| //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file implements a linear scan register allocator. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "regalloc" | 
 | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
 | #include "PhysRegTracker.h" | 
 | #include "VirtRegMap.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/MachineLoopInfo.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/CodeGen/RegAllocRegistry.h" | 
 | #include "llvm/CodeGen/RegisterCoalescer.h" | 
 | #include "llvm/Target/MRegisterInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/ADT/EquivalenceClasses.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include <algorithm> | 
 | #include <set> | 
 | #include <queue> | 
 | #include <memory> | 
 | #include <cmath> | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumIters     , "Number of iterations performed"); | 
 | STATISTIC(NumBacktracks, "Number of times we had to backtrack"); | 
 | STATISTIC(NumCoalesce,   "Number of copies coalesced"); | 
 |  | 
 | static RegisterRegAlloc | 
 | linearscanRegAlloc("linearscan", "  linear scan register allocator", | 
 |                    createLinearScanRegisterAllocator); | 
 |  | 
 | namespace { | 
 |   struct VISIBILITY_HIDDEN RALinScan : public MachineFunctionPass { | 
 |     static char ID; | 
 |     RALinScan() : MachineFunctionPass((intptr_t)&ID) {} | 
 |  | 
 |     typedef std::pair<LiveInterval*, LiveInterval::iterator> IntervalPtr; | 
 |     typedef std::vector<IntervalPtr> IntervalPtrs; | 
 |   private: | 
 |     /// RelatedRegClasses - This structure is built the first time a function is | 
 |     /// compiled, and keeps track of which register classes have registers that | 
 |     /// belong to multiple classes or have aliases that are in other classes. | 
 |     EquivalenceClasses<const TargetRegisterClass*> RelatedRegClasses; | 
 |     std::map<unsigned, const TargetRegisterClass*> OneClassForEachPhysReg; | 
 |  | 
 |     MachineFunction* mf_; | 
 |     const TargetMachine* tm_; | 
 |     const MRegisterInfo* mri_; | 
 |     const TargetInstrInfo* tii_; | 
 |     MachineRegisterInfo *reginfo_; | 
 |     BitVector allocatableRegs_; | 
 |     LiveIntervals* li_; | 
 |     const MachineLoopInfo *loopInfo; | 
 |  | 
 |     /// handled_ - Intervals are added to the handled_ set in the order of their | 
 |     /// start value.  This is uses for backtracking. | 
 |     std::vector<LiveInterval*> handled_; | 
 |  | 
 |     /// fixed_ - Intervals that correspond to machine registers. | 
 |     /// | 
 |     IntervalPtrs fixed_; | 
 |  | 
 |     /// active_ - Intervals that are currently being processed, and which have a | 
 |     /// live range active for the current point. | 
 |     IntervalPtrs active_; | 
 |  | 
 |     /// inactive_ - Intervals that are currently being processed, but which have | 
 |     /// a hold at the current point. | 
 |     IntervalPtrs inactive_; | 
 |  | 
 |     typedef std::priority_queue<LiveInterval*, | 
 |                                 std::vector<LiveInterval*>, | 
 |                                 greater_ptr<LiveInterval> > IntervalHeap; | 
 |     IntervalHeap unhandled_; | 
 |     std::auto_ptr<PhysRegTracker> prt_; | 
 |     std::auto_ptr<VirtRegMap> vrm_; | 
 |     std::auto_ptr<Spiller> spiller_; | 
 |  | 
 |   public: | 
 |     virtual const char* getPassName() const { | 
 |       return "Linear Scan Register Allocator"; | 
 |     } | 
 |  | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.addRequired<LiveIntervals>(); | 
 |       // Make sure PassManager knows which analyses to make available | 
 |       // to coalescing and which analyses coalescing invalidates. | 
 |       AU.addRequiredTransitive<RegisterCoalescer>(); | 
 |       AU.addRequired<MachineLoopInfo>(); | 
 |       AU.addPreserved<MachineLoopInfo>(); | 
 |       AU.addPreservedID(MachineDominatorsID); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |  | 
 |     /// runOnMachineFunction - register allocate the whole function | 
 |     bool runOnMachineFunction(MachineFunction&); | 
 |  | 
 |   private: | 
 |     /// linearScan - the linear scan algorithm | 
 |     void linearScan(); | 
 |  | 
 |     /// initIntervalSets - initialize the interval sets. | 
 |     /// | 
 |     void initIntervalSets(); | 
 |  | 
 |     /// processActiveIntervals - expire old intervals and move non-overlapping | 
 |     /// ones to the inactive list. | 
 |     void processActiveIntervals(unsigned CurPoint); | 
 |  | 
 |     /// processInactiveIntervals - expire old intervals and move overlapping | 
 |     /// ones to the active list. | 
 |     void processInactiveIntervals(unsigned CurPoint); | 
 |  | 
 |     /// assignRegOrStackSlotAtInterval - assign a register if one | 
 |     /// is available, or spill. | 
 |     void assignRegOrStackSlotAtInterval(LiveInterval* cur); | 
 |  | 
 |     /// attemptTrivialCoalescing - If a simple interval is defined by a copy, | 
 |     /// try allocate the definition the same register as the source register | 
 |     /// if the register is not defined during live time of the interval. This | 
 |     /// eliminate a copy. This is used to coalesce copies which were not | 
 |     /// coalesced away before allocation either due to dest and src being in | 
 |     /// different register classes or because the coalescer was overly | 
 |     /// conservative. | 
 |     unsigned attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg); | 
 |  | 
 |     /// | 
 |     /// register handling helpers | 
 |     /// | 
 |  | 
 |     /// getFreePhysReg - return a free physical register for this virtual | 
 |     /// register interval if we have one, otherwise return 0. | 
 |     unsigned getFreePhysReg(LiveInterval* cur); | 
 |  | 
 |     /// assignVirt2StackSlot - assigns this virtual register to a | 
 |     /// stack slot. returns the stack slot | 
 |     int assignVirt2StackSlot(unsigned virtReg); | 
 |  | 
 |     void ComputeRelatedRegClasses(); | 
 |  | 
 |     template <typename ItTy> | 
 |     void printIntervals(const char* const str, ItTy i, ItTy e) const { | 
 |       if (str) DOUT << str << " intervals:\n"; | 
 |       for (; i != e; ++i) { | 
 |         DOUT << "\t" << *i->first << " -> "; | 
 |         unsigned reg = i->first->reg; | 
 |         if (MRegisterInfo::isVirtualRegister(reg)) { | 
 |           reg = vrm_->getPhys(reg); | 
 |         } | 
 |         DOUT << mri_->getName(reg) << '\n'; | 
 |       } | 
 |     } | 
 |   }; | 
 |   char RALinScan::ID = 0; | 
 | } | 
 |  | 
 | void RALinScan::ComputeRelatedRegClasses() { | 
 |   const MRegisterInfo &MRI = *mri_; | 
 |    | 
 |   // First pass, add all reg classes to the union, and determine at least one | 
 |   // reg class that each register is in. | 
 |   bool HasAliases = false; | 
 |   for (MRegisterInfo::regclass_iterator RCI = MRI.regclass_begin(), | 
 |        E = MRI.regclass_end(); RCI != E; ++RCI) { | 
 |     RelatedRegClasses.insert(*RCI); | 
 |     for (TargetRegisterClass::iterator I = (*RCI)->begin(), E = (*RCI)->end(); | 
 |          I != E; ++I) { | 
 |       HasAliases = HasAliases || *MRI.getAliasSet(*I) != 0; | 
 |        | 
 |       const TargetRegisterClass *&PRC = OneClassForEachPhysReg[*I]; | 
 |       if (PRC) { | 
 |         // Already processed this register.  Just make sure we know that | 
 |         // multiple register classes share a register. | 
 |         RelatedRegClasses.unionSets(PRC, *RCI); | 
 |       } else { | 
 |         PRC = *RCI; | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   // Second pass, now that we know conservatively what register classes each reg | 
 |   // belongs to, add info about aliases.  We don't need to do this for targets | 
 |   // without register aliases. | 
 |   if (HasAliases) | 
 |     for (std::map<unsigned, const TargetRegisterClass*>::iterator | 
 |          I = OneClassForEachPhysReg.begin(), E = OneClassForEachPhysReg.end(); | 
 |          I != E; ++I) | 
 |       for (const unsigned *AS = MRI.getAliasSet(I->first); *AS; ++AS) | 
 |         RelatedRegClasses.unionSets(I->second, OneClassForEachPhysReg[*AS]); | 
 | } | 
 |  | 
 | /// attemptTrivialCoalescing - If a simple interval is defined by a copy, | 
 | /// try allocate the definition the same register as the source register | 
 | /// if the register is not defined during live time of the interval. This | 
 | /// eliminate a copy. This is used to coalesce copies which were not | 
 | /// coalesced away before allocation either due to dest and src being in | 
 | /// different register classes or because the coalescer was overly | 
 | /// conservative. | 
 | unsigned RALinScan::attemptTrivialCoalescing(LiveInterval &cur, unsigned Reg) { | 
 |   if ((cur.preference && cur.preference == Reg) || !cur.containsOneValue()) | 
 |     return Reg; | 
 |  | 
 |   VNInfo *vni = cur.getValNumInfo(0); | 
 |   if (!vni->def || vni->def == ~1U || vni->def == ~0U) | 
 |     return Reg; | 
 |   MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); | 
 |   unsigned SrcReg, DstReg; | 
 |   if (!CopyMI || !tii_->isMoveInstr(*CopyMI, SrcReg, DstReg)) | 
 |     return Reg; | 
 |   if (MRegisterInfo::isVirtualRegister(SrcReg)) | 
 |     if (!vrm_->isAssignedReg(SrcReg)) | 
 |       return Reg; | 
 |     else | 
 |       SrcReg = vrm_->getPhys(SrcReg); | 
 |   if (Reg == SrcReg) | 
 |     return Reg; | 
 |  | 
 |   const TargetRegisterClass *RC = reginfo_->getRegClass(cur.reg); | 
 |   if (!RC->contains(SrcReg)) | 
 |     return Reg; | 
 |  | 
 |   // Try to coalesce. | 
 |   if (!li_->conflictsWithPhysRegDef(cur, *vrm_, SrcReg)) { | 
 |     DOUT << "Coalescing: " << cur << " -> " << mri_->getName(SrcReg) << '\n'; | 
 |     vrm_->clearVirt(cur.reg); | 
 |     vrm_->assignVirt2Phys(cur.reg, SrcReg); | 
 |     ++NumCoalesce; | 
 |     return SrcReg; | 
 |   } | 
 |  | 
 |   return Reg; | 
 | } | 
 |  | 
 | bool RALinScan::runOnMachineFunction(MachineFunction &fn) { | 
 |   mf_ = &fn; | 
 |   tm_ = &fn.getTarget(); | 
 |   mri_ = tm_->getRegisterInfo(); | 
 |   tii_ = tm_->getInstrInfo(); | 
 |   reginfo_ = &mf_->getRegInfo(); | 
 |   allocatableRegs_ = mri_->getAllocatableSet(fn); | 
 |   li_ = &getAnalysis<LiveIntervals>(); | 
 |   loopInfo = &getAnalysis<MachineLoopInfo>(); | 
 |  | 
 |   // We don't run the coalescer here because we have no reason to | 
 |   // interact with it.  If the coalescer requires interaction, it | 
 |   // won't do anything.  If it doesn't require interaction, we assume | 
 |   // it was run as a separate pass. | 
 |  | 
 |   // If this is the first function compiled, compute the related reg classes. | 
 |   if (RelatedRegClasses.empty()) | 
 |     ComputeRelatedRegClasses(); | 
 |    | 
 |   if (!prt_.get()) prt_.reset(new PhysRegTracker(*mri_)); | 
 |   vrm_.reset(new VirtRegMap(*mf_)); | 
 |   if (!spiller_.get()) spiller_.reset(createSpiller()); | 
 |  | 
 |   initIntervalSets(); | 
 |  | 
 |   linearScan(); | 
 |  | 
 |   // Rewrite spill code and update the PhysRegsUsed set. | 
 |   spiller_->runOnMachineFunction(*mf_, *vrm_); | 
 |   vrm_.reset();  // Free the VirtRegMap | 
 |  | 
 |   while (!unhandled_.empty()) unhandled_.pop(); | 
 |   fixed_.clear(); | 
 |   active_.clear(); | 
 |   inactive_.clear(); | 
 |   handled_.clear(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// initIntervalSets - initialize the interval sets. | 
 | /// | 
 | void RALinScan::initIntervalSets() | 
 | { | 
 |   assert(unhandled_.empty() && fixed_.empty() && | 
 |          active_.empty() && inactive_.empty() && | 
 |          "interval sets should be empty on initialization"); | 
 |  | 
 |   for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { | 
 |     if (MRegisterInfo::isPhysicalRegister(i->second.reg)) { | 
 |       reginfo_->setPhysRegUsed(i->second.reg); | 
 |       fixed_.push_back(std::make_pair(&i->second, i->second.begin())); | 
 |     } else | 
 |       unhandled_.push(&i->second); | 
 |   } | 
 | } | 
 |  | 
 | void RALinScan::linearScan() | 
 | { | 
 |   // linear scan algorithm | 
 |   DOUT << "********** LINEAR SCAN **********\n"; | 
 |   DOUT << "********** Function: " << mf_->getFunction()->getName() << '\n'; | 
 |  | 
 |   DEBUG(printIntervals("fixed", fixed_.begin(), fixed_.end())); | 
 |  | 
 |   while (!unhandled_.empty()) { | 
 |     // pick the interval with the earliest start point | 
 |     LiveInterval* cur = unhandled_.top(); | 
 |     unhandled_.pop(); | 
 |     ++NumIters; | 
 |     DOUT << "\n*** CURRENT ***: " << *cur << '\n'; | 
 |  | 
 |     processActiveIntervals(cur->beginNumber()); | 
 |     processInactiveIntervals(cur->beginNumber()); | 
 |  | 
 |     assert(MRegisterInfo::isVirtualRegister(cur->reg) && | 
 |            "Can only allocate virtual registers!"); | 
 |  | 
 |     // Allocating a virtual register. try to find a free | 
 |     // physical register or spill an interval (possibly this one) in order to | 
 |     // assign it one. | 
 |     assignRegOrStackSlotAtInterval(cur); | 
 |  | 
 |     DEBUG(printIntervals("active", active_.begin(), active_.end())); | 
 |     DEBUG(printIntervals("inactive", inactive_.begin(), inactive_.end())); | 
 |   } | 
 |  | 
 |   // expire any remaining active intervals | 
 |   while (!active_.empty()) { | 
 |     IntervalPtr &IP = active_.back(); | 
 |     unsigned reg = IP.first->reg; | 
 |     DOUT << "\tinterval " << *IP.first << " expired\n"; | 
 |     assert(MRegisterInfo::isVirtualRegister(reg) && | 
 |            "Can only allocate virtual registers!"); | 
 |     reg = vrm_->getPhys(reg); | 
 |     prt_->delRegUse(reg); | 
 |     active_.pop_back(); | 
 |   } | 
 |  | 
 |   // expire any remaining inactive intervals | 
 |   DEBUG(for (IntervalPtrs::reverse_iterator | 
 |                i = inactive_.rbegin(); i != inactive_.rend(); ++i) | 
 |         DOUT << "\tinterval " << *i->first << " expired\n"); | 
 |   inactive_.clear(); | 
 |  | 
 |   // Add live-ins to every BB except for entry. Also perform trivial coalescing. | 
 |   MachineFunction::iterator EntryMBB = mf_->begin(); | 
 |   SmallVector<MachineBasicBlock*, 8> LiveInMBBs; | 
 |   for (LiveIntervals::iterator i = li_->begin(), e = li_->end(); i != e; ++i) { | 
 |     LiveInterval &cur = i->second; | 
 |     unsigned Reg = 0; | 
 |     bool isPhys = MRegisterInfo::isPhysicalRegister(cur.reg); | 
 |     if (isPhys) | 
 |       Reg = i->second.reg; | 
 |     else if (vrm_->isAssignedReg(cur.reg)) | 
 |       Reg = attemptTrivialCoalescing(cur, vrm_->getPhys(cur.reg)); | 
 |     if (!Reg) | 
 |       continue; | 
 |     // Ignore splited live intervals. | 
 |     if (!isPhys && vrm_->getPreSplitReg(cur.reg)) | 
 |       continue; | 
 |     for (LiveInterval::Ranges::const_iterator I = cur.begin(), E = cur.end(); | 
 |          I != E; ++I) { | 
 |       const LiveRange &LR = *I; | 
 |       if (li_->findLiveInMBBs(LR, LiveInMBBs)) { | 
 |         for (unsigned i = 0, e = LiveInMBBs.size(); i != e; ++i) | 
 |           if (LiveInMBBs[i] != EntryMBB) | 
 |             LiveInMBBs[i]->addLiveIn(Reg); | 
 |         LiveInMBBs.clear(); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   DOUT << *vrm_; | 
 | } | 
 |  | 
 | /// processActiveIntervals - expire old intervals and move non-overlapping ones | 
 | /// to the inactive list. | 
 | void RALinScan::processActiveIntervals(unsigned CurPoint) | 
 | { | 
 |   DOUT << "\tprocessing active intervals:\n"; | 
 |  | 
 |   for (unsigned i = 0, e = active_.size(); i != e; ++i) { | 
 |     LiveInterval *Interval = active_[i].first; | 
 |     LiveInterval::iterator IntervalPos = active_[i].second; | 
 |     unsigned reg = Interval->reg; | 
 |  | 
 |     IntervalPos = Interval->advanceTo(IntervalPos, CurPoint); | 
 |  | 
 |     if (IntervalPos == Interval->end()) {     // Remove expired intervals. | 
 |       DOUT << "\t\tinterval " << *Interval << " expired\n"; | 
 |       assert(MRegisterInfo::isVirtualRegister(reg) && | 
 |              "Can only allocate virtual registers!"); | 
 |       reg = vrm_->getPhys(reg); | 
 |       prt_->delRegUse(reg); | 
 |  | 
 |       // Pop off the end of the list. | 
 |       active_[i] = active_.back(); | 
 |       active_.pop_back(); | 
 |       --i; --e; | 
 |  | 
 |     } else if (IntervalPos->start > CurPoint) { | 
 |       // Move inactive intervals to inactive list. | 
 |       DOUT << "\t\tinterval " << *Interval << " inactive\n"; | 
 |       assert(MRegisterInfo::isVirtualRegister(reg) && | 
 |              "Can only allocate virtual registers!"); | 
 |       reg = vrm_->getPhys(reg); | 
 |       prt_->delRegUse(reg); | 
 |       // add to inactive. | 
 |       inactive_.push_back(std::make_pair(Interval, IntervalPos)); | 
 |  | 
 |       // Pop off the end of the list. | 
 |       active_[i] = active_.back(); | 
 |       active_.pop_back(); | 
 |       --i; --e; | 
 |     } else { | 
 |       // Otherwise, just update the iterator position. | 
 |       active_[i].second = IntervalPos; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// processInactiveIntervals - expire old intervals and move overlapping | 
 | /// ones to the active list. | 
 | void RALinScan::processInactiveIntervals(unsigned CurPoint) | 
 | { | 
 |   DOUT << "\tprocessing inactive intervals:\n"; | 
 |  | 
 |   for (unsigned i = 0, e = inactive_.size(); i != e; ++i) { | 
 |     LiveInterval *Interval = inactive_[i].first; | 
 |     LiveInterval::iterator IntervalPos = inactive_[i].second; | 
 |     unsigned reg = Interval->reg; | 
 |  | 
 |     IntervalPos = Interval->advanceTo(IntervalPos, CurPoint); | 
 |  | 
 |     if (IntervalPos == Interval->end()) {       // remove expired intervals. | 
 |       DOUT << "\t\tinterval " << *Interval << " expired\n"; | 
 |  | 
 |       // Pop off the end of the list. | 
 |       inactive_[i] = inactive_.back(); | 
 |       inactive_.pop_back(); | 
 |       --i; --e; | 
 |     } else if (IntervalPos->start <= CurPoint) { | 
 |       // move re-activated intervals in active list | 
 |       DOUT << "\t\tinterval " << *Interval << " active\n"; | 
 |       assert(MRegisterInfo::isVirtualRegister(reg) && | 
 |              "Can only allocate virtual registers!"); | 
 |       reg = vrm_->getPhys(reg); | 
 |       prt_->addRegUse(reg); | 
 |       // add to active | 
 |       active_.push_back(std::make_pair(Interval, IntervalPos)); | 
 |  | 
 |       // Pop off the end of the list. | 
 |       inactive_[i] = inactive_.back(); | 
 |       inactive_.pop_back(); | 
 |       --i; --e; | 
 |     } else { | 
 |       // Otherwise, just update the iterator position. | 
 |       inactive_[i].second = IntervalPos; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// updateSpillWeights - updates the spill weights of the specifed physical | 
 | /// register and its weight. | 
 | static void updateSpillWeights(std::vector<float> &Weights, | 
 |                                unsigned reg, float weight, | 
 |                                const MRegisterInfo *MRI) { | 
 |   Weights[reg] += weight; | 
 |   for (const unsigned* as = MRI->getAliasSet(reg); *as; ++as) | 
 |     Weights[*as] += weight; | 
 | } | 
 |  | 
 | static | 
 | RALinScan::IntervalPtrs::iterator | 
 | FindIntervalInVector(RALinScan::IntervalPtrs &IP, LiveInterval *LI) { | 
 |   for (RALinScan::IntervalPtrs::iterator I = IP.begin(), E = IP.end(); | 
 |        I != E; ++I) | 
 |     if (I->first == LI) return I; | 
 |   return IP.end(); | 
 | } | 
 |  | 
 | static void RevertVectorIteratorsTo(RALinScan::IntervalPtrs &V, unsigned Point){ | 
 |   for (unsigned i = 0, e = V.size(); i != e; ++i) { | 
 |     RALinScan::IntervalPtr &IP = V[i]; | 
 |     LiveInterval::iterator I = std::upper_bound(IP.first->begin(), | 
 |                                                 IP.second, Point); | 
 |     if (I != IP.first->begin()) --I; | 
 |     IP.second = I; | 
 |   } | 
 | } | 
 |  | 
 | /// assignRegOrStackSlotAtInterval - assign a register if one is available, or | 
 | /// spill. | 
 | void RALinScan::assignRegOrStackSlotAtInterval(LiveInterval* cur) | 
 | { | 
 |   DOUT << "\tallocating current interval: "; | 
 |  | 
 |   PhysRegTracker backupPrt = *prt_; | 
 |  | 
 |   std::vector<std::pair<unsigned, float> > SpillWeightsToAdd; | 
 |   unsigned StartPosition = cur->beginNumber(); | 
 |   const TargetRegisterClass *RC = reginfo_->getRegClass(cur->reg); | 
 |   const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); | 
 |  | 
 |   // If this live interval is defined by a move instruction and its source is | 
 |   // assigned a physical register that is compatible with the target register | 
 |   // class, then we should try to assign it the same register. | 
 |   // This can happen when the move is from a larger register class to a smaller | 
 |   // one, e.g. X86::mov32to32_. These move instructions are not coalescable. | 
 |   if (!cur->preference && cur->containsOneValue()) { | 
 |     VNInfo *vni = cur->getValNumInfo(0); | 
 |     if (vni->def && vni->def != ~1U && vni->def != ~0U) { | 
 |       MachineInstr *CopyMI = li_->getInstructionFromIndex(vni->def); | 
 |       unsigned SrcReg, DstReg; | 
 |       if (tii_->isMoveInstr(*CopyMI, SrcReg, DstReg)) { | 
 |         unsigned Reg = 0; | 
 |         if (MRegisterInfo::isPhysicalRegister(SrcReg)) | 
 |           Reg = SrcReg; | 
 |         else if (vrm_->isAssignedReg(SrcReg)) | 
 |           Reg = vrm_->getPhys(SrcReg); | 
 |         if (Reg && allocatableRegs_[Reg] && RC->contains(Reg)) | 
 |           cur->preference = Reg; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // for every interval in inactive we overlap with, mark the | 
 |   // register as not free and update spill weights. | 
 |   for (IntervalPtrs::const_iterator i = inactive_.begin(), | 
 |          e = inactive_.end(); i != e; ++i) { | 
 |     unsigned Reg = i->first->reg; | 
 |     assert(MRegisterInfo::isVirtualRegister(Reg) && | 
 |            "Can only allocate virtual registers!"); | 
 |     const TargetRegisterClass *RegRC = reginfo_->getRegClass(Reg); | 
 |     // If this is not in a related reg class to the register we're allocating,  | 
 |     // don't check it. | 
 |     if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader && | 
 |         cur->overlapsFrom(*i->first, i->second-1)) { | 
 |       Reg = vrm_->getPhys(Reg); | 
 |       prt_->addRegUse(Reg); | 
 |       SpillWeightsToAdd.push_back(std::make_pair(Reg, i->first->weight)); | 
 |     } | 
 |   } | 
 |    | 
 |   // Speculatively check to see if we can get a register right now.  If not, | 
 |   // we know we won't be able to by adding more constraints.  If so, we can | 
 |   // check to see if it is valid.  Doing an exhaustive search of the fixed_ list | 
 |   // is very bad (it contains all callee clobbered registers for any functions | 
 |   // with a call), so we want to avoid doing that if possible. | 
 |   unsigned physReg = getFreePhysReg(cur); | 
 |   if (physReg) { | 
 |     // We got a register.  However, if it's in the fixed_ list, we might | 
 |     // conflict with it.  Check to see if we conflict with it or any of its | 
 |     // aliases. | 
 |     SmallSet<unsigned, 8> RegAliases; | 
 |     for (const unsigned *AS = mri_->getAliasSet(physReg); *AS; ++AS) | 
 |       RegAliases.insert(*AS); | 
 |      | 
 |     bool ConflictsWithFixed = false; | 
 |     for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { | 
 |       IntervalPtr &IP = fixed_[i]; | 
 |       if (physReg == IP.first->reg || RegAliases.count(IP.first->reg)) { | 
 |         // Okay, this reg is on the fixed list.  Check to see if we actually | 
 |         // conflict. | 
 |         LiveInterval *I = IP.first; | 
 |         if (I->endNumber() > StartPosition) { | 
 |           LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition); | 
 |           IP.second = II; | 
 |           if (II != I->begin() && II->start > StartPosition) | 
 |             --II; | 
 |           if (cur->overlapsFrom(*I, II)) { | 
 |             ConflictsWithFixed = true; | 
 |             break; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |      | 
 |     // Okay, the register picked by our speculative getFreePhysReg call turned | 
 |     // out to be in use.  Actually add all of the conflicting fixed registers to | 
 |     // prt so we can do an accurate query. | 
 |     if (ConflictsWithFixed) { | 
 |       // For every interval in fixed we overlap with, mark the register as not | 
 |       // free and update spill weights. | 
 |       for (unsigned i = 0, e = fixed_.size(); i != e; ++i) { | 
 |         IntervalPtr &IP = fixed_[i]; | 
 |         LiveInterval *I = IP.first; | 
 |  | 
 |         const TargetRegisterClass *RegRC = OneClassForEachPhysReg[I->reg]; | 
 |         if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader &&        | 
 |             I->endNumber() > StartPosition) { | 
 |           LiveInterval::iterator II = I->advanceTo(IP.second, StartPosition); | 
 |           IP.second = II; | 
 |           if (II != I->begin() && II->start > StartPosition) | 
 |             --II; | 
 |           if (cur->overlapsFrom(*I, II)) { | 
 |             unsigned reg = I->reg; | 
 |             prt_->addRegUse(reg); | 
 |             SpillWeightsToAdd.push_back(std::make_pair(reg, I->weight)); | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Using the newly updated prt_ object, which includes conflicts in the | 
 |       // future, see if there are any registers available. | 
 |       physReg = getFreePhysReg(cur); | 
 |     } | 
 |   } | 
 |      | 
 |   // Restore the physical register tracker, removing information about the | 
 |   // future. | 
 |   *prt_ = backupPrt; | 
 |    | 
 |   // if we find a free register, we are done: assign this virtual to | 
 |   // the free physical register and add this interval to the active | 
 |   // list. | 
 |   if (physReg) { | 
 |     DOUT <<  mri_->getName(physReg) << '\n'; | 
 |     vrm_->assignVirt2Phys(cur->reg, physReg); | 
 |     prt_->addRegUse(physReg); | 
 |     active_.push_back(std::make_pair(cur, cur->begin())); | 
 |     handled_.push_back(cur); | 
 |     return; | 
 |   } | 
 |   DOUT << "no free registers\n"; | 
 |  | 
 |   // Compile the spill weights into an array that is better for scanning. | 
 |   std::vector<float> SpillWeights(mri_->getNumRegs(), 0.0); | 
 |   for (std::vector<std::pair<unsigned, float> >::iterator | 
 |        I = SpillWeightsToAdd.begin(), E = SpillWeightsToAdd.end(); I != E; ++I) | 
 |     updateSpillWeights(SpillWeights, I->first, I->second, mri_); | 
 |    | 
 |   // for each interval in active, update spill weights. | 
 |   for (IntervalPtrs::const_iterator i = active_.begin(), e = active_.end(); | 
 |        i != e; ++i) { | 
 |     unsigned reg = i->first->reg; | 
 |     assert(MRegisterInfo::isVirtualRegister(reg) && | 
 |            "Can only allocate virtual registers!"); | 
 |     reg = vrm_->getPhys(reg); | 
 |     updateSpillWeights(SpillWeights, reg, i->first->weight, mri_); | 
 |   } | 
 |   | 
 |   DOUT << "\tassigning stack slot at interval "<< *cur << ":\n"; | 
 |  | 
 |   // Find a register to spill. | 
 |   float minWeight = HUGE_VALF; | 
 |   unsigned minReg = cur->preference;  // Try the preferred register first. | 
 |    | 
 |   if (!minReg || SpillWeights[minReg] == HUGE_VALF) | 
 |     for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_), | 
 |            e = RC->allocation_order_end(*mf_); i != e; ++i) { | 
 |       unsigned reg = *i; | 
 |       if (minWeight > SpillWeights[reg]) { | 
 |         minWeight = SpillWeights[reg]; | 
 |         minReg = reg; | 
 |       } | 
 |     } | 
 |    | 
 |   // If we didn't find a register that is spillable, try aliases? | 
 |   if (!minReg) { | 
 |     for (TargetRegisterClass::iterator i = RC->allocation_order_begin(*mf_), | 
 |            e = RC->allocation_order_end(*mf_); i != e; ++i) { | 
 |       unsigned reg = *i; | 
 |       // No need to worry about if the alias register size < regsize of RC. | 
 |       // We are going to spill all registers that alias it anyway. | 
 |       for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as) { | 
 |         if (minWeight > SpillWeights[*as]) { | 
 |           minWeight = SpillWeights[*as]; | 
 |           minReg = *as; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     // All registers must have inf weight. Just grab one! | 
 |     if (!minReg) | 
 |       minReg = *RC->allocation_order_begin(*mf_); | 
 |   } | 
 |    | 
 |   DOUT << "\t\tregister with min weight: " | 
 |        << mri_->getName(minReg) << " (" << minWeight << ")\n"; | 
 |  | 
 |   // if the current has the minimum weight, we need to spill it and | 
 |   // add any added intervals back to unhandled, and restart | 
 |   // linearscan. | 
 |   if (cur->weight != HUGE_VALF && cur->weight <= minWeight) { | 
 |     DOUT << "\t\t\tspilling(c): " << *cur << '\n'; | 
 |     std::vector<LiveInterval*> added = | 
 |       li_->addIntervalsForSpills(*cur, loopInfo, *vrm_); | 
 |     if (added.empty()) | 
 |       return;  // Early exit if all spills were folded. | 
 |  | 
 |     // Merge added with unhandled.  Note that we know that | 
 |     // addIntervalsForSpills returns intervals sorted by their starting | 
 |     // point. | 
 |     for (unsigned i = 0, e = added.size(); i != e; ++i) | 
 |       unhandled_.push(added[i]); | 
 |     return; | 
 |   } | 
 |  | 
 |   ++NumBacktracks; | 
 |  | 
 |   // push the current interval back to unhandled since we are going | 
 |   // to re-run at least this iteration. Since we didn't modify it it | 
 |   // should go back right in the front of the list | 
 |   unhandled_.push(cur); | 
 |  | 
 |   // otherwise we spill all intervals aliasing the register with | 
 |   // minimum weight, rollback to the interval with the earliest | 
 |   // start point and let the linear scan algorithm run again | 
 |   std::vector<LiveInterval*> added; | 
 |   assert(MRegisterInfo::isPhysicalRegister(minReg) && | 
 |          "did not choose a register to spill?"); | 
 |   BitVector toSpill(mri_->getNumRegs()); | 
 |  | 
 |   // We are going to spill minReg and all its aliases. | 
 |   toSpill[minReg] = true; | 
 |   for (const unsigned* as = mri_->getAliasSet(minReg); *as; ++as) | 
 |     toSpill[*as] = true; | 
 |  | 
 |   // the earliest start of a spilled interval indicates up to where | 
 |   // in handled we need to roll back | 
 |   unsigned earliestStart = cur->beginNumber(); | 
 |  | 
 |   // set of spilled vregs (used later to rollback properly) | 
 |   SmallSet<unsigned, 32> spilled; | 
 |  | 
 |   // spill live intervals of virtual regs mapped to the physical register we | 
 |   // want to clear (and its aliases).  We only spill those that overlap with the | 
 |   // current interval as the rest do not affect its allocation. we also keep | 
 |   // track of the earliest start of all spilled live intervals since this will | 
 |   // mark our rollback point. | 
 |   for (IntervalPtrs::iterator i = active_.begin(); i != active_.end(); ++i) { | 
 |     unsigned reg = i->first->reg; | 
 |     if (//MRegisterInfo::isVirtualRegister(reg) && | 
 |         toSpill[vrm_->getPhys(reg)] && | 
 |         cur->overlapsFrom(*i->first, i->second)) { | 
 |       DOUT << "\t\t\tspilling(a): " << *i->first << '\n'; | 
 |       earliestStart = std::min(earliestStart, i->first->beginNumber()); | 
 |       std::vector<LiveInterval*> newIs = | 
 |         li_->addIntervalsForSpills(*i->first, loopInfo, *vrm_); | 
 |       std::copy(newIs.begin(), newIs.end(), std::back_inserter(added)); | 
 |       spilled.insert(reg); | 
 |     } | 
 |   } | 
 |   for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end(); ++i){ | 
 |     unsigned reg = i->first->reg; | 
 |     if (//MRegisterInfo::isVirtualRegister(reg) && | 
 |         toSpill[vrm_->getPhys(reg)] && | 
 |         cur->overlapsFrom(*i->first, i->second-1)) { | 
 |       DOUT << "\t\t\tspilling(i): " << *i->first << '\n'; | 
 |       earliestStart = std::min(earliestStart, i->first->beginNumber()); | 
 |       std::vector<LiveInterval*> newIs = | 
 |         li_->addIntervalsForSpills(*i->first, loopInfo, *vrm_); | 
 |       std::copy(newIs.begin(), newIs.end(), std::back_inserter(added)); | 
 |       spilled.insert(reg); | 
 |     } | 
 |   } | 
 |  | 
 |   DOUT << "\t\trolling back to: " << earliestStart << '\n'; | 
 |  | 
 |   // Scan handled in reverse order up to the earliest start of a | 
 |   // spilled live interval and undo each one, restoring the state of | 
 |   // unhandled. | 
 |   while (!handled_.empty()) { | 
 |     LiveInterval* i = handled_.back(); | 
 |     // If this interval starts before t we are done. | 
 |     if (i->beginNumber() < earliestStart) | 
 |       break; | 
 |     DOUT << "\t\t\tundo changes for: " << *i << '\n'; | 
 |     handled_.pop_back(); | 
 |  | 
 |     // When undoing a live interval allocation we must know if it is active or | 
 |     // inactive to properly update the PhysRegTracker and the VirtRegMap. | 
 |     IntervalPtrs::iterator it; | 
 |     if ((it = FindIntervalInVector(active_, i)) != active_.end()) { | 
 |       active_.erase(it); | 
 |       assert(!MRegisterInfo::isPhysicalRegister(i->reg)); | 
 |       if (!spilled.count(i->reg)) | 
 |         unhandled_.push(i); | 
 |       prt_->delRegUse(vrm_->getPhys(i->reg)); | 
 |       vrm_->clearVirt(i->reg); | 
 |     } else if ((it = FindIntervalInVector(inactive_, i)) != inactive_.end()) { | 
 |       inactive_.erase(it); | 
 |       assert(!MRegisterInfo::isPhysicalRegister(i->reg)); | 
 |       if (!spilled.count(i->reg)) | 
 |         unhandled_.push(i); | 
 |       vrm_->clearVirt(i->reg); | 
 |     } else { | 
 |       assert(MRegisterInfo::isVirtualRegister(i->reg) && | 
 |              "Can only allocate virtual registers!"); | 
 |       vrm_->clearVirt(i->reg); | 
 |       unhandled_.push(i); | 
 |     } | 
 |  | 
 |     // It interval has a preference, it must be defined by a copy. Clear the | 
 |     // preference now since the source interval allocation may have been undone | 
 |     // as well. | 
 |     i->preference = 0; | 
 |   } | 
 |  | 
 |   // Rewind the iterators in the active, inactive, and fixed lists back to the | 
 |   // point we reverted to. | 
 |   RevertVectorIteratorsTo(active_, earliestStart); | 
 |   RevertVectorIteratorsTo(inactive_, earliestStart); | 
 |   RevertVectorIteratorsTo(fixed_, earliestStart); | 
 |  | 
 |   // scan the rest and undo each interval that expired after t and | 
 |   // insert it in active (the next iteration of the algorithm will | 
 |   // put it in inactive if required) | 
 |   for (unsigned i = 0, e = handled_.size(); i != e; ++i) { | 
 |     LiveInterval *HI = handled_[i]; | 
 |     if (!HI->expiredAt(earliestStart) && | 
 |         HI->expiredAt(cur->beginNumber())) { | 
 |       DOUT << "\t\t\tundo changes for: " << *HI << '\n'; | 
 |       active_.push_back(std::make_pair(HI, HI->begin())); | 
 |       assert(!MRegisterInfo::isPhysicalRegister(HI->reg)); | 
 |       prt_->addRegUse(vrm_->getPhys(HI->reg)); | 
 |     } | 
 |   } | 
 |  | 
 |   // merge added with unhandled | 
 |   for (unsigned i = 0, e = added.size(); i != e; ++i) | 
 |     unhandled_.push(added[i]); | 
 | } | 
 |  | 
 | /// getFreePhysReg - return a free physical register for this virtual register | 
 | /// interval if we have one, otherwise return 0. | 
 | unsigned RALinScan::getFreePhysReg(LiveInterval *cur) { | 
 |   std::vector<unsigned> inactiveCounts(mri_->getNumRegs(), 0); | 
 |   unsigned MaxInactiveCount = 0; | 
 |    | 
 |   const TargetRegisterClass *RC = reginfo_->getRegClass(cur->reg); | 
 |   const TargetRegisterClass *RCLeader = RelatedRegClasses.getLeaderValue(RC); | 
 |   | 
 |   for (IntervalPtrs::iterator i = inactive_.begin(), e = inactive_.end(); | 
 |        i != e; ++i) { | 
 |     unsigned reg = i->first->reg; | 
 |     assert(MRegisterInfo::isVirtualRegister(reg) && | 
 |            "Can only allocate virtual registers!"); | 
 |  | 
 |     // If this is not in a related reg class to the register we're allocating,  | 
 |     // don't check it. | 
 |     const TargetRegisterClass *RegRC = reginfo_->getRegClass(reg); | 
 |     if (RelatedRegClasses.getLeaderValue(RegRC) == RCLeader) { | 
 |       reg = vrm_->getPhys(reg); | 
 |       ++inactiveCounts[reg]; | 
 |       MaxInactiveCount = std::max(MaxInactiveCount, inactiveCounts[reg]); | 
 |     } | 
 |   } | 
 |  | 
 |   unsigned FreeReg = 0; | 
 |   unsigned FreeRegInactiveCount = 0; | 
 |  | 
 |   // If copy coalescer has assigned a "preferred" register, check if it's | 
 |   // available first. | 
 |   if (cur->preference) | 
 |     if (prt_->isRegAvail(cur->preference)) { | 
 |       DOUT << "\t\tassigned the preferred register: " | 
 |            << mri_->getName(cur->preference) << "\n"; | 
 |       return cur->preference; | 
 |     } else | 
 |       DOUT << "\t\tunable to assign the preferred register: " | 
 |            << mri_->getName(cur->preference) << "\n"; | 
 |  | 
 |   // Scan for the first available register. | 
 |   TargetRegisterClass::iterator I = RC->allocation_order_begin(*mf_); | 
 |   TargetRegisterClass::iterator E = RC->allocation_order_end(*mf_); | 
 |   for (; I != E; ++I) | 
 |     if (prt_->isRegAvail(*I)) { | 
 |       FreeReg = *I; | 
 |       FreeRegInactiveCount = inactiveCounts[FreeReg]; | 
 |       break; | 
 |     } | 
 |    | 
 |   // If there are no free regs, or if this reg has the max inactive count, | 
 |   // return this register. | 
 |   if (FreeReg == 0 || FreeRegInactiveCount == MaxInactiveCount) return FreeReg; | 
 |    | 
 |   // Continue scanning the registers, looking for the one with the highest | 
 |   // inactive count.  Alkis found that this reduced register pressure very | 
 |   // slightly on X86 (in rev 1.94 of this file), though this should probably be | 
 |   // reevaluated now. | 
 |   for (; I != E; ++I) { | 
 |     unsigned Reg = *I; | 
 |     if (prt_->isRegAvail(Reg) && FreeRegInactiveCount < inactiveCounts[Reg]) { | 
 |       FreeReg = Reg; | 
 |       FreeRegInactiveCount = inactiveCounts[Reg]; | 
 |       if (FreeRegInactiveCount == MaxInactiveCount) | 
 |         break;    // We found the one with the max inactive count. | 
 |     } | 
 |   } | 
 |    | 
 |   return FreeReg; | 
 | } | 
 |  | 
 | FunctionPass* llvm::createLinearScanRegisterAllocator() { | 
 |   return new RALinScan(); | 
 | } |