlag = Chain.getValue(1); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getValueType(MVT::i8)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::REP_STOS, Tys, Ops); |
| } else if (BytesLeft) { |
| // Issue stores for the last 1 - 3 bytes. |
| SDOperand Value; |
| unsigned Val = ValC->getValue() & 255; |
| unsigned Offset = I->getValue() - BytesLeft; |
| SDOperand DstAddr = Op.getOperand(1); |
| MVT::ValueType AddrVT = DstAddr.getValueType(); |
| if (BytesLeft >= 2) { |
| Value = DAG.getConstant((Val << 8) | Val, MVT::i16); |
| Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, |
| DAG.getNode(ISD::ADD, AddrVT, DstAddr, |
| DAG.getConstant(Offset, AddrVT)), |
| DAG.getSrcValue(NULL)); |
| BytesLeft -= 2; |
| Offset += 2; |
| } |
| |
| if (BytesLeft == 1) { |
| Value = DAG.getConstant(Val, MVT::i8); |
| Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, |
| DAG.getNode(ISD::ADD, AddrVT, DstAddr, |
| DAG.getConstant(Offset, AddrVT)), |
| DAG.getSrcValue(NULL)); |
| } |
| } |
| |
| return Chain; |
| } |
| |
| SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Chain = Op.getOperand(0); |
| unsigned Align = |
| (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); |
| if (Align == 0) Align = 1; |
| |
| ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3)); |
| // If not DWORD aligned, call memcpy if size is less than the threshold. |
| // It knows how to align to the right boundary first. |
| if ((Align & 3) != 0 || |
| (I && I->getValue() < Subtarget->getMinRepStrSizeThreshold())) { |
| MVT::ValueType IntPtr = getPointerTy(); |
| const Type *IntPtrTy = getTargetData()->getIntPtrType(); |
| std::vector<std::pair<SDOperand, const Type*> > Args; |
| Args.push_back(std::make_pair(Op.getOperand(1), IntPtrTy)); |
| Args.push_back(std::make_pair(Op.getOperand(2), IntPtrTy)); |
| Args.push_back(std::make_pair(Op.getOperand(3), IntPtrTy)); |
| std::pair<SDOperand,SDOperand> CallResult = |
| LowerCallTo(Chain, Type::VoidTy, false, CallingConv::C, false, |
| DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG); |
| return CallResult.second; |
| } |
| |
| MVT::ValueType AVT; |
| SDOperand Count; |
| unsigned BytesLeft = 0; |
| bool TwoRepMovs = false; |
| switch (Align & 3) { |
| case 2: // WORD aligned |
| AVT = MVT::i16; |
| Count = DAG.getConstant(I->getValue() / 2, MVT::i32); |
| BytesLeft = I->getValue() % 2; |
| break; |
| case 0: // DWORD aligned |
| AVT = MVT::i32; |
| if (I) { |
| Count = DAG.getConstant(I->getValue() / 4, MVT::i32); |
| BytesLeft = I->getValue() % 4; |
| } else { |
| Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), |
| DAG.getConstant(2, MVT::i8)); |
| TwoRepMovs = true; |
| } |
| break; |
| default: // Byte aligned |
| AVT = MVT::i8; |
| Count = Op.getOperand(3); |
| break; |
| } |
| |
| SDOperand InFlag(0, 0); |
| Chain = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); |
| InFlag = Chain.getValue(1); |
| Chain = DAG.getCopyToReg(Chain, X86::ESI, Op.getOperand(2), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getValueType(AVT)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, Ops); |
| |
| if (TwoRepMovs) { |
| InFlag = Chain.getValue(1); |
| Count = Op.getOperand(3); |
| MVT::ValueType CVT = Count.getValueType(); |
| SDOperand Left = DAG.getNode(ISD::AND, CVT, Count, |
| DAG.getConstant(3, CVT)); |
| Chain = DAG.getCopyToReg(Chain, X86::ECX, Left, InFlag); |
| InFlag = Chain.getValue(1); |
| Tys.clear(); |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| Ops.clear(); |
| Ops.push_back(Chain); |
| Ops.push_back(DAG.getValueType(MVT::i8)); |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, Ops); |
| } else if (BytesLeft) { |
| // Issue loads and stores for the last 1 - 3 bytes. |
| unsigned Offset = I->getValue() - BytesLeft; |
| SDOperand DstAddr = Op.getOperand(1); |
| MVT::ValueType DstVT = DstAddr.getValueType(); |
| SDOperand SrcAddr = Op.getOperand(2); |
| MVT::ValueType SrcVT = SrcAddr.getValueType(); |
| SDOperand Value; |
| if (BytesLeft >= 2) { |
| Value = DAG.getLoad(MVT::i16, Chain, |
| DAG.getNode(ISD::ADD, SrcVT, SrcAddr, |
| DAG.getConstant(Offset, SrcVT)), |
| DAG.getSrcValue(NULL)); |
| Chain = Value.getValue(1); |
| Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, |
| DAG.getNode(ISD::ADD, DstVT, DstAddr, |
| DAG.getConstant(Offset, DstVT)), |
| DAG.getSrcValue(NULL)); |
| BytesLeft -= 2; |
| Offset += 2; |
| } |
| |
| if (BytesLeft == 1) { |
| Value = DAG.getLoad(MVT::i8, Chain, |
| DAG.getNode(ISD::ADD, SrcVT, SrcAddr, |
| DAG.getConstant(Offset, SrcVT)), |
| DAG.getSrcValue(NULL)); |
| Chain = Value.getValue(1); |
| Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Value, |
| DAG.getNode(ISD::ADD, DstVT, DstAddr, |
| DAG.getConstant(Offset, DstVT)), |
| DAG.getSrcValue(NULL)); |
| } |
| } |
| |
| return Chain; |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) { |
| std::vector<MVT::ValueType> Tys; |
| Tys.push_back(MVT::Other); |
| Tys.push_back(MVT::Flag); |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Op.getOperand(0)); |
| SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, Ops); |
| Ops.clear(); |
| Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1))); |
| Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX, |
| MVT::i32, Ops[0].getValue(2))); |
| Ops.push_back(Ops[1].getValue(1)); |
| Tys[0] = Tys[1] = MVT::i32; |
| Tys.push_back(MVT::Other); |
| return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); |
| } |
| |
| SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| // FIXME: Replace MVT::i32 with PointerTy |
| SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); |
| return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR, |
| Op.getOperand(1), Op.getOperand(2)); |
| } |
| |
| SDOperand |
| X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) { |
| unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue(); |
| switch (IntNo) { |
| default: return SDOperand(); // Don't custom lower most intrinsics. |
| // Comparison intrinsics. |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| case Intrinsic::x86_sse2_comilt_sd: |
| case Intrinsic::x86_sse2_comile_sd: |
| case Intrinsic::x86_sse2_comigt_sd: |
| case Intrinsic::x86_sse2_comige_sd: |
| case Intrinsic::x86_sse2_comineq_sd: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| case Intrinsic::x86_sse2_ucomineq_sd: { |
| unsigned Opc = 0; |
| ISD::CondCode CC = ISD::SETCC_INVALID; |
| switch (IntNo) { |
| default: break; |
| case Intrinsic::x86_sse_comieq_ss: |
| case Intrinsic::x86_sse2_comieq_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETEQ; |
| break; |
| case Intrinsic::x86_sse_comilt_ss: |
| case Intrinsic::x86_sse2_comilt_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETLT; |
| break; |
| case Intrinsic::x86_sse_comile_ss: |
| case Intrinsic::x86_sse2_comile_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETLE; |
| break; |
| case Intrinsic::x86_sse_comigt_ss: |
| case Intrinsic::x86_sse2_comigt_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETGT; |
| break; |
| case Intrinsic::x86_sse_comige_ss: |
| case Intrinsic::x86_sse2_comige_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETGE; |
| break; |
| case Intrinsic::x86_sse_comineq_ss: |
| case Intrinsic::x86_sse2_comineq_sd: |
| Opc = X86ISD::COMI; |
| CC = ISD::SETNE; |
| break; |
| case Intrinsic::x86_sse_ucomieq_ss: |
| case Intrinsic::x86_sse2_ucomieq_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETEQ; |
| break; |
| case Intrinsic::x86_sse_ucomilt_ss: |
| case Intrinsic::x86_sse2_ucomilt_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETLT; |
| break; |
| case Intrinsic::x86_sse_ucomile_ss: |
| case Intrinsic::x86_sse2_ucomile_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETLE; |
| break; |
| case Intrinsic::x86_sse_ucomigt_ss: |
| case Intrinsic::x86_sse2_ucomigt_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETGT; |
| break; |
| case Intrinsic::x86_sse_ucomige_ss: |
| case Intrinsic::x86_sse2_ucomige_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETGE; |
| break; |
| case Intrinsic::x86_sse_ucomineq_ss: |
| case Intrinsic::x86_sse2_ucomineq_sd: |
| Opc = X86ISD::UCOMI; |
| CC = ISD::SETNE; |
| break; |
| } |
| bool Flip; |
| unsigned X86CC; |
| translateX86CC(CC, true, X86CC, Flip); |
| SDOperand Cond = DAG.getNode(Opc, MVT::Flag, Op.getOperand(Flip?2:1), |
| Op.getOperand(Flip?1:2)); |
| SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8, |
| DAG.getConstant(X86CC, MVT::i8), Cond); |
| return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC); |
| } |
| } |
| } |
| |
| /// LowerOperation - Provide custom lowering hooks for some operations. |
| /// |
| SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { |
| switch (Op.getOpcode()) { |
| default: assert(0 && "Should not custom lower this!"); |
| case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); |
| case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); |
| case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); |
| case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); |
| case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); |
| case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); |
| case ISD::SHL_PARTS: |
| case ISD::SRA_PARTS: |
| case ISD::SRL_PARTS: return LowerShift(Op, DAG); |
| case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); |
| case ISD::FABS: return LowerFABS(Op, DAG); |
| case ISD::FNEG: return LowerFNEG(Op, DAG); |
| case ISD::SETCC: return LowerSETCC(Op, DAG); |
| case ISD::SELECT: return LowerSELECT(Op, DAG); |
| case ISD::BRCOND: return LowerBRCOND(Op, DAG); |
| case ISD::JumpTable: return LowerJumpTable(Op, DAG); |
| case ISD::CALL: return LowerCALL(Op, DAG); |
| case ISD::RET: return LowerRET(Op, DAG); |
| case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG); |
| case ISD::MEMSET: return LowerMEMSET(Op, DAG); |
| case ISD::MEMCPY: return LowerMEMCPY(Op, DAG); |
| case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| } |
| } |
| |
| const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return NULL; |
| case X86ISD::SHLD: return "X86ISD::SHLD"; |
| case X86ISD::SHRD: return "X86ISD::SHRD"; |
| case X86ISD::FAND: return "X86ISD::FAND"; |
| case X86ISD::FXOR: return "X86ISD::FXOR"; |
| case X86ISD::FILD: return "X86ISD::FILD"; |
| case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; |
| case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; |
| case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; |
| case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; |
| case X86ISD::FLD: return "X86ISD::FLD"; |
| case X86ISD::FST: return "X86ISD::FST"; |
| case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT"; |
| case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT"; |
| case X86ISD::CALL: return "X86ISD::CALL"; |
| case X86ISD::TAILCALL: return "X86ISD::TAILCALL"; |
| case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; |
| case X86ISD::CMP: return "X86ISD::CMP"; |
| case X86ISD::TEST: return "X86ISD::TEST"; |
| case X86ISD::COMI: return "X86ISD::COMI"; |
| case X86ISD::UCOMI: return "X86ISD::UCOMI"; |
| case X86ISD::SETCC: return "X86ISD::SETCC"; |
| case X86ISD::CMOV: return "X86ISD::CMOV"; |
| case X86ISD::BRCOND: return "X86ISD::BRCOND"; |
| case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; |
| case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; |
| case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; |
| case X86ISD::LOAD_PACK: return "X86ISD::LOAD_PACK"; |
| case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; |
| case X86ISD::Wrapper: return "X86ISD::Wrapper"; |
| case X86ISD::S2VEC: return "X86ISD::S2VEC"; |
| case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; |
| case X86ISD::PINSRW: return "X86ISD::PINSRW"; |
| } |
| } |
| |
| void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| uint64_t Mask, |
| uint64_t &KnownZero, |
| uint64_t &KnownOne, |
| unsigned Depth) const { |
| unsigned Opc = Op.getOpcode(); |
| assert((Opc >= ISD::BUILTIN_OP_END || |
| Opc == ISD::INTRINSIC_WO_CHAIN || |
| Opc == ISD::INTRINSIC_W_CHAIN || |
| Opc == ISD::INTRINSIC_VOID) && |
| "Should use MaskedValueIsZero if you don't know whether Op" |
| " is a target node!"); |
| |
| KnownZero = KnownOne = 0; // Don't know anything. |
| switch (Opc) { |
| default: break; |
| case X86ISD::SETCC: |
| KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); |
| break; |
| } |
| } |
| |
| std::vector<unsigned> X86TargetLowering:: |
| getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| MVT::ValueType VT) const { |
| if (Constraint.size() == 1) { |
| // FIXME: not handling fp-stack yet! |
| // FIXME: not handling MMX registers yet ('y' constraint). |
| switch (Constraint[0]) { // GCC X86 Constraint Letters |
| default: break; // Unknown constriant letter |
| case 'r': // GENERAL_REGS |
| case 'R': // LEGACY_REGS |
| if (VT == MVT::i32) |
| return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, |
| X86::ESI, X86::EDI, X86::EBP, X86::ESP, 0); |
| else if (VT == MVT::i16) |
| return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, |
| X86::SI, X86::DI, X86::BP, X86::SP, 0); |
| else if (VT == MVT::i8) |
| return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0); |
| break; |
| case 'l': // INDEX_REGS |
| if (VT == MVT::i32) |
| return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, |
| X86::ESI, X86::EDI, X86::EBP, 0); |
| else if (VT == MVT::i16) |
| return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, |
| X86::SI, X86::DI, X86::BP, 0); |
| else if (VT == MVT::i8) |
| return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0); |
| break; |
| case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode) |
| case 'Q': // Q_REGS |
| if (VT == MVT::i32) |
| return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); |
| else if (VT == MVT::i16) |
| return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); |
| else if (VT == MVT::i8) |
| return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::DL, 0); |
| break; |
| case 'x': // SSE_REGS if SSE1 allowed |
| if (Subtarget->hasSSE1()) |
| return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, |
| 0); |
| return std::vector<unsigned>(); |
| case 'Y': // SSE_REGS if SSE2 allowed |
| if (Subtarget->hasSSE2()) |
| return make_vector<unsigned>(X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, |
| X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7, |
| 0); |
| return std::vector<unsigned>(); |
| } |
| } |
| |
| return std::vector<unsigned>(); |
| } |
| |
| /// isLegalAddressImmediate - Return true if the integer value or |
| /// GlobalValue can be used as the offset of the target addressing mode. |
| bool X86TargetLowering::isLegalAddressImmediate(int64_t V) const { |
| // X86 allows a sign-extended 32-bit immediate field. |
| return (V > -(1LL << 32) && V < (1LL << 32)-1); |
| } |
| |
| bool X86TargetLowering::isLegalAddressImmediate(GlobalValue *GV) const { |
| if (Subtarget->isTargetDarwin()) { |
| Reloc::Model RModel = getTargetMachine().getRelocationModel(); |
| if (RModel == Reloc::Static) |
| return true; |
| else if (RModel == Reloc::DynamicNoPIC) |
| return !DarwinGVRequiresExtraLoad(GV); |
| else |
| return false; |
| } else |
| return true; |
| } |
| |
| /// isShuffleMaskLegal - Targets can use this to indicate that they only |
| /// support *some* VECTOR_SHUFFLE operations, those with specific masks. |
| /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values |
| /// are assumed to be legal. |
| bool |
| X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const { |
| // Only do shuffles on 128-bit vector types for now. |
| if (MVT::getSizeInBits(VT) == 64) return false; |
| return (Mask.Val->getNumOperands() <= 4 || |
| isSplatMask(Mask.Val) || |
| isPSHUFHW_PSHUFLWMask(Mask.Val) || |
| X86::isUNPCKLMask(Mask.Val) || |
| X86::isUNPCKL_v_undef_Mask(Mask.Val) || |
| X86::isUNPCKHMask(Mask.Val)); |
| } |
| |
| bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps, |
| MVT::ValueType EVT, |
| SelectionDAG &DAG) const { |
| unsigned NumElts = BVOps.size(); |
| // Only do shuffles on 128-bit vector types for now. |
| if (MVT::getSizeInBits(EVT) * NumElts == 64) return false; |
| if (NumElts == 2) return true; |
| if (NumElts == 4) { |
| return (isMOVLMask(BVOps) || isCommutedMOVL(BVOps, true) || |
| isSHUFPMask(BVOps) || isCommutedSHUFP(BVOps)); |
| } |
| return false; |
| } |