| //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by the LLVM research group and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This pass eliminates machine instruction PHI nodes by inserting copy | 
 | // instructions.  This destroys SSA information, but is the desired input for | 
 | // some register allocators. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #define DEBUG_TYPE "phielim" | 
 | #include "llvm/CodeGen/LiveVariables.h" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineInstr.h" | 
 | #include "llvm/CodeGen/SSARegMap.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/ADT/Statistic.h" | 
 | #include "llvm/Support/Compiler.h" | 
 | #include <set> | 
 | #include <algorithm> | 
 | using namespace llvm; | 
 |  | 
 | STATISTIC(NumAtomic, "Number of atomic phis lowered"); | 
 | //STATISTIC(NumSimple, "Number of simple phis lowered"); | 
 |  | 
 | namespace { | 
 |   struct VISIBILITY_HIDDEN PNE : public MachineFunctionPass { | 
 |     static char ID; // Pass identification, replacement for typeid | 
 |     PNE() : MachineFunctionPass((intptr_t)&ID) {} | 
 |  | 
 |     bool runOnMachineFunction(MachineFunction &Fn) { | 
 |       analyzePHINodes(Fn); | 
 |  | 
 |       bool Changed = false; | 
 |  | 
 |       // Eliminate PHI instructions by inserting copies into predecessor blocks. | 
 |       for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) | 
 |         Changed |= EliminatePHINodes(Fn, *I); | 
 |  | 
 |       VRegPHIUseCount.clear(); | 
 |       return Changed; | 
 |     } | 
 |  | 
 |     virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.addPreserved<LiveVariables>(); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |  | 
 |   private: | 
 |     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions | 
 |     /// in predecessor basic blocks. | 
 |     /// | 
 |     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); | 
 |     void LowerAtomicPHINode(MachineBasicBlock &MBB, | 
 |                             MachineBasicBlock::iterator AfterPHIsIt); | 
 |  | 
 |     /// analyzePHINodes - Gather information about the PHI nodes in | 
 |     /// here. In particular, we want to map the number of uses of a virtual | 
 |     /// register which is used in a PHI node. We map that to the BB the | 
 |     /// vreg is coming from. This is used later to determine when the vreg | 
 |     /// is killed in the BB. | 
 |     /// | 
 |     void analyzePHINodes(const MachineFunction& Fn); | 
 |  | 
 |     typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair; | 
 |     typedef std::map<BBVRegPair, unsigned> VRegPHIUse; | 
 |  | 
 |     VRegPHIUse VRegPHIUseCount; | 
 |   }; | 
 |  | 
 |   char PNE::ID = 0; | 
 |   RegisterPass<PNE> X("phi-node-elimination", | 
 |                       "Eliminate PHI nodes for register allocation"); | 
 | } | 
 |  | 
 | const PassInfo *llvm::PHIEliminationID = X.getPassInfo(); | 
 |  | 
 | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in | 
 | /// predecessor basic blocks. | 
 | /// | 
 | bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) { | 
 |   if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI) | 
 |     return false;   // Quick exit for basic blocks without PHIs. | 
 |  | 
 |   // Get an iterator to the first instruction after the last PHI node (this may | 
 |   // also be the end of the basic block). | 
 |   MachineBasicBlock::iterator AfterPHIsIt = MBB.begin(); | 
 |   while (AfterPHIsIt != MBB.end() && | 
 |          AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI) | 
 |     ++AfterPHIsIt;    // Skip over all of the PHI nodes... | 
 |  | 
 |   while (MBB.front().getOpcode() == TargetInstrInfo::PHI) | 
 |     LowerAtomicPHINode(MBB, AfterPHIsIt); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// InstructionUsesRegister - Return true if the specified machine instr has a | 
 | /// use of the specified register. | 
 | static bool InstructionUsesRegister(MachineInstr *MI, unsigned SrcReg) { | 
 |   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) | 
 |     if (MI->getOperand(i).isRegister() && | 
 |         MI->getOperand(i).getReg() == SrcReg && | 
 |         MI->getOperand(i).isUse()) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, | 
 | /// under the assuption that it needs to be lowered in a way that supports | 
 | /// atomic execution of PHIs.  This lowering method is always correct all of the | 
 | /// time. | 
 | void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB, | 
 |                              MachineBasicBlock::iterator AfterPHIsIt) { | 
 |   // Unlink the PHI node from the basic block, but don't delete the PHI yet. | 
 |   MachineInstr *MPhi = MBB.remove(MBB.begin()); | 
 |  | 
 |   unsigned DestReg = MPhi->getOperand(0).getReg(); | 
 |  | 
 |   // Create a new register for the incoming PHI arguments. | 
 |   MachineFunction &MF = *MBB.getParent(); | 
 |   const TargetRegisterClass *RC = MF.getSSARegMap()->getRegClass(DestReg); | 
 |   unsigned IncomingReg = MF.getSSARegMap()->createVirtualRegister(RC); | 
 |  | 
 |   // Insert a register to register copy in the top of the current block (but | 
 |   // after any remaining phi nodes) which copies the new incoming register | 
 |   // into the phi node destination. | 
 |   // | 
 |   const MRegisterInfo *RegInfo = MF.getTarget().getRegisterInfo(); | 
 |   RegInfo->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC); | 
 |  | 
 |   // Update live variable information if there is any... | 
 |   LiveVariables *LV = getAnalysisToUpdate<LiveVariables>(); | 
 |   if (LV) { | 
 |     MachineInstr *PHICopy = prior(AfterPHIsIt); | 
 |  | 
 |     // Increment use count of the newly created virtual register. | 
 |     LV->getVarInfo(IncomingReg).NumUses++; | 
 |  | 
 |     // Add information to LiveVariables to know that the incoming value is | 
 |     // killed.  Note that because the value is defined in several places (once | 
 |     // each for each incoming block), the "def" block and instruction fields | 
 |     // for the VarInfo is not filled in. | 
 |     // | 
 |     LV->addVirtualRegisterKilled(IncomingReg, PHICopy); | 
 |  | 
 |     // Since we are going to be deleting the PHI node, if it is the last use | 
 |     // of any registers, or if the value itself is dead, we need to move this | 
 |     // information over to the new copy we just inserted. | 
 |     // | 
 |     LV->removeVirtualRegistersKilled(MPhi); | 
 |  | 
 |     // If the result is dead, update LV. | 
 |     if (LV->RegisterDefIsDead(MPhi, DestReg)) { | 
 |       LV->addVirtualRegisterDead(DestReg, PHICopy); | 
 |       LV->removeVirtualRegistersDead(MPhi); | 
 |     } | 
 |      | 
 |     // Realize that the destination register is defined by the PHI copy now, not | 
 |     // the PHI itself. | 
 |     LV->getVarInfo(DestReg).DefInst = PHICopy; | 
 |  | 
 |     LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true; | 
 |   } | 
 |  | 
 |   // Adjust the VRegPHIUseCount map to account for the removal of this PHI | 
 |   // node. | 
 |   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) | 
 |     --VRegPHIUseCount[BBVRegPair( | 
 |                         MPhi->getOperand(i + 1).getMachineBasicBlock(), | 
 |                         MPhi->getOperand(i).getReg())]; | 
 |  | 
 |   // Now loop over all of the incoming arguments, changing them to copy into | 
 |   // the IncomingReg register in the corresponding predecessor basic block. | 
 |   // | 
 |   std::set<MachineBasicBlock*> MBBsInsertedInto; | 
 |   for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) { | 
 |     unsigned SrcReg = MPhi->getOperand(i-1).getReg(); | 
 |     assert(MRegisterInfo::isVirtualRegister(SrcReg) && | 
 |            "Machine PHI Operands must all be virtual registers!"); | 
 |  | 
 |     // Get the MachineBasicBlock equivalent of the BasicBlock that is the | 
 |     // source path the PHI. | 
 |     MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMachineBasicBlock(); | 
 |  | 
 |     // Check to make sure we haven't already emitted the copy for this block. | 
 |     // This can happen because PHI nodes may have multiple entries for the | 
 |     // same basic block. | 
 |     if (!MBBsInsertedInto.insert(&opBlock).second) | 
 |       continue;  // If the copy has already been emitted, we're done. | 
 |   | 
 |     // Get an iterator pointing to the first terminator in the block (or end()). | 
 |     // This is the point where we can insert a copy if we'd like to. | 
 |     MachineBasicBlock::iterator I = opBlock.getFirstTerminator(); | 
 |      | 
 |     // Insert the copy. | 
 |     RegInfo->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC, RC); | 
 |  | 
 |     // Now update live variable information if we have it.  Otherwise we're done | 
 |     if (!LV) continue; | 
 |      | 
 |     // We want to be able to insert a kill of the register if this PHI | 
 |     // (aka, the copy we just inserted) is the last use of the source | 
 |     // value.  Live variable analysis conservatively handles this by | 
 |     // saying that the value is live until the end of the block the PHI | 
 |     // entry lives in.  If the value really is dead at the PHI copy, there | 
 |     // will be no successor blocks which have the value live-in. | 
 |     // | 
 |     // Check to see if the copy is the last use, and if so, update the | 
 |     // live variables information so that it knows the copy source | 
 |     // instruction kills the incoming value. | 
 |     // | 
 |     LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg); | 
 |     InRegVI.UsedBlocks[opBlock.getNumber()] = true; | 
 |  | 
 |     // Loop over all of the successors of the basic block, checking to see | 
 |     // if the value is either live in the block, or if it is killed in the | 
 |     // block.  Also check to see if this register is in use by another PHI | 
 |     // node which has not yet been eliminated.  If so, it will be killed | 
 |     // at an appropriate point later. | 
 |     // | 
 |  | 
 |     // Is it used by any PHI instructions in this block? | 
 |     bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0; | 
 |  | 
 |     std::vector<MachineBasicBlock*> OpSuccBlocks; | 
 |      | 
 |     // Otherwise, scan successors, including the BB the PHI node lives in. | 
 |     for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(), | 
 |            E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) { | 
 |       MachineBasicBlock *SuccMBB = *SI; | 
 |  | 
 |       // Is it alive in this successor? | 
 |       unsigned SuccIdx = SuccMBB->getNumber(); | 
 |       if (SuccIdx < InRegVI.AliveBlocks.size() && | 
 |           InRegVI.AliveBlocks[SuccIdx]) { | 
 |         ValueIsLive = true; | 
 |         break; | 
 |       } | 
 |  | 
 |       OpSuccBlocks.push_back(SuccMBB); | 
 |     } | 
 |  | 
 |     // Check to see if this value is live because there is a use in a successor | 
 |     // that kills it. | 
 |     if (!ValueIsLive) { | 
 |       switch (OpSuccBlocks.size()) { | 
 |       case 1: { | 
 |         MachineBasicBlock *MBB = OpSuccBlocks[0]; | 
 |         for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) | 
 |           if (InRegVI.Kills[i]->getParent() == MBB) { | 
 |             ValueIsLive = true; | 
 |             break; | 
 |           } | 
 |         break; | 
 |       } | 
 |       case 2: { | 
 |         MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1]; | 
 |         for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) | 
 |           if (InRegVI.Kills[i]->getParent() == MBB1 ||  | 
 |               InRegVI.Kills[i]->getParent() == MBB2) { | 
 |             ValueIsLive = true; | 
 |             break; | 
 |           } | 
 |         break;         | 
 |       } | 
 |       default: | 
 |         std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end()); | 
 |         for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i) | 
 |           if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(), | 
 |                                  InRegVI.Kills[i]->getParent())) { | 
 |             ValueIsLive = true; | 
 |             break; | 
 |           } | 
 |       } | 
 |     }         | 
 |  | 
 |     // Okay, if we now know that the value is not live out of the block, | 
 |     // we can add a kill marker in this block saying that it kills the incoming | 
 |     // value! | 
 |     if (!ValueIsLive) { | 
 |       // In our final twist, we have to decide which instruction kills the | 
 |       // register.  In most cases this is the copy, however, the first  | 
 |       // terminator instruction at the end of the block may also use the value. | 
 |       // In this case, we should mark *it* as being the killing block, not the | 
 |       // copy. | 
 |       bool FirstTerminatorUsesValue = false; | 
 |       if (I != opBlock.end()) { | 
 |         FirstTerminatorUsesValue = InstructionUsesRegister(I, SrcReg); | 
 |        | 
 |         // Check that no other terminators use values. | 
 | #ifndef NDEBUG | 
 |         for (MachineBasicBlock::iterator TI = next(I); TI != opBlock.end(); | 
 |              ++TI) { | 
 |           assert(!InstructionUsesRegister(TI, SrcReg) && | 
 |                  "Terminator instructions cannot use virtual registers unless" | 
 |                  "they are the first terminator in a block!"); | 
 |         } | 
 | #endif | 
 |       } | 
 |        | 
 |       MachineBasicBlock::iterator KillInst; | 
 |       if (!FirstTerminatorUsesValue)  | 
 |         KillInst = prior(I); | 
 |       else | 
 |         KillInst = I; | 
 |        | 
 |       // Finally, mark it killed. | 
 |       LV->addVirtualRegisterKilled(SrcReg, KillInst); | 
 |  | 
 |       // This vreg no longer lives all of the way through opBlock. | 
 |       unsigned opBlockNum = opBlock.getNumber(); | 
 |       if (opBlockNum < InRegVI.AliveBlocks.size()) | 
 |         InRegVI.AliveBlocks[opBlockNum] = false; | 
 |     } | 
 |   } | 
 |      | 
 |   // Really delete the PHI instruction now! | 
 |   delete MPhi; | 
 |   ++NumAtomic; | 
 | } | 
 |  | 
 | /// analyzePHINodes - Gather information about the PHI nodes in here. In | 
 | /// particular, we want to map the number of uses of a virtual register which is | 
 | /// used in a PHI node. We map that to the BB the vreg is coming from. This is | 
 | /// used later to determine when the vreg is killed in the BB. | 
 | /// | 
 | void PNE::analyzePHINodes(const MachineFunction& Fn) { | 
 |   for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); | 
 |        I != E; ++I) | 
 |     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); | 
 |          BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) | 
 |       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) | 
 |         ++VRegPHIUseCount[BBVRegPair( | 
 |                             BBI->getOperand(i + 1).getMachineBasicBlock(), | 
 |                             BBI->getOperand(i).getReg())]; | 
 | } |