| //===- InlineCost.cpp - Cost analysis for inliner -------------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements inline cost analysis. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "inline-cost" | 
 | #include "llvm/Analysis/InlineCost.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Analysis/ConstantFolding.h" | 
 | #include "llvm/Analysis/InstructionSimplify.h" | 
 | #include "llvm/Analysis/TargetTransformInfo.h" | 
 | #include "llvm/IR/CallingConv.h" | 
 | #include "llvm/IR/DataLayout.h" | 
 | #include "llvm/IR/GlobalAlias.h" | 
 | #include "llvm/IR/IntrinsicInst.h" | 
 | #include "llvm/IR/Operator.h" | 
 | #include "llvm/InstVisitor.h" | 
 | #include "llvm/Support/CallSite.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/GetElementPtrTypeIterator.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 |  | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumCallsAnalyzed, "Number of call sites analyzed"); | 
 |  | 
 | namespace { | 
 |  | 
 | class CallAnalyzer : public InstVisitor<CallAnalyzer, bool> { | 
 |   typedef InstVisitor<CallAnalyzer, bool> Base; | 
 |   friend class InstVisitor<CallAnalyzer, bool>; | 
 |  | 
 |   // DataLayout if available, or null. | 
 |   const DataLayout *const TD; | 
 |  | 
 |   /// The TargetTransformInfo available for this compilation. | 
 |   const TargetTransformInfo &TTI; | 
 |  | 
 |   // The called function. | 
 |   Function &F; | 
 |  | 
 |   int Threshold; | 
 |   int Cost; | 
 |  | 
 |   bool IsCallerRecursive; | 
 |   bool IsRecursiveCall; | 
 |   bool ExposesReturnsTwice; | 
 |   bool HasDynamicAlloca; | 
 |   bool ContainsNoDuplicateCall; | 
 |   bool HasReturn; | 
 |   bool HasIndirectBr; | 
 |  | 
 |   /// Number of bytes allocated statically by the callee. | 
 |   uint64_t AllocatedSize; | 
 |   unsigned NumInstructions, NumVectorInstructions; | 
 |   int FiftyPercentVectorBonus, TenPercentVectorBonus; | 
 |   int VectorBonus; | 
 |  | 
 |   // While we walk the potentially-inlined instructions, we build up and | 
 |   // maintain a mapping of simplified values specific to this callsite. The | 
 |   // idea is to propagate any special information we have about arguments to | 
 |   // this call through the inlinable section of the function, and account for | 
 |   // likely simplifications post-inlining. The most important aspect we track | 
 |   // is CFG altering simplifications -- when we prove a basic block dead, that | 
 |   // can cause dramatic shifts in the cost of inlining a function. | 
 |   DenseMap<Value *, Constant *> SimplifiedValues; | 
 |  | 
 |   // Keep track of the values which map back (through function arguments) to | 
 |   // allocas on the caller stack which could be simplified through SROA. | 
 |   DenseMap<Value *, Value *> SROAArgValues; | 
 |  | 
 |   // The mapping of caller Alloca values to their accumulated cost savings. If | 
 |   // we have to disable SROA for one of the allocas, this tells us how much | 
 |   // cost must be added. | 
 |   DenseMap<Value *, int> SROAArgCosts; | 
 |  | 
 |   // Keep track of values which map to a pointer base and constant offset. | 
 |   DenseMap<Value *, std::pair<Value *, APInt> > ConstantOffsetPtrs; | 
 |  | 
 |   // Custom simplification helper routines. | 
 |   bool isAllocaDerivedArg(Value *V); | 
 |   bool lookupSROAArgAndCost(Value *V, Value *&Arg, | 
 |                             DenseMap<Value *, int>::iterator &CostIt); | 
 |   void disableSROA(DenseMap<Value *, int>::iterator CostIt); | 
 |   void disableSROA(Value *V); | 
 |   void accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, | 
 |                           int InstructionCost); | 
 |   bool handleSROACandidate(bool IsSROAValid, | 
 |                            DenseMap<Value *, int>::iterator CostIt, | 
 |                            int InstructionCost); | 
 |   bool isGEPOffsetConstant(GetElementPtrInst &GEP); | 
 |   bool accumulateGEPOffset(GEPOperator &GEP, APInt &Offset); | 
 |   bool simplifyCallSite(Function *F, CallSite CS); | 
 |   ConstantInt *stripAndComputeInBoundsConstantOffsets(Value *&V); | 
 |  | 
 |   // Custom analysis routines. | 
 |   bool analyzeBlock(BasicBlock *BB); | 
 |  | 
 |   // Disable several entry points to the visitor so we don't accidentally use | 
 |   // them by declaring but not defining them here. | 
 |   void visit(Module *);     void visit(Module &); | 
 |   void visit(Function *);   void visit(Function &); | 
 |   void visit(BasicBlock *); void visit(BasicBlock &); | 
 |  | 
 |   // Provide base case for our instruction visit. | 
 |   bool visitInstruction(Instruction &I); | 
 |  | 
 |   // Our visit overrides. | 
 |   bool visitAlloca(AllocaInst &I); | 
 |   bool visitPHI(PHINode &I); | 
 |   bool visitGetElementPtr(GetElementPtrInst &I); | 
 |   bool visitBitCast(BitCastInst &I); | 
 |   bool visitPtrToInt(PtrToIntInst &I); | 
 |   bool visitIntToPtr(IntToPtrInst &I); | 
 |   bool visitCastInst(CastInst &I); | 
 |   bool visitUnaryInstruction(UnaryInstruction &I); | 
 |   bool visitCmpInst(CmpInst &I); | 
 |   bool visitSub(BinaryOperator &I); | 
 |   bool visitBinaryOperator(BinaryOperator &I); | 
 |   bool visitLoad(LoadInst &I); | 
 |   bool visitStore(StoreInst &I); | 
 |   bool visitExtractValue(ExtractValueInst &I); | 
 |   bool visitInsertValue(InsertValueInst &I); | 
 |   bool visitCallSite(CallSite CS); | 
 |   bool visitReturnInst(ReturnInst &RI); | 
 |   bool visitBranchInst(BranchInst &BI); | 
 |   bool visitSwitchInst(SwitchInst &SI); | 
 |   bool visitIndirectBrInst(IndirectBrInst &IBI); | 
 |   bool visitResumeInst(ResumeInst &RI); | 
 |   bool visitUnreachableInst(UnreachableInst &I); | 
 |  | 
 | public: | 
 |   CallAnalyzer(const DataLayout *TD, const TargetTransformInfo &TTI, | 
 |                Function &Callee, int Threshold) | 
 |       : TD(TD), TTI(TTI), F(Callee), Threshold(Threshold), Cost(0), | 
 |         IsCallerRecursive(false), IsRecursiveCall(false), | 
 |         ExposesReturnsTwice(false), HasDynamicAlloca(false), | 
 |         ContainsNoDuplicateCall(false), HasReturn(false), HasIndirectBr(false), | 
 |         AllocatedSize(0), NumInstructions(0), NumVectorInstructions(0), | 
 |         FiftyPercentVectorBonus(0), TenPercentVectorBonus(0), VectorBonus(0), | 
 |         NumConstantArgs(0), NumConstantOffsetPtrArgs(0), NumAllocaArgs(0), | 
 |         NumConstantPtrCmps(0), NumConstantPtrDiffs(0), | 
 |         NumInstructionsSimplified(0), SROACostSavings(0), | 
 |         SROACostSavingsLost(0) {} | 
 |  | 
 |   bool analyzeCall(CallSite CS); | 
 |  | 
 |   int getThreshold() { return Threshold; } | 
 |   int getCost() { return Cost; } | 
 |  | 
 |   // Keep a bunch of stats about the cost savings found so we can print them | 
 |   // out when debugging. | 
 |   unsigned NumConstantArgs; | 
 |   unsigned NumConstantOffsetPtrArgs; | 
 |   unsigned NumAllocaArgs; | 
 |   unsigned NumConstantPtrCmps; | 
 |   unsigned NumConstantPtrDiffs; | 
 |   unsigned NumInstructionsSimplified; | 
 |   unsigned SROACostSavings; | 
 |   unsigned SROACostSavingsLost; | 
 |  | 
 |   void dump(); | 
 | }; | 
 |  | 
 | } // namespace | 
 |  | 
 | /// \brief Test whether the given value is an Alloca-derived function argument. | 
 | bool CallAnalyzer::isAllocaDerivedArg(Value *V) { | 
 |   return SROAArgValues.count(V); | 
 | } | 
 |  | 
 | /// \brief Lookup the SROA-candidate argument and cost iterator which V maps to. | 
 | /// Returns false if V does not map to a SROA-candidate. | 
 | bool CallAnalyzer::lookupSROAArgAndCost( | 
 |     Value *V, Value *&Arg, DenseMap<Value *, int>::iterator &CostIt) { | 
 |   if (SROAArgValues.empty() || SROAArgCosts.empty()) | 
 |     return false; | 
 |  | 
 |   DenseMap<Value *, Value *>::iterator ArgIt = SROAArgValues.find(V); | 
 |   if (ArgIt == SROAArgValues.end()) | 
 |     return false; | 
 |  | 
 |   Arg = ArgIt->second; | 
 |   CostIt = SROAArgCosts.find(Arg); | 
 |   return CostIt != SROAArgCosts.end(); | 
 | } | 
 |  | 
 | /// \brief Disable SROA for the candidate marked by this cost iterator. | 
 | /// | 
 | /// This marks the candidate as no longer viable for SROA, and adds the cost | 
 | /// savings associated with it back into the inline cost measurement. | 
 | void CallAnalyzer::disableSROA(DenseMap<Value *, int>::iterator CostIt) { | 
 |   // If we're no longer able to perform SROA we need to undo its cost savings | 
 |   // and prevent subsequent analysis. | 
 |   Cost += CostIt->second; | 
 |   SROACostSavings -= CostIt->second; | 
 |   SROACostSavingsLost += CostIt->second; | 
 |   SROAArgCosts.erase(CostIt); | 
 | } | 
 |  | 
 | /// \brief If 'V' maps to a SROA candidate, disable SROA for it. | 
 | void CallAnalyzer::disableSROA(Value *V) { | 
 |   Value *SROAArg; | 
 |   DenseMap<Value *, int>::iterator CostIt; | 
 |   if (lookupSROAArgAndCost(V, SROAArg, CostIt)) | 
 |     disableSROA(CostIt); | 
 | } | 
 |  | 
 | /// \brief Accumulate the given cost for a particular SROA candidate. | 
 | void CallAnalyzer::accumulateSROACost(DenseMap<Value *, int>::iterator CostIt, | 
 |                                       int InstructionCost) { | 
 |   CostIt->second += InstructionCost; | 
 |   SROACostSavings += InstructionCost; | 
 | } | 
 |  | 
 | /// \brief Helper for the common pattern of handling a SROA candidate. | 
 | /// Either accumulates the cost savings if the SROA remains valid, or disables | 
 | /// SROA for the candidate. | 
 | bool CallAnalyzer::handleSROACandidate(bool IsSROAValid, | 
 |                                        DenseMap<Value *, int>::iterator CostIt, | 
 |                                        int InstructionCost) { | 
 |   if (IsSROAValid) { | 
 |     accumulateSROACost(CostIt, InstructionCost); | 
 |     return true; | 
 |   } | 
 |  | 
 |   disableSROA(CostIt); | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief Check whether a GEP's indices are all constant. | 
 | /// | 
 | /// Respects any simplified values known during the analysis of this callsite. | 
 | bool CallAnalyzer::isGEPOffsetConstant(GetElementPtrInst &GEP) { | 
 |   for (User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end(); I != E; ++I) | 
 |     if (!isa<Constant>(*I) && !SimplifiedValues.lookup(*I)) | 
 |       return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// \brief Accumulate a constant GEP offset into an APInt if possible. | 
 | /// | 
 | /// Returns false if unable to compute the offset for any reason. Respects any | 
 | /// simplified values known during the analysis of this callsite. | 
 | bool CallAnalyzer::accumulateGEPOffset(GEPOperator &GEP, APInt &Offset) { | 
 |   if (!TD) | 
 |     return false; | 
 |  | 
 |   unsigned IntPtrWidth = TD->getPointerSizeInBits(); | 
 |   assert(IntPtrWidth == Offset.getBitWidth()); | 
 |  | 
 |   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); | 
 |        GTI != GTE; ++GTI) { | 
 |     ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); | 
 |     if (!OpC) | 
 |       if (Constant *SimpleOp = SimplifiedValues.lookup(GTI.getOperand())) | 
 |         OpC = dyn_cast<ConstantInt>(SimpleOp); | 
 |     if (!OpC) | 
 |       return false; | 
 |     if (OpC->isZero()) continue; | 
 |  | 
 |     // Handle a struct index, which adds its field offset to the pointer. | 
 |     if (StructType *STy = dyn_cast<StructType>(*GTI)) { | 
 |       unsigned ElementIdx = OpC->getZExtValue(); | 
 |       const StructLayout *SL = TD->getStructLayout(STy); | 
 |       Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx)); | 
 |       continue; | 
 |     } | 
 |  | 
 |     APInt TypeSize(IntPtrWidth, TD->getTypeAllocSize(GTI.getIndexedType())); | 
 |     Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitAlloca(AllocaInst &I) { | 
 |   // FIXME: Check whether inlining will turn a dynamic alloca into a static | 
 |   // alloca, and handle that case. | 
 |  | 
 |   // Accumulate the allocated size. | 
 |   if (I.isStaticAlloca()) { | 
 |     Type *Ty = I.getAllocatedType(); | 
 |     AllocatedSize += (TD ? TD->getTypeAllocSize(Ty) : | 
 |                       Ty->getPrimitiveSizeInBits()); | 
 |   } | 
 |  | 
 |   // We will happily inline static alloca instructions. | 
 |   if (I.isStaticAlloca()) | 
 |     return Base::visitAlloca(I); | 
 |  | 
 |   // FIXME: This is overly conservative. Dynamic allocas are inefficient for | 
 |   // a variety of reasons, and so we would like to not inline them into | 
 |   // functions which don't currently have a dynamic alloca. This simply | 
 |   // disables inlining altogether in the presence of a dynamic alloca. | 
 |   HasDynamicAlloca = true; | 
 |   return false; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitPHI(PHINode &I) { | 
 |   // FIXME: We should potentially be tracking values through phi nodes, | 
 |   // especially when they collapse to a single value due to deleted CFG edges | 
 |   // during inlining. | 
 |  | 
 |   // FIXME: We need to propagate SROA *disabling* through phi nodes, even | 
 |   // though we don't want to propagate it's bonuses. The idea is to disable | 
 |   // SROA if it *might* be used in an inappropriate manner. | 
 |  | 
 |   // Phi nodes are always zero-cost. | 
 |   return true; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitGetElementPtr(GetElementPtrInst &I) { | 
 |   Value *SROAArg; | 
 |   DenseMap<Value *, int>::iterator CostIt; | 
 |   bool SROACandidate = lookupSROAArgAndCost(I.getPointerOperand(), | 
 |                                             SROAArg, CostIt); | 
 |  | 
 |   // Try to fold GEPs of constant-offset call site argument pointers. This | 
 |   // requires target data and inbounds GEPs. | 
 |   if (TD && I.isInBounds()) { | 
 |     // Check if we have a base + offset for the pointer. | 
 |     Value *Ptr = I.getPointerOperand(); | 
 |     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Ptr); | 
 |     if (BaseAndOffset.first) { | 
 |       // Check if the offset of this GEP is constant, and if so accumulate it | 
 |       // into Offset. | 
 |       if (!accumulateGEPOffset(cast<GEPOperator>(I), BaseAndOffset.second)) { | 
 |         // Non-constant GEPs aren't folded, and disable SROA. | 
 |         if (SROACandidate) | 
 |           disableSROA(CostIt); | 
 |         return false; | 
 |       } | 
 |  | 
 |       // Add the result as a new mapping to Base + Offset. | 
 |       ConstantOffsetPtrs[&I] = BaseAndOffset; | 
 |  | 
 |       // Also handle SROA candidates here, we already know that the GEP is | 
 |       // all-constant indexed. | 
 |       if (SROACandidate) | 
 |         SROAArgValues[&I] = SROAArg; | 
 |  | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   if (isGEPOffsetConstant(I)) { | 
 |     if (SROACandidate) | 
 |       SROAArgValues[&I] = SROAArg; | 
 |  | 
 |     // Constant GEPs are modeled as free. | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Variable GEPs will require math and will disable SROA. | 
 |   if (SROACandidate) | 
 |     disableSROA(CostIt); | 
 |   return false; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitBitCast(BitCastInst &I) { | 
 |   // Propagate constants through bitcasts. | 
 |   Constant *COp = dyn_cast<Constant>(I.getOperand(0)); | 
 |   if (!COp) | 
 |     COp = SimplifiedValues.lookup(I.getOperand(0)); | 
 |   if (COp) | 
 |     if (Constant *C = ConstantExpr::getBitCast(COp, I.getType())) { | 
 |       SimplifiedValues[&I] = C; | 
 |       return true; | 
 |     } | 
 |  | 
 |   // Track base/offsets through casts | 
 |   std::pair<Value *, APInt> BaseAndOffset | 
 |     = ConstantOffsetPtrs.lookup(I.getOperand(0)); | 
 |   // Casts don't change the offset, just wrap it up. | 
 |   if (BaseAndOffset.first) | 
 |     ConstantOffsetPtrs[&I] = BaseAndOffset; | 
 |  | 
 |   // Also look for SROA candidates here. | 
 |   Value *SROAArg; | 
 |   DenseMap<Value *, int>::iterator CostIt; | 
 |   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) | 
 |     SROAArgValues[&I] = SROAArg; | 
 |  | 
 |   // Bitcasts are always zero cost. | 
 |   return true; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitPtrToInt(PtrToIntInst &I) { | 
 |   // Propagate constants through ptrtoint. | 
 |   Constant *COp = dyn_cast<Constant>(I.getOperand(0)); | 
 |   if (!COp) | 
 |     COp = SimplifiedValues.lookup(I.getOperand(0)); | 
 |   if (COp) | 
 |     if (Constant *C = ConstantExpr::getPtrToInt(COp, I.getType())) { | 
 |       SimplifiedValues[&I] = C; | 
 |       return true; | 
 |     } | 
 |  | 
 |   // Track base/offset pairs when converted to a plain integer provided the | 
 |   // integer is large enough to represent the pointer. | 
 |   unsigned IntegerSize = I.getType()->getScalarSizeInBits(); | 
 |   if (TD && IntegerSize >= TD->getPointerSizeInBits()) { | 
 |     std::pair<Value *, APInt> BaseAndOffset | 
 |       = ConstantOffsetPtrs.lookup(I.getOperand(0)); | 
 |     if (BaseAndOffset.first) | 
 |       ConstantOffsetPtrs[&I] = BaseAndOffset; | 
 |   } | 
 |  | 
 |   // This is really weird. Technically, ptrtoint will disable SROA. However, | 
 |   // unless that ptrtoint is *used* somewhere in the live basic blocks after | 
 |   // inlining, it will be nuked, and SROA should proceed. All of the uses which | 
 |   // would block SROA would also block SROA if applied directly to a pointer, | 
 |   // and so we can just add the integer in here. The only places where SROA is | 
 |   // preserved either cannot fire on an integer, or won't in-and-of themselves | 
 |   // disable SROA (ext) w/o some later use that we would see and disable. | 
 |   Value *SROAArg; | 
 |   DenseMap<Value *, int>::iterator CostIt; | 
 |   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) | 
 |     SROAArgValues[&I] = SROAArg; | 
 |  | 
 |   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitIntToPtr(IntToPtrInst &I) { | 
 |   // Propagate constants through ptrtoint. | 
 |   Constant *COp = dyn_cast<Constant>(I.getOperand(0)); | 
 |   if (!COp) | 
 |     COp = SimplifiedValues.lookup(I.getOperand(0)); | 
 |   if (COp) | 
 |     if (Constant *C = ConstantExpr::getIntToPtr(COp, I.getType())) { | 
 |       SimplifiedValues[&I] = C; | 
 |       return true; | 
 |     } | 
 |  | 
 |   // Track base/offset pairs when round-tripped through a pointer without | 
 |   // modifications provided the integer is not too large. | 
 |   Value *Op = I.getOperand(0); | 
 |   unsigned IntegerSize = Op->getType()->getScalarSizeInBits(); | 
 |   if (TD && IntegerSize <= TD->getPointerSizeInBits()) { | 
 |     std::pair<Value *, APInt> BaseAndOffset = ConstantOffsetPtrs.lookup(Op); | 
 |     if (BaseAndOffset.first) | 
 |       ConstantOffsetPtrs[&I] = BaseAndOffset; | 
 |   } | 
 |  | 
 |   // "Propagate" SROA here in the same manner as we do for ptrtoint above. | 
 |   Value *SROAArg; | 
 |   DenseMap<Value *, int>::iterator CostIt; | 
 |   if (lookupSROAArgAndCost(Op, SROAArg, CostIt)) | 
 |     SROAArgValues[&I] = SROAArg; | 
 |  | 
 |   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitCastInst(CastInst &I) { | 
 |   // Propagate constants through ptrtoint. | 
 |   Constant *COp = dyn_cast<Constant>(I.getOperand(0)); | 
 |   if (!COp) | 
 |     COp = SimplifiedValues.lookup(I.getOperand(0)); | 
 |   if (COp) | 
 |     if (Constant *C = ConstantExpr::getCast(I.getOpcode(), COp, I.getType())) { | 
 |       SimplifiedValues[&I] = C; | 
 |       return true; | 
 |     } | 
 |  | 
 |   // Disable SROA in the face of arbitrary casts we don't whitelist elsewhere. | 
 |   disableSROA(I.getOperand(0)); | 
 |  | 
 |   return TargetTransformInfo::TCC_Free == TTI.getUserCost(&I); | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitUnaryInstruction(UnaryInstruction &I) { | 
 |   Value *Operand = I.getOperand(0); | 
 |   Constant *COp = dyn_cast<Constant>(Operand); | 
 |   if (!COp) | 
 |     COp = SimplifiedValues.lookup(Operand); | 
 |   if (COp) | 
 |     if (Constant *C = ConstantFoldInstOperands(I.getOpcode(), I.getType(), | 
 |                                                COp, TD)) { | 
 |       SimplifiedValues[&I] = C; | 
 |       return true; | 
 |     } | 
 |  | 
 |   // Disable any SROA on the argument to arbitrary unary operators. | 
 |   disableSROA(Operand); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitCmpInst(CmpInst &I) { | 
 |   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
 |   // First try to handle simplified comparisons. | 
 |   if (!isa<Constant>(LHS)) | 
 |     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) | 
 |       LHS = SimpleLHS; | 
 |   if (!isa<Constant>(RHS)) | 
 |     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) | 
 |       RHS = SimpleRHS; | 
 |   if (Constant *CLHS = dyn_cast<Constant>(LHS)) { | 
 |     if (Constant *CRHS = dyn_cast<Constant>(RHS)) | 
 |       if (Constant *C = ConstantExpr::getCompare(I.getPredicate(), CLHS, CRHS)) { | 
 |         SimplifiedValues[&I] = C; | 
 |         return true; | 
 |       } | 
 |   } | 
 |  | 
 |   if (I.getOpcode() == Instruction::FCmp) | 
 |     return false; | 
 |  | 
 |   // Otherwise look for a comparison between constant offset pointers with | 
 |   // a common base. | 
 |   Value *LHSBase, *RHSBase; | 
 |   APInt LHSOffset, RHSOffset; | 
 |   llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); | 
 |   if (LHSBase) { | 
 |     llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); | 
 |     if (RHSBase && LHSBase == RHSBase) { | 
 |       // We have common bases, fold the icmp to a constant based on the | 
 |       // offsets. | 
 |       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); | 
 |       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); | 
 |       if (Constant *C = ConstantExpr::getICmp(I.getPredicate(), CLHS, CRHS)) { | 
 |         SimplifiedValues[&I] = C; | 
 |         ++NumConstantPtrCmps; | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // If the comparison is an equality comparison with null, we can simplify it | 
 |   // for any alloca-derived argument. | 
 |   if (I.isEquality() && isa<ConstantPointerNull>(I.getOperand(1))) | 
 |     if (isAllocaDerivedArg(I.getOperand(0))) { | 
 |       // We can actually predict the result of comparisons between an | 
 |       // alloca-derived value and null. Note that this fires regardless of | 
 |       // SROA firing. | 
 |       bool IsNotEqual = I.getPredicate() == CmpInst::ICMP_NE; | 
 |       SimplifiedValues[&I] = IsNotEqual ? ConstantInt::getTrue(I.getType()) | 
 |                                         : ConstantInt::getFalse(I.getType()); | 
 |       return true; | 
 |     } | 
 |  | 
 |   // Finally check for SROA candidates in comparisons. | 
 |   Value *SROAArg; | 
 |   DenseMap<Value *, int>::iterator CostIt; | 
 |   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { | 
 |     if (isa<ConstantPointerNull>(I.getOperand(1))) { | 
 |       accumulateSROACost(CostIt, InlineConstants::InstrCost); | 
 |       return true; | 
 |     } | 
 |  | 
 |     disableSROA(CostIt); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitSub(BinaryOperator &I) { | 
 |   // Try to handle a special case: we can fold computing the difference of two | 
 |   // constant-related pointers. | 
 |   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
 |   Value *LHSBase, *RHSBase; | 
 |   APInt LHSOffset, RHSOffset; | 
 |   llvm::tie(LHSBase, LHSOffset) = ConstantOffsetPtrs.lookup(LHS); | 
 |   if (LHSBase) { | 
 |     llvm::tie(RHSBase, RHSOffset) = ConstantOffsetPtrs.lookup(RHS); | 
 |     if (RHSBase && LHSBase == RHSBase) { | 
 |       // We have common bases, fold the subtract to a constant based on the | 
 |       // offsets. | 
 |       Constant *CLHS = ConstantInt::get(LHS->getContext(), LHSOffset); | 
 |       Constant *CRHS = ConstantInt::get(RHS->getContext(), RHSOffset); | 
 |       if (Constant *C = ConstantExpr::getSub(CLHS, CRHS)) { | 
 |         SimplifiedValues[&I] = C; | 
 |         ++NumConstantPtrDiffs; | 
 |         return true; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Otherwise, fall back to the generic logic for simplifying and handling | 
 |   // instructions. | 
 |   return Base::visitSub(I); | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitBinaryOperator(BinaryOperator &I) { | 
 |   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); | 
 |   if (!isa<Constant>(LHS)) | 
 |     if (Constant *SimpleLHS = SimplifiedValues.lookup(LHS)) | 
 |       LHS = SimpleLHS; | 
 |   if (!isa<Constant>(RHS)) | 
 |     if (Constant *SimpleRHS = SimplifiedValues.lookup(RHS)) | 
 |       RHS = SimpleRHS; | 
 |   Value *SimpleV = SimplifyBinOp(I.getOpcode(), LHS, RHS, TD); | 
 |   if (Constant *C = dyn_cast_or_null<Constant>(SimpleV)) { | 
 |     SimplifiedValues[&I] = C; | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Disable any SROA on arguments to arbitrary, unsimplified binary operators. | 
 |   disableSROA(LHS); | 
 |   disableSROA(RHS); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitLoad(LoadInst &I) { | 
 |   Value *SROAArg; | 
 |   DenseMap<Value *, int>::iterator CostIt; | 
 |   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { | 
 |     if (I.isSimple()) { | 
 |       accumulateSROACost(CostIt, InlineConstants::InstrCost); | 
 |       return true; | 
 |     } | 
 |  | 
 |     disableSROA(CostIt); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitStore(StoreInst &I) { | 
 |   Value *SROAArg; | 
 |   DenseMap<Value *, int>::iterator CostIt; | 
 |   if (lookupSROAArgAndCost(I.getOperand(0), SROAArg, CostIt)) { | 
 |     if (I.isSimple()) { | 
 |       accumulateSROACost(CostIt, InlineConstants::InstrCost); | 
 |       return true; | 
 |     } | 
 |  | 
 |     disableSROA(CostIt); | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitExtractValue(ExtractValueInst &I) { | 
 |   // Constant folding for extract value is trivial. | 
 |   Constant *C = dyn_cast<Constant>(I.getAggregateOperand()); | 
 |   if (!C) | 
 |     C = SimplifiedValues.lookup(I.getAggregateOperand()); | 
 |   if (C) { | 
 |     SimplifiedValues[&I] = ConstantExpr::getExtractValue(C, I.getIndices()); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // SROA can look through these but give them a cost. | 
 |   return false; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitInsertValue(InsertValueInst &I) { | 
 |   // Constant folding for insert value is trivial. | 
 |   Constant *AggC = dyn_cast<Constant>(I.getAggregateOperand()); | 
 |   if (!AggC) | 
 |     AggC = SimplifiedValues.lookup(I.getAggregateOperand()); | 
 |   Constant *InsertedC = dyn_cast<Constant>(I.getInsertedValueOperand()); | 
 |   if (!InsertedC) | 
 |     InsertedC = SimplifiedValues.lookup(I.getInsertedValueOperand()); | 
 |   if (AggC && InsertedC) { | 
 |     SimplifiedValues[&I] = ConstantExpr::getInsertValue(AggC, InsertedC, | 
 |                                                         I.getIndices()); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // SROA can look through these but give them a cost. | 
 |   return false; | 
 | } | 
 |  | 
 | /// \brief Try to simplify a call site. | 
 | /// | 
 | /// Takes a concrete function and callsite and tries to actually simplify it by | 
 | /// analyzing the arguments and call itself with instsimplify. Returns true if | 
 | /// it has simplified the callsite to some other entity (a constant), making it | 
 | /// free. | 
 | bool CallAnalyzer::simplifyCallSite(Function *F, CallSite CS) { | 
 |   // FIXME: Using the instsimplify logic directly for this is inefficient | 
 |   // because we have to continually rebuild the argument list even when no | 
 |   // simplifications can be performed. Until that is fixed with remapping | 
 |   // inside of instsimplify, directly constant fold calls here. | 
 |   if (!canConstantFoldCallTo(F)) | 
 |     return false; | 
 |  | 
 |   // Try to re-map the arguments to constants. | 
 |   SmallVector<Constant *, 4> ConstantArgs; | 
 |   ConstantArgs.reserve(CS.arg_size()); | 
 |   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); | 
 |        I != E; ++I) { | 
 |     Constant *C = dyn_cast<Constant>(*I); | 
 |     if (!C) | 
 |       C = dyn_cast_or_null<Constant>(SimplifiedValues.lookup(*I)); | 
 |     if (!C) | 
 |       return false; // This argument doesn't map to a constant. | 
 |  | 
 |     ConstantArgs.push_back(C); | 
 |   } | 
 |   if (Constant *C = ConstantFoldCall(F, ConstantArgs)) { | 
 |     SimplifiedValues[CS.getInstruction()] = C; | 
 |     return true; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitCallSite(CallSite CS) { | 
 |   if (CS.hasFnAttr(Attribute::ReturnsTwice) && | 
 |       !F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, | 
 |                                       Attribute::ReturnsTwice)) { | 
 |     // This aborts the entire analysis. | 
 |     ExposesReturnsTwice = true; | 
 |     return false; | 
 |   } | 
 |   if (CS.isCall() && | 
 |       cast<CallInst>(CS.getInstruction())->hasFnAttr(Attribute::NoDuplicate)) | 
 |     ContainsNoDuplicateCall = true; | 
 |  | 
 |   if (Function *F = CS.getCalledFunction()) { | 
 |     // When we have a concrete function, first try to simplify it directly. | 
 |     if (simplifyCallSite(F, CS)) | 
 |       return true; | 
 |  | 
 |     // Next check if it is an intrinsic we know about. | 
 |     // FIXME: Lift this into part of the InstVisitor. | 
 |     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { | 
 |       switch (II->getIntrinsicID()) { | 
 |       default: | 
 |         return Base::visitCallSite(CS); | 
 |  | 
 |       case Intrinsic::memset: | 
 |       case Intrinsic::memcpy: | 
 |       case Intrinsic::memmove: | 
 |         // SROA can usually chew through these intrinsics, but they aren't free. | 
 |         return false; | 
 |       } | 
 |     } | 
 |  | 
 |     if (F == CS.getInstruction()->getParent()->getParent()) { | 
 |       // This flag will fully abort the analysis, so don't bother with anything | 
 |       // else. | 
 |       IsRecursiveCall = true; | 
 |       return false; | 
 |     } | 
 |  | 
 |     if (TTI.isLoweredToCall(F)) { | 
 |       // We account for the average 1 instruction per call argument setup | 
 |       // here. | 
 |       Cost += CS.arg_size() * InlineConstants::InstrCost; | 
 |  | 
 |       // Everything other than inline ASM will also have a significant cost | 
 |       // merely from making the call. | 
 |       if (!isa<InlineAsm>(CS.getCalledValue())) | 
 |         Cost += InlineConstants::CallPenalty; | 
 |     } | 
 |  | 
 |     return Base::visitCallSite(CS); | 
 |   } | 
 |  | 
 |   // Otherwise we're in a very special case -- an indirect function call. See | 
 |   // if we can be particularly clever about this. | 
 |   Value *Callee = CS.getCalledValue(); | 
 |  | 
 |   // First, pay the price of the argument setup. We account for the average | 
 |   // 1 instruction per call argument setup here. | 
 |   Cost += CS.arg_size() * InlineConstants::InstrCost; | 
 |  | 
 |   // Next, check if this happens to be an indirect function call to a known | 
 |   // function in this inline context. If not, we've done all we can. | 
 |   Function *F = dyn_cast_or_null<Function>(SimplifiedValues.lookup(Callee)); | 
 |   if (!F) | 
 |     return Base::visitCallSite(CS); | 
 |  | 
 |   // If we have a constant that we are calling as a function, we can peer | 
 |   // through it and see the function target. This happens not infrequently | 
 |   // during devirtualization and so we want to give it a hefty bonus for | 
 |   // inlining, but cap that bonus in the event that inlining wouldn't pan | 
 |   // out. Pretend to inline the function, with a custom threshold. | 
 |   CallAnalyzer CA(TD, TTI, *F, InlineConstants::IndirectCallThreshold); | 
 |   if (CA.analyzeCall(CS)) { | 
 |     // We were able to inline the indirect call! Subtract the cost from the | 
 |     // bonus we want to apply, but don't go below zero. | 
 |     Cost -= std::max(0, InlineConstants::IndirectCallThreshold - CA.getCost()); | 
 |   } | 
 |  | 
 |   return Base::visitCallSite(CS); | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitReturnInst(ReturnInst &RI) { | 
 |   // At least one return instruction will be free after inlining. | 
 |   bool Free = !HasReturn; | 
 |   HasReturn = true; | 
 |   return Free; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitBranchInst(BranchInst &BI) { | 
 |   // We model unconditional branches as essentially free -- they really | 
 |   // shouldn't exist at all, but handling them makes the behavior of the | 
 |   // inliner more regular and predictable. Interestingly, conditional branches | 
 |   // which will fold away are also free. | 
 |   return BI.isUnconditional() || isa<ConstantInt>(BI.getCondition()) || | 
 |          dyn_cast_or_null<ConstantInt>( | 
 |              SimplifiedValues.lookup(BI.getCondition())); | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitSwitchInst(SwitchInst &SI) { | 
 |   // We model unconditional switches as free, see the comments on handling | 
 |   // branches. | 
 |   return isa<ConstantInt>(SI.getCondition()) || | 
 |          dyn_cast_or_null<ConstantInt>( | 
 |              SimplifiedValues.lookup(SI.getCondition())); | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitIndirectBrInst(IndirectBrInst &IBI) { | 
 |   // We never want to inline functions that contain an indirectbr.  This is | 
 |   // incorrect because all the blockaddress's (in static global initializers | 
 |   // for example) would be referring to the original function, and this | 
 |   // indirect jump would jump from the inlined copy of the function into the | 
 |   // original function which is extremely undefined behavior. | 
 |   // FIXME: This logic isn't really right; we can safely inline functions with | 
 |   // indirectbr's as long as no other function or global references the | 
 |   // blockaddress of a block within the current function.  And as a QOI issue, | 
 |   // if someone is using a blockaddress without an indirectbr, and that | 
 |   // reference somehow ends up in another function or global, we probably don't | 
 |   // want to inline this function. | 
 |   HasIndirectBr = true; | 
 |   return false; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitResumeInst(ResumeInst &RI) { | 
 |   // FIXME: It's not clear that a single instruction is an accurate model for | 
 |   // the inline cost of a resume instruction. | 
 |   return false; | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitUnreachableInst(UnreachableInst &I) { | 
 |   // FIXME: It might be reasonably to discount the cost of instructions leading | 
 |   // to unreachable as they have the lowest possible impact on both runtime and | 
 |   // code size. | 
 |   return true; // No actual code is needed for unreachable. | 
 | } | 
 |  | 
 | bool CallAnalyzer::visitInstruction(Instruction &I) { | 
 |   // Some instructions are free. All of the free intrinsics can also be | 
 |   // handled by SROA, etc. | 
 |   if (TargetTransformInfo::TCC_Free == TTI.getUserCost(&I)) | 
 |     return true; | 
 |  | 
 |   // We found something we don't understand or can't handle. Mark any SROA-able | 
 |   // values in the operand list as no longer viable. | 
 |   for (User::op_iterator OI = I.op_begin(), OE = I.op_end(); OI != OE; ++OI) | 
 |     disableSROA(*OI); | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | /// \brief Analyze a basic block for its contribution to the inline cost. | 
 | /// | 
 | /// This method walks the analyzer over every instruction in the given basic | 
 | /// block and accounts for their cost during inlining at this callsite. It | 
 | /// aborts early if the threshold has been exceeded or an impossible to inline | 
 | /// construct has been detected. It returns false if inlining is no longer | 
 | /// viable, and true if inlining remains viable. | 
 | bool CallAnalyzer::analyzeBlock(BasicBlock *BB) { | 
 |   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { | 
 |     ++NumInstructions; | 
 |     if (isa<ExtractElementInst>(I) || I->getType()->isVectorTy()) | 
 |       ++NumVectorInstructions; | 
 |  | 
 |     // If the instruction simplified to a constant, there is no cost to this | 
 |     // instruction. Visit the instructions using our InstVisitor to account for | 
 |     // all of the per-instruction logic. The visit tree returns true if we | 
 |     // consumed the instruction in any way, and false if the instruction's base | 
 |     // cost should count against inlining. | 
 |     if (Base::visit(I)) | 
 |       ++NumInstructionsSimplified; | 
 |     else | 
 |       Cost += InlineConstants::InstrCost; | 
 |  | 
 |     // If the visit this instruction detected an uninlinable pattern, abort. | 
 |     if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca || | 
 |         HasIndirectBr) | 
 |       return false; | 
 |  | 
 |     // If the caller is a recursive function then we don't want to inline | 
 |     // functions which allocate a lot of stack space because it would increase | 
 |     // the caller stack usage dramatically. | 
 |     if (IsCallerRecursive && | 
 |         AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) | 
 |       return false; | 
 |  | 
 |     if (NumVectorInstructions > NumInstructions/2) | 
 |       VectorBonus = FiftyPercentVectorBonus; | 
 |     else if (NumVectorInstructions > NumInstructions/10) | 
 |       VectorBonus = TenPercentVectorBonus; | 
 |     else | 
 |       VectorBonus = 0; | 
 |  | 
 |     // Check if we've past the threshold so we don't spin in huge basic | 
 |     // blocks that will never inline. | 
 |     if (Cost > (Threshold + VectorBonus)) | 
 |       return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// \brief Compute the base pointer and cumulative constant offsets for V. | 
 | /// | 
 | /// This strips all constant offsets off of V, leaving it the base pointer, and | 
 | /// accumulates the total constant offset applied in the returned constant. It | 
 | /// returns 0 if V is not a pointer, and returns the constant '0' if there are | 
 | /// no constant offsets applied. | 
 | ConstantInt *CallAnalyzer::stripAndComputeInBoundsConstantOffsets(Value *&V) { | 
 |   if (!TD || !V->getType()->isPointerTy()) | 
 |     return 0; | 
 |  | 
 |   unsigned IntPtrWidth = TD->getPointerSizeInBits(); | 
 |   APInt Offset = APInt::getNullValue(IntPtrWidth); | 
 |  | 
 |   // Even though we don't look through PHI nodes, we could be called on an | 
 |   // instruction in an unreachable block, which may be on a cycle. | 
 |   SmallPtrSet<Value *, 4> Visited; | 
 |   Visited.insert(V); | 
 |   do { | 
 |     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { | 
 |       if (!GEP->isInBounds() || !accumulateGEPOffset(*GEP, Offset)) | 
 |         return 0; | 
 |       V = GEP->getPointerOperand(); | 
 |     } else if (Operator::getOpcode(V) == Instruction::BitCast) { | 
 |       V = cast<Operator>(V)->getOperand(0); | 
 |     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { | 
 |       if (GA->mayBeOverridden()) | 
 |         break; | 
 |       V = GA->getAliasee(); | 
 |     } else { | 
 |       break; | 
 |     } | 
 |     assert(V->getType()->isPointerTy() && "Unexpected operand type!"); | 
 |   } while (Visited.insert(V)); | 
 |  | 
 |   Type *IntPtrTy = TD->getIntPtrType(V->getContext()); | 
 |   return cast<ConstantInt>(ConstantInt::get(IntPtrTy, Offset)); | 
 | } | 
 |  | 
 | /// \brief Analyze a call site for potential inlining. | 
 | /// | 
 | /// Returns true if inlining this call is viable, and false if it is not | 
 | /// viable. It computes the cost and adjusts the threshold based on numerous | 
 | /// factors and heuristics. If this method returns false but the computed cost | 
 | /// is below the computed threshold, then inlining was forcibly disabled by | 
 | /// some artifact of the routine. | 
 | bool CallAnalyzer::analyzeCall(CallSite CS) { | 
 |   ++NumCallsAnalyzed; | 
 |  | 
 |   // Track whether the post-inlining function would have more than one basic | 
 |   // block. A single basic block is often intended for inlining. Balloon the | 
 |   // threshold by 50% until we pass the single-BB phase. | 
 |   bool SingleBB = true; | 
 |   int SingleBBBonus = Threshold / 2; | 
 |   Threshold += SingleBBBonus; | 
 |  | 
 |   // Perform some tweaks to the cost and threshold based on the direct | 
 |   // callsite information. | 
 |  | 
 |   // We want to more aggressively inline vector-dense kernels, so up the | 
 |   // threshold, and we'll lower it if the % of vector instructions gets too | 
 |   // low. | 
 |   assert(NumInstructions == 0); | 
 |   assert(NumVectorInstructions == 0); | 
 |   FiftyPercentVectorBonus = Threshold; | 
 |   TenPercentVectorBonus = Threshold / 2; | 
 |  | 
 |   // Give out bonuses per argument, as the instructions setting them up will | 
 |   // be gone after inlining. | 
 |   for (unsigned I = 0, E = CS.arg_size(); I != E; ++I) { | 
 |     if (TD && CS.isByValArgument(I)) { | 
 |       // We approximate the number of loads and stores needed by dividing the | 
 |       // size of the byval type by the target's pointer size. | 
 |       PointerType *PTy = cast<PointerType>(CS.getArgument(I)->getType()); | 
 |       unsigned TypeSize = TD->getTypeSizeInBits(PTy->getElementType()); | 
 |       unsigned PointerSize = TD->getPointerSizeInBits(); | 
 |       // Ceiling division. | 
 |       unsigned NumStores = (TypeSize + PointerSize - 1) / PointerSize; | 
 |  | 
 |       // If it generates more than 8 stores it is likely to be expanded as an | 
 |       // inline memcpy so we take that as an upper bound. Otherwise we assume | 
 |       // one load and one store per word copied. | 
 |       // FIXME: The maxStoresPerMemcpy setting from the target should be used | 
 |       // here instead of a magic number of 8, but it's not available via | 
 |       // DataLayout. | 
 |       NumStores = std::min(NumStores, 8U); | 
 |  | 
 |       Cost -= 2 * NumStores * InlineConstants::InstrCost; | 
 |     } else { | 
 |       // For non-byval arguments subtract off one instruction per call | 
 |       // argument. | 
 |       Cost -= InlineConstants::InstrCost; | 
 |     } | 
 |   } | 
 |  | 
 |   // If there is only one call of the function, and it has internal linkage, | 
 |   // the cost of inlining it drops dramatically. | 
 |   bool OnlyOneCallAndLocalLinkage = F.hasLocalLinkage() && F.hasOneUse() && | 
 |     &F == CS.getCalledFunction(); | 
 |   if (OnlyOneCallAndLocalLinkage) | 
 |     Cost += InlineConstants::LastCallToStaticBonus; | 
 |  | 
 |   // If the instruction after the call, or if the normal destination of the | 
 |   // invoke is an unreachable instruction, the function is noreturn. As such, | 
 |   // there is little point in inlining this unless there is literally zero | 
 |   // cost. | 
 |   Instruction *Instr = CS.getInstruction(); | 
 |   if (InvokeInst *II = dyn_cast<InvokeInst>(Instr)) { | 
 |     if (isa<UnreachableInst>(II->getNormalDest()->begin())) | 
 |       Threshold = 1; | 
 |   } else if (isa<UnreachableInst>(++BasicBlock::iterator(Instr))) | 
 |     Threshold = 1; | 
 |  | 
 |   // If this function uses the coldcc calling convention, prefer not to inline | 
 |   // it. | 
 |   if (F.getCallingConv() == CallingConv::Cold) | 
 |     Cost += InlineConstants::ColdccPenalty; | 
 |  | 
 |   // Check if we're done. This can happen due to bonuses and penalties. | 
 |   if (Cost > Threshold) | 
 |     return false; | 
 |  | 
 |   if (F.empty()) | 
 |     return true; | 
 |  | 
 |   Function *Caller = CS.getInstruction()->getParent()->getParent(); | 
 |   // Check if the caller function is recursive itself. | 
 |   for (Value::use_iterator U = Caller->use_begin(), E = Caller->use_end(); | 
 |        U != E; ++U) { | 
 |     CallSite Site(cast<Value>(*U)); | 
 |     if (!Site) | 
 |       continue; | 
 |     Instruction *I = Site.getInstruction(); | 
 |     if (I->getParent()->getParent() == Caller) { | 
 |       IsCallerRecursive = true; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Populate our simplified values by mapping from function arguments to call | 
 |   // arguments with known important simplifications. | 
 |   CallSite::arg_iterator CAI = CS.arg_begin(); | 
 |   for (Function::arg_iterator FAI = F.arg_begin(), FAE = F.arg_end(); | 
 |        FAI != FAE; ++FAI, ++CAI) { | 
 |     assert(CAI != CS.arg_end()); | 
 |     if (Constant *C = dyn_cast<Constant>(CAI)) | 
 |       SimplifiedValues[FAI] = C; | 
 |  | 
 |     Value *PtrArg = *CAI; | 
 |     if (ConstantInt *C = stripAndComputeInBoundsConstantOffsets(PtrArg)) { | 
 |       ConstantOffsetPtrs[FAI] = std::make_pair(PtrArg, C->getValue()); | 
 |  | 
 |       // We can SROA any pointer arguments derived from alloca instructions. | 
 |       if (isa<AllocaInst>(PtrArg)) { | 
 |         SROAArgValues[FAI] = PtrArg; | 
 |         SROAArgCosts[PtrArg] = 0; | 
 |       } | 
 |     } | 
 |   } | 
 |   NumConstantArgs = SimplifiedValues.size(); | 
 |   NumConstantOffsetPtrArgs = ConstantOffsetPtrs.size(); | 
 |   NumAllocaArgs = SROAArgValues.size(); | 
 |  | 
 |   // The worklist of live basic blocks in the callee *after* inlining. We avoid | 
 |   // adding basic blocks of the callee which can be proven to be dead for this | 
 |   // particular call site in order to get more accurate cost estimates. This | 
 |   // requires a somewhat heavyweight iteration pattern: we need to walk the | 
 |   // basic blocks in a breadth-first order as we insert live successors. To | 
 |   // accomplish this, prioritizing for small iterations because we exit after | 
 |   // crossing our threshold, we use a small-size optimized SetVector. | 
 |   typedef SetVector<BasicBlock *, SmallVector<BasicBlock *, 16>, | 
 |                                   SmallPtrSet<BasicBlock *, 16> > BBSetVector; | 
 |   BBSetVector BBWorklist; | 
 |   BBWorklist.insert(&F.getEntryBlock()); | 
 |   // Note that we *must not* cache the size, this loop grows the worklist. | 
 |   for (unsigned Idx = 0; Idx != BBWorklist.size(); ++Idx) { | 
 |     // Bail out the moment we cross the threshold. This means we'll under-count | 
 |     // the cost, but only when undercounting doesn't matter. | 
 |     if (Cost > (Threshold + VectorBonus)) | 
 |       break; | 
 |  | 
 |     BasicBlock *BB = BBWorklist[Idx]; | 
 |     if (BB->empty()) | 
 |       continue; | 
 |  | 
 |     // Analyze the cost of this block. If we blow through the threshold, this | 
 |     // returns false, and we can bail on out. | 
 |     if (!analyzeBlock(BB)) { | 
 |       if (IsRecursiveCall || ExposesReturnsTwice || HasDynamicAlloca || | 
 |           HasIndirectBr) | 
 |         return false; | 
 |  | 
 |       // If the caller is a recursive function then we don't want to inline | 
 |       // functions which allocate a lot of stack space because it would increase | 
 |       // the caller stack usage dramatically. | 
 |       if (IsCallerRecursive && | 
 |           AllocatedSize > InlineConstants::TotalAllocaSizeRecursiveCaller) | 
 |         return false; | 
 |  | 
 |       break; | 
 |     } | 
 |  | 
 |     TerminatorInst *TI = BB->getTerminator(); | 
 |  | 
 |     // Add in the live successors by first checking whether we have terminator | 
 |     // that may be simplified based on the values simplified by this call. | 
 |     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
 |       if (BI->isConditional()) { | 
 |         Value *Cond = BI->getCondition(); | 
 |         if (ConstantInt *SimpleCond | 
 |               = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { | 
 |           BBWorklist.insert(BI->getSuccessor(SimpleCond->isZero() ? 1 : 0)); | 
 |           continue; | 
 |         } | 
 |       } | 
 |     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
 |       Value *Cond = SI->getCondition(); | 
 |       if (ConstantInt *SimpleCond | 
 |             = dyn_cast_or_null<ConstantInt>(SimplifiedValues.lookup(Cond))) { | 
 |         BBWorklist.insert(SI->findCaseValue(SimpleCond).getCaseSuccessor()); | 
 |         continue; | 
 |       } | 
 |     } | 
 |  | 
 |     // If we're unable to select a particular successor, just count all of | 
 |     // them. | 
 |     for (unsigned TIdx = 0, TSize = TI->getNumSuccessors(); TIdx != TSize; | 
 |          ++TIdx) | 
 |       BBWorklist.insert(TI->getSuccessor(TIdx)); | 
 |  | 
 |     // If we had any successors at this point, than post-inlining is likely to | 
 |     // have them as well. Note that we assume any basic blocks which existed | 
 |     // due to branches or switches which folded above will also fold after | 
 |     // inlining. | 
 |     if (SingleBB && TI->getNumSuccessors() > 1) { | 
 |       // Take off the bonus we applied to the threshold. | 
 |       Threshold -= SingleBBBonus; | 
 |       SingleBB = false; | 
 |     } | 
 |   } | 
 |  | 
 |   // If this is a noduplicate call, we can still inline as long as  | 
 |   // inlining this would cause the removal of the caller (so the instruction | 
 |   // is not actually duplicated, just moved). | 
 |   if (!OnlyOneCallAndLocalLinkage && ContainsNoDuplicateCall) | 
 |     return false; | 
 |  | 
 |   Threshold += VectorBonus; | 
 |  | 
 |   return Cost < Threshold; | 
 | } | 
 |  | 
 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
 | /// \brief Dump stats about this call's analysis. | 
 | void CallAnalyzer::dump() { | 
 | #define DEBUG_PRINT_STAT(x) llvm::dbgs() << "      " #x ": " << x << "\n" | 
 |   DEBUG_PRINT_STAT(NumConstantArgs); | 
 |   DEBUG_PRINT_STAT(NumConstantOffsetPtrArgs); | 
 |   DEBUG_PRINT_STAT(NumAllocaArgs); | 
 |   DEBUG_PRINT_STAT(NumConstantPtrCmps); | 
 |   DEBUG_PRINT_STAT(NumConstantPtrDiffs); | 
 |   DEBUG_PRINT_STAT(NumInstructionsSimplified); | 
 |   DEBUG_PRINT_STAT(SROACostSavings); | 
 |   DEBUG_PRINT_STAT(SROACostSavingsLost); | 
 |   DEBUG_PRINT_STAT(ContainsNoDuplicateCall); | 
 | #undef DEBUG_PRINT_STAT | 
 | } | 
 | #endif | 
 |  | 
 | INITIALIZE_PASS_BEGIN(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis", | 
 |                       true, true) | 
 | INITIALIZE_AG_DEPENDENCY(TargetTransformInfo) | 
 | INITIALIZE_PASS_END(InlineCostAnalysis, "inline-cost", "Inline Cost Analysis", | 
 |                     true, true) | 
 |  | 
 | char InlineCostAnalysis::ID = 0; | 
 |  | 
 | InlineCostAnalysis::InlineCostAnalysis() : CallGraphSCCPass(ID), TD(0) {} | 
 |  | 
 | InlineCostAnalysis::~InlineCostAnalysis() {} | 
 |  | 
 | void InlineCostAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { | 
 |   AU.setPreservesAll(); | 
 |   AU.addRequired<TargetTransformInfo>(); | 
 |   CallGraphSCCPass::getAnalysisUsage(AU); | 
 | } | 
 |  | 
 | bool InlineCostAnalysis::runOnSCC(CallGraphSCC &SCC) { | 
 |   TD = getAnalysisIfAvailable<DataLayout>(); | 
 |   TTI = &getAnalysis<TargetTransformInfo>(); | 
 |   return false; | 
 | } | 
 |  | 
 | InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, int Threshold) { | 
 |   return getInlineCost(CS, CS.getCalledFunction(), Threshold); | 
 | } | 
 |  | 
 | /// \brief Test that two functions either have or have not the given attribute | 
 | ///        at the same time. | 
 | static bool attributeMatches(Function *F1, Function *F2, | 
 |                              Attribute::AttrKind Attr) { | 
 |   return F1->hasFnAttribute(Attr) == F2->hasFnAttribute(Attr); | 
 | } | 
 |  | 
 | /// \brief Test that there are no attribute conflicts between Caller and Callee | 
 | ///        that prevent inlining. | 
 | static bool functionsHaveCompatibleAttributes(Function *Caller, | 
 |                                               Function *Callee) { | 
 |   return attributeMatches(Caller, Callee, Attribute::SanitizeAddress) && | 
 |          attributeMatches(Caller, Callee, Attribute::SanitizeMemory) && | 
 |          attributeMatches(Caller, Callee, Attribute::SanitizeThread); | 
 | } | 
 |  | 
 | InlineCost InlineCostAnalysis::getInlineCost(CallSite CS, Function *Callee, | 
 |                                              int Threshold) { | 
 |   // Cannot inline indirect calls. | 
 |   if (!Callee) | 
 |     return llvm::InlineCost::getNever(); | 
 |  | 
 |   // Calls to functions with always-inline attributes should be inlined | 
 |   // whenever possible. | 
 |   if (Callee->hasFnAttribute(Attribute::AlwaysInline)) { | 
 |     if (isInlineViable(*Callee)) | 
 |       return llvm::InlineCost::getAlways(); | 
 |     return llvm::InlineCost::getNever(); | 
 |   } | 
 |  | 
 |   // Never inline functions with conflicting attributes (unless callee has | 
 |   // always-inline attribute). | 
 |   if (!functionsHaveCompatibleAttributes(CS.getCaller(), Callee)) | 
 |     return llvm::InlineCost::getNever(); | 
 |  | 
 |   // Don't inline this call if the caller has the optnone attribute. | 
 |   if (CS.getCaller()->hasFnAttribute(Attribute::OptimizeNone)) | 
 |     return llvm::InlineCost::getNever(); | 
 |  | 
 |   // Don't inline functions which can be redefined at link-time to mean | 
 |   // something else.  Don't inline functions marked noinline or call sites | 
 |   // marked noinline. | 
 |   if (Callee->mayBeOverridden() || | 
 |       Callee->hasFnAttribute(Attribute::NoInline) || CS.isNoInline()) | 
 |     return llvm::InlineCost::getNever(); | 
 |  | 
 |   DEBUG(llvm::dbgs() << "      Analyzing call of " << Callee->getName() | 
 |         << "...\n"); | 
 |  | 
 |   CallAnalyzer CA(TD, *TTI, *Callee, Threshold); | 
 |   bool ShouldInline = CA.analyzeCall(CS); | 
 |  | 
 |   DEBUG(CA.dump()); | 
 |  | 
 |   // Check if there was a reason to force inlining or no inlining. | 
 |   if (!ShouldInline && CA.getCost() < CA.getThreshold()) | 
 |     return InlineCost::getNever(); | 
 |   if (ShouldInline && CA.getCost() >= CA.getThreshold()) | 
 |     return InlineCost::getAlways(); | 
 |  | 
 |   return llvm::InlineCost::get(CA.getCost(), CA.getThreshold()); | 
 | } | 
 |  | 
 | bool InlineCostAnalysis::isInlineViable(Function &F) { | 
 |   bool ReturnsTwice = | 
 |     F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, | 
 |                                    Attribute::ReturnsTwice); | 
 |   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) { | 
 |     // Disallow inlining of functions which contain an indirect branch. | 
 |     if (isa<IndirectBrInst>(BI->getTerminator())) | 
 |       return false; | 
 |  | 
 |     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; | 
 |          ++II) { | 
 |       CallSite CS(II); | 
 |       if (!CS) | 
 |         continue; | 
 |  | 
 |       // Disallow recursive calls. | 
 |       if (&F == CS.getCalledFunction()) | 
 |         return false; | 
 |  | 
 |       // Disallow calls which expose returns-twice to a function not previously | 
 |       // attributed as such. | 
 |       if (!ReturnsTwice && CS.isCall() && | 
 |           cast<CallInst>(CS.getInstruction())->canReturnTwice()) | 
 |         return false; | 
 |     } | 
 |   } | 
 |  | 
 |   return true; | 
 | } |