| //===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by the LLVM research group and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This implements the SelectionDAG class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/CodeGen/SelectionDAG.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/GlobalVariable.h" | 
 | #include "llvm/Intrinsics.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/Assembly/Writer.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineConstantPool.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Target/MRegisterInfo.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Target/TargetLowering.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/ADT/SetVector.h" | 
 | #include "llvm/ADT/SmallPtrSet.h" | 
 | #include "llvm/ADT/SmallSet.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include <algorithm> | 
 | #include <cmath> | 
 | using namespace llvm; | 
 |  | 
 | /// makeVTList - Return an instance of the SDVTList struct initialized with the | 
 | /// specified members. | 
 | static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) { | 
 |   SDVTList Res = {VTs, NumVTs}; | 
 |   return Res; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                              ConstantFPSDNode Class | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// isExactlyValue - We don't rely on operator== working on double values, as | 
 | /// it returns true for things that are clearly not equal, like -0.0 and 0.0. | 
 | /// As such, this method can be used to do an exact bit-for-bit comparison of | 
 | /// two floating point values. | 
 | bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const { | 
 |   return Value.bitwiseIsEqual(V); | 
 | } | 
 |  | 
 | bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,  | 
 |                                            const APFloat& Val) { | 
 |   // convert modifies in place, so make a copy. | 
 |   APFloat Val2 = APFloat(Val); | 
 |   switch (VT) { | 
 |   default: | 
 |     return false;         // These can't be represented as floating point! | 
 |  | 
 |   // FIXME rounding mode needs to be more flexible | 
 |   case MVT::f32: | 
 |     return &Val2.getSemantics() == &APFloat::IEEEsingle || | 
 |            Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==  | 
 |               APFloat::opOK; | 
 |   case MVT::f64: | 
 |     return &Val2.getSemantics() == &APFloat::IEEEsingle ||  | 
 |            &Val2.getSemantics() == &APFloat::IEEEdouble || | 
 |            Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==  | 
 |              APFloat::opOK; | 
 |   // TODO: Figure out how to test if we can use a shorter type instead! | 
 |   case MVT::f80: | 
 |   case MVT::f128: | 
 |   case MVT::ppcf128: | 
 |     return true; | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                              ISD Namespace | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// isBuildVectorAllOnes - Return true if the specified node is a | 
 | /// BUILD_VECTOR where all of the elements are ~0 or undef. | 
 | bool ISD::isBuildVectorAllOnes(const SDNode *N) { | 
 |   // Look through a bit convert. | 
 |   if (N->getOpcode() == ISD::BIT_CONVERT) | 
 |     N = N->getOperand(0).Val; | 
 |    | 
 |   if (N->getOpcode() != ISD::BUILD_VECTOR) return false; | 
 |    | 
 |   unsigned i = 0, e = N->getNumOperands(); | 
 |    | 
 |   // Skip over all of the undef values. | 
 |   while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) | 
 |     ++i; | 
 |    | 
 |   // Do not accept an all-undef vector. | 
 |   if (i == e) return false; | 
 |    | 
 |   // Do not accept build_vectors that aren't all constants or which have non-~0 | 
 |   // elements. | 
 |   SDOperand NotZero = N->getOperand(i); | 
 |   if (isa<ConstantSDNode>(NotZero)) { | 
 |     if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue()) | 
 |       return false; | 
 |   } else if (isa<ConstantFPSDNode>(NotZero)) { | 
 |     MVT::ValueType VT = NotZero.getValueType(); | 
 |     if (VT== MVT::f64) { | 
 |       if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF(). | 
 |                   convertToAPInt().getZExtValue())) != (uint64_t)-1) | 
 |         return false; | 
 |     } else { | 
 |       if ((uint32_t)cast<ConstantFPSDNode>(NotZero)-> | 
 |                       getValueAPF().convertToAPInt().getZExtValue() !=  | 
 |           (uint32_t)-1) | 
 |         return false; | 
 |     } | 
 |   } else | 
 |     return false; | 
 |    | 
 |   // Okay, we have at least one ~0 value, check to see if the rest match or are | 
 |   // undefs. | 
 |   for (++i; i != e; ++i) | 
 |     if (N->getOperand(i) != NotZero && | 
 |         N->getOperand(i).getOpcode() != ISD::UNDEF) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | /// isBuildVectorAllZeros - Return true if the specified node is a | 
 | /// BUILD_VECTOR where all of the elements are 0 or undef. | 
 | bool ISD::isBuildVectorAllZeros(const SDNode *N) { | 
 |   // Look through a bit convert. | 
 |   if (N->getOpcode() == ISD::BIT_CONVERT) | 
 |     N = N->getOperand(0).Val; | 
 |    | 
 |   if (N->getOpcode() != ISD::BUILD_VECTOR) return false; | 
 |    | 
 |   unsigned i = 0, e = N->getNumOperands(); | 
 |    | 
 |   // Skip over all of the undef values. | 
 |   while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF) | 
 |     ++i; | 
 |    | 
 |   // Do not accept an all-undef vector. | 
 |   if (i == e) return false; | 
 |    | 
 |   // Do not accept build_vectors that aren't all constants or which have non-~0 | 
 |   // elements. | 
 |   SDOperand Zero = N->getOperand(i); | 
 |   if (isa<ConstantSDNode>(Zero)) { | 
 |     if (!cast<ConstantSDNode>(Zero)->isNullValue()) | 
 |       return false; | 
 |   } else if (isa<ConstantFPSDNode>(Zero)) { | 
 |     if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero()) | 
 |       return false; | 
 |   } else | 
 |     return false; | 
 |    | 
 |   // Okay, we have at least one ~0 value, check to see if the rest match or are | 
 |   // undefs. | 
 |   for (++i; i != e; ++i) | 
 |     if (N->getOperand(i) != Zero && | 
 |         N->getOperand(i).getOpcode() != ISD::UNDEF) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X) | 
 | /// when given the operation for (X op Y). | 
 | ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) { | 
 |   // To perform this operation, we just need to swap the L and G bits of the | 
 |   // operation. | 
 |   unsigned OldL = (Operation >> 2) & 1; | 
 |   unsigned OldG = (Operation >> 1) & 1; | 
 |   return ISD::CondCode((Operation & ~6) |  // Keep the N, U, E bits | 
 |                        (OldL << 1) |       // New G bit | 
 |                        (OldG << 2));        // New L bit. | 
 | } | 
 |  | 
 | /// getSetCCInverse - Return the operation corresponding to !(X op Y), where | 
 | /// 'op' is a valid SetCC operation. | 
 | ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) { | 
 |   unsigned Operation = Op; | 
 |   if (isInteger) | 
 |     Operation ^= 7;   // Flip L, G, E bits, but not U. | 
 |   else | 
 |     Operation ^= 15;  // Flip all of the condition bits. | 
 |   if (Operation > ISD::SETTRUE2) | 
 |     Operation &= ~8;     // Don't let N and U bits get set. | 
 |   return ISD::CondCode(Operation); | 
 | } | 
 |  | 
 |  | 
 | /// isSignedOp - For an integer comparison, return 1 if the comparison is a | 
 | /// signed operation and 2 if the result is an unsigned comparison.  Return zero | 
 | /// if the operation does not depend on the sign of the input (setne and seteq). | 
 | static int isSignedOp(ISD::CondCode Opcode) { | 
 |   switch (Opcode) { | 
 |   default: assert(0 && "Illegal integer setcc operation!"); | 
 |   case ISD::SETEQ: | 
 |   case ISD::SETNE: return 0; | 
 |   case ISD::SETLT: | 
 |   case ISD::SETLE: | 
 |   case ISD::SETGT: | 
 |   case ISD::SETGE: return 1; | 
 |   case ISD::SETULT: | 
 |   case ISD::SETULE: | 
 |   case ISD::SETUGT: | 
 |   case ISD::SETUGE: return 2; | 
 |   } | 
 | } | 
 |  | 
 | /// getSetCCOrOperation - Return the result of a logical OR between different | 
 | /// comparisons of identical values: ((X op1 Y) | (X op2 Y)).  This function | 
 | /// returns SETCC_INVALID if it is not possible to represent the resultant | 
 | /// comparison. | 
 | ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2, | 
 |                                        bool isInteger) { | 
 |   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) | 
 |     // Cannot fold a signed integer setcc with an unsigned integer setcc. | 
 |     return ISD::SETCC_INVALID; | 
 |  | 
 |   unsigned Op = Op1 | Op2;  // Combine all of the condition bits. | 
 |  | 
 |   // If the N and U bits get set then the resultant comparison DOES suddenly | 
 |   // care about orderedness, and is true when ordered. | 
 |   if (Op > ISD::SETTRUE2) | 
 |     Op &= ~16;     // Clear the U bit if the N bit is set. | 
 |    | 
 |   // Canonicalize illegal integer setcc's. | 
 |   if (isInteger && Op == ISD::SETUNE)  // e.g. SETUGT | SETULT | 
 |     Op = ISD::SETNE; | 
 |    | 
 |   return ISD::CondCode(Op); | 
 | } | 
 |  | 
 | /// getSetCCAndOperation - Return the result of a logical AND between different | 
 | /// comparisons of identical values: ((X op1 Y) & (X op2 Y)).  This | 
 | /// function returns zero if it is not possible to represent the resultant | 
 | /// comparison. | 
 | ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2, | 
 |                                         bool isInteger) { | 
 |   if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3) | 
 |     // Cannot fold a signed setcc with an unsigned setcc. | 
 |     return ISD::SETCC_INVALID; | 
 |  | 
 |   // Combine all of the condition bits. | 
 |   ISD::CondCode Result = ISD::CondCode(Op1 & Op2); | 
 |    | 
 |   // Canonicalize illegal integer setcc's. | 
 |   if (isInteger) { | 
 |     switch (Result) { | 
 |     default: break; | 
 |     case ISD::SETUO : Result = ISD::SETFALSE; break;  // SETUGT & SETULT | 
 |     case ISD::SETUEQ: Result = ISD::SETEQ   ; break;  // SETUGE & SETULE | 
 |     case ISD::SETOLT: Result = ISD::SETULT  ; break;  // SETULT & SETNE | 
 |     case ISD::SETOGT: Result = ISD::SETUGT  ; break;  // SETUGT & SETNE | 
 |     } | 
 |   } | 
 |    | 
 |   return Result; | 
 | } | 
 |  | 
 | const TargetMachine &SelectionDAG::getTarget() const { | 
 |   return TLI.getTargetMachine(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                           SDNode Profile Support | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// AddNodeIDOpcode - Add the node opcode to the NodeID data. | 
 | /// | 
 | static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC)  { | 
 |   ID.AddInteger(OpC); | 
 | } | 
 |  | 
 | /// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them | 
 | /// solely with their pointer. | 
 | void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) { | 
 |   ID.AddPointer(VTList.VTs);   | 
 | } | 
 |  | 
 | /// AddNodeIDOperands - Various routines for adding operands to the NodeID data. | 
 | /// | 
 | static void AddNodeIDOperands(FoldingSetNodeID &ID, | 
 |                               const SDOperand *Ops, unsigned NumOps) { | 
 |   for (; NumOps; --NumOps, ++Ops) { | 
 |     ID.AddPointer(Ops->Val); | 
 |     ID.AddInteger(Ops->ResNo); | 
 |   } | 
 | } | 
 |  | 
 | static void AddNodeIDNode(FoldingSetNodeID &ID, | 
 |                           unsigned short OpC, SDVTList VTList,  | 
 |                           const SDOperand *OpList, unsigned N) { | 
 |   AddNodeIDOpcode(ID, OpC); | 
 |   AddNodeIDValueTypes(ID, VTList); | 
 |   AddNodeIDOperands(ID, OpList, N); | 
 | } | 
 |  | 
 | /// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID | 
 | /// data. | 
 | static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) { | 
 |   AddNodeIDOpcode(ID, N->getOpcode()); | 
 |   // Add the return value info. | 
 |   AddNodeIDValueTypes(ID, N->getVTList()); | 
 |   // Add the operand info. | 
 |   AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands()); | 
 |  | 
 |   // Handle SDNode leafs with special info. | 
 |   switch (N->getOpcode()) { | 
 |   default: break;  // Normal nodes don't need extra info. | 
 |   case ISD::TargetConstant: | 
 |   case ISD::Constant: | 
 |     ID.AddInteger(cast<ConstantSDNode>(N)->getValue()); | 
 |     break; | 
 |   case ISD::TargetConstantFP: | 
 |   case ISD::ConstantFP: { | 
 |     ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF()); | 
 |     break; | 
 |   } | 
 |   case ISD::TargetGlobalAddress: | 
 |   case ISD::GlobalAddress: | 
 |   case ISD::TargetGlobalTLSAddress: | 
 |   case ISD::GlobalTLSAddress: { | 
 |     GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N); | 
 |     ID.AddPointer(GA->getGlobal()); | 
 |     ID.AddInteger(GA->getOffset()); | 
 |     break; | 
 |   } | 
 |   case ISD::BasicBlock: | 
 |     ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock()); | 
 |     break; | 
 |   case ISD::Register: | 
 |     ID.AddInteger(cast<RegisterSDNode>(N)->getReg()); | 
 |     break; | 
 |   case ISD::SRCVALUE: { | 
 |     SrcValueSDNode *SV = cast<SrcValueSDNode>(N); | 
 |     ID.AddPointer(SV->getValue()); | 
 |     ID.AddInteger(SV->getOffset()); | 
 |     break; | 
 |   } | 
 |   case ISD::FrameIndex: | 
 |   case ISD::TargetFrameIndex: | 
 |     ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex()); | 
 |     break; | 
 |   case ISD::JumpTable: | 
 |   case ISD::TargetJumpTable: | 
 |     ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex()); | 
 |     break; | 
 |   case ISD::ConstantPool: | 
 |   case ISD::TargetConstantPool: { | 
 |     ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N); | 
 |     ID.AddInteger(CP->getAlignment()); | 
 |     ID.AddInteger(CP->getOffset()); | 
 |     if (CP->isMachineConstantPoolEntry()) | 
 |       CP->getMachineCPVal()->AddSelectionDAGCSEId(ID); | 
 |     else | 
 |       ID.AddPointer(CP->getConstVal()); | 
 |     break; | 
 |   } | 
 |   case ISD::LOAD: { | 
 |     LoadSDNode *LD = cast<LoadSDNode>(N); | 
 |     ID.AddInteger(LD->getAddressingMode()); | 
 |     ID.AddInteger(LD->getExtensionType()); | 
 |     ID.AddInteger((unsigned int)(LD->getLoadedVT())); | 
 |     ID.AddPointer(LD->getSrcValue()); | 
 |     ID.AddInteger(LD->getSrcValueOffset()); | 
 |     ID.AddInteger(LD->getAlignment()); | 
 |     ID.AddInteger(LD->isVolatile()); | 
 |     break; | 
 |   } | 
 |   case ISD::STORE: { | 
 |     StoreSDNode *ST = cast<StoreSDNode>(N); | 
 |     ID.AddInteger(ST->getAddressingMode()); | 
 |     ID.AddInteger(ST->isTruncatingStore()); | 
 |     ID.AddInteger((unsigned int)(ST->getStoredVT())); | 
 |     ID.AddPointer(ST->getSrcValue()); | 
 |     ID.AddInteger(ST->getSrcValueOffset()); | 
 |     ID.AddInteger(ST->getAlignment()); | 
 |     ID.AddInteger(ST->isVolatile()); | 
 |     break; | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                              SelectionDAG Class | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// RemoveDeadNodes - This method deletes all unreachable nodes in the | 
 | /// SelectionDAG. | 
 | void SelectionDAG::RemoveDeadNodes() { | 
 |   // Create a dummy node (which is not added to allnodes), that adds a reference | 
 |   // to the root node, preventing it from being deleted. | 
 |   HandleSDNode Dummy(getRoot()); | 
 |  | 
 |   SmallVector<SDNode*, 128> DeadNodes; | 
 |    | 
 |   // Add all obviously-dead nodes to the DeadNodes worklist. | 
 |   for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I) | 
 |     if (I->use_empty()) | 
 |       DeadNodes.push_back(I); | 
 |  | 
 |   // Process the worklist, deleting the nodes and adding their uses to the | 
 |   // worklist. | 
 |   while (!DeadNodes.empty()) { | 
 |     SDNode *N = DeadNodes.back(); | 
 |     DeadNodes.pop_back(); | 
 |      | 
 |     // Take the node out of the appropriate CSE map. | 
 |     RemoveNodeFromCSEMaps(N); | 
 |  | 
 |     // Next, brutally remove the operand list.  This is safe to do, as there are | 
 |     // no cycles in the graph. | 
 |     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { | 
 |       SDNode *Operand = I->Val; | 
 |       Operand->removeUser(N); | 
 |        | 
 |       // Now that we removed this operand, see if there are no uses of it left. | 
 |       if (Operand->use_empty()) | 
 |         DeadNodes.push_back(Operand); | 
 |     } | 
 |     if (N->OperandsNeedDelete) | 
 |       delete[] N->OperandList; | 
 |     N->OperandList = 0; | 
 |     N->NumOperands = 0; | 
 |      | 
 |     // Finally, remove N itself. | 
 |     AllNodes.erase(N); | 
 |   } | 
 |    | 
 |   // If the root changed (e.g. it was a dead load, update the root). | 
 |   setRoot(Dummy.getValue()); | 
 | } | 
 |  | 
 | void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) { | 
 |   SmallVector<SDNode*, 16> DeadNodes; | 
 |   DeadNodes.push_back(N); | 
 |  | 
 |   // Process the worklist, deleting the nodes and adding their uses to the | 
 |   // worklist. | 
 |   while (!DeadNodes.empty()) { | 
 |     SDNode *N = DeadNodes.back(); | 
 |     DeadNodes.pop_back(); | 
 |      | 
 |     // Take the node out of the appropriate CSE map. | 
 |     RemoveNodeFromCSEMaps(N); | 
 |  | 
 |     // Next, brutally remove the operand list.  This is safe to do, as there are | 
 |     // no cycles in the graph. | 
 |     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { | 
 |       SDNode *Operand = I->Val; | 
 |       Operand->removeUser(N); | 
 |        | 
 |       // Now that we removed this operand, see if there are no uses of it left. | 
 |       if (Operand->use_empty()) | 
 |         DeadNodes.push_back(Operand); | 
 |     } | 
 |     if (N->OperandsNeedDelete) | 
 |       delete[] N->OperandList; | 
 |     N->OperandList = 0; | 
 |     N->NumOperands = 0; | 
 |      | 
 |     // Finally, remove N itself. | 
 |     Deleted.push_back(N); | 
 |     AllNodes.erase(N); | 
 |   } | 
 | } | 
 |  | 
 | void SelectionDAG::DeleteNode(SDNode *N) { | 
 |   assert(N->use_empty() && "Cannot delete a node that is not dead!"); | 
 |  | 
 |   // First take this out of the appropriate CSE map. | 
 |   RemoveNodeFromCSEMaps(N); | 
 |  | 
 |   // Finally, remove uses due to operands of this node, remove from the  | 
 |   // AllNodes list, and delete the node. | 
 |   DeleteNodeNotInCSEMaps(N); | 
 | } | 
 |  | 
 | void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) { | 
 |  | 
 |   // Remove it from the AllNodes list. | 
 |   AllNodes.remove(N); | 
 |      | 
 |   // Drop all of the operands and decrement used nodes use counts. | 
 |   for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) | 
 |     I->Val->removeUser(N); | 
 |   if (N->OperandsNeedDelete) | 
 |     delete[] N->OperandList; | 
 |   N->OperandList = 0; | 
 |   N->NumOperands = 0; | 
 |    | 
 |   delete N; | 
 | } | 
 |  | 
 | /// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that | 
 | /// correspond to it.  This is useful when we're about to delete or repurpose | 
 | /// the node.  We don't want future request for structurally identical nodes | 
 | /// to return N anymore. | 
 | void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) { | 
 |   bool Erased = false; | 
 |   switch (N->getOpcode()) { | 
 |   case ISD::HANDLENODE: return;  // noop. | 
 |   case ISD::STRING: | 
 |     Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue()); | 
 |     break; | 
 |   case ISD::CONDCODE: | 
 |     assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] && | 
 |            "Cond code doesn't exist!"); | 
 |     Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0; | 
 |     CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0; | 
 |     break; | 
 |   case ISD::ExternalSymbol: | 
 |     Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); | 
 |     break; | 
 |   case ISD::TargetExternalSymbol: | 
 |     Erased = | 
 |       TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol()); | 
 |     break; | 
 |   case ISD::VALUETYPE: { | 
 |     MVT::ValueType VT = cast<VTSDNode>(N)->getVT(); | 
 |     if (MVT::isExtendedVT(VT)) { | 
 |       Erased = ExtendedValueTypeNodes.erase(VT); | 
 |     } else { | 
 |       Erased = ValueTypeNodes[VT] != 0; | 
 |       ValueTypeNodes[VT] = 0; | 
 |     } | 
 |     break; | 
 |   } | 
 |   default: | 
 |     // Remove it from the CSE Map. | 
 |     Erased = CSEMap.RemoveNode(N); | 
 |     break; | 
 |   } | 
 | #ifndef NDEBUG | 
 |   // Verify that the node was actually in one of the CSE maps, unless it has a  | 
 |   // flag result (which cannot be CSE'd) or is one of the special cases that are | 
 |   // not subject to CSE. | 
 |   if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag && | 
 |       !N->isTargetOpcode()) { | 
 |     N->dump(this); | 
 |     cerr << "\n"; | 
 |     assert(0 && "Node is not in map!"); | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | /// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps.  It | 
 | /// has been taken out and modified in some way.  If the specified node already | 
 | /// exists in the CSE maps, do not modify the maps, but return the existing node | 
 | /// instead.  If it doesn't exist, add it and return null. | 
 | /// | 
 | SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) { | 
 |   assert(N->getNumOperands() && "This is a leaf node!"); | 
 |   if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) | 
 |     return 0;    // Never add these nodes. | 
 |    | 
 |   // Check that remaining values produced are not flags. | 
 |   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) | 
 |     if (N->getValueType(i) == MVT::Flag) | 
 |       return 0;   // Never CSE anything that produces a flag. | 
 |    | 
 |   SDNode *New = CSEMap.GetOrInsertNode(N); | 
 |   if (New != N) return New;  // Node already existed. | 
 |   return 0; | 
 | } | 
 |  | 
 | /// FindModifiedNodeSlot - Find a slot for the specified node if its operands | 
 | /// were replaced with those specified.  If this node is never memoized,  | 
 | /// return null, otherwise return a pointer to the slot it would take.  If a | 
 | /// node already exists with these operands, the slot will be non-null. | 
 | SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op, | 
 |                                            void *&InsertPos) { | 
 |   if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) | 
 |     return 0;    // Never add these nodes. | 
 |    | 
 |   // Check that remaining values produced are not flags. | 
 |   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) | 
 |     if (N->getValueType(i) == MVT::Flag) | 
 |       return 0;   // Never CSE anything that produces a flag. | 
 |    | 
 |   SDOperand Ops[] = { Op }; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1); | 
 |   return CSEMap.FindNodeOrInsertPos(ID, InsertPos); | 
 | } | 
 |  | 
 | /// FindModifiedNodeSlot - Find a slot for the specified node if its operands | 
 | /// were replaced with those specified.  If this node is never memoized,  | 
 | /// return null, otherwise return a pointer to the slot it would take.  If a | 
 | /// node already exists with these operands, the slot will be non-null. | 
 | SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,  | 
 |                                            SDOperand Op1, SDOperand Op2, | 
 |                                            void *&InsertPos) { | 
 |   if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) | 
 |     return 0;    // Never add these nodes. | 
 |    | 
 |   // Check that remaining values produced are not flags. | 
 |   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) | 
 |     if (N->getValueType(i) == MVT::Flag) | 
 |       return 0;   // Never CSE anything that produces a flag. | 
 |                                                | 
 |   SDOperand Ops[] = { Op1, Op2 }; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2); | 
 |   return CSEMap.FindNodeOrInsertPos(ID, InsertPos); | 
 | } | 
 |  | 
 |  | 
 | /// FindModifiedNodeSlot - Find a slot for the specified node if its operands | 
 | /// were replaced with those specified.  If this node is never memoized,  | 
 | /// return null, otherwise return a pointer to the slot it would take.  If a | 
 | /// node already exists with these operands, the slot will be non-null. | 
 | SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,  | 
 |                                            const SDOperand *Ops,unsigned NumOps, | 
 |                                            void *&InsertPos) { | 
 |   if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag) | 
 |     return 0;    // Never add these nodes. | 
 |    | 
 |   // Check that remaining values produced are not flags. | 
 |   for (unsigned i = 1, e = N->getNumValues(); i != e; ++i) | 
 |     if (N->getValueType(i) == MVT::Flag) | 
 |       return 0;   // Never CSE anything that produces a flag. | 
 |    | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps); | 
 |    | 
 |   if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
 |     ID.AddInteger(LD->getAddressingMode()); | 
 |     ID.AddInteger(LD->getExtensionType()); | 
 |     ID.AddInteger((unsigned int)(LD->getLoadedVT())); | 
 |     ID.AddPointer(LD->getSrcValue()); | 
 |     ID.AddInteger(LD->getSrcValueOffset()); | 
 |     ID.AddInteger(LD->getAlignment()); | 
 |     ID.AddInteger(LD->isVolatile()); | 
 |   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
 |     ID.AddInteger(ST->getAddressingMode()); | 
 |     ID.AddInteger(ST->isTruncatingStore()); | 
 |     ID.AddInteger((unsigned int)(ST->getStoredVT())); | 
 |     ID.AddPointer(ST->getSrcValue()); | 
 |     ID.AddInteger(ST->getSrcValueOffset()); | 
 |     ID.AddInteger(ST->getAlignment()); | 
 |     ID.AddInteger(ST->isVolatile()); | 
 |   } | 
 |    | 
 |   return CSEMap.FindNodeOrInsertPos(ID, InsertPos); | 
 | } | 
 |  | 
 |  | 
 | SelectionDAG::~SelectionDAG() { | 
 |   while (!AllNodes.empty()) { | 
 |     SDNode *N = AllNodes.begin(); | 
 |     N->SetNextInBucket(0); | 
 |     if (N->OperandsNeedDelete) | 
 |       delete [] N->OperandList; | 
 |     N->OperandList = 0; | 
 |     N->NumOperands = 0; | 
 |     AllNodes.pop_front(); | 
 |   } | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) { | 
 |   if (Op.getValueType() == VT) return Op; | 
 |   int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT)); | 
 |   return getNode(ISD::AND, Op.getValueType(), Op, | 
 |                  getConstant(Imm, Op.getValueType())); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getString(const std::string &Val) { | 
 |   StringSDNode *&N = StringNodes[Val]; | 
 |   if (!N) { | 
 |     N = new StringSDNode(Val); | 
 |     AllNodes.push_back(N); | 
 |   } | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) { | 
 |   assert(MVT::isInteger(VT) && "Cannot create FP integer constant!"); | 
 |   assert(!MVT::isVector(VT) && "Cannot create Vector ConstantSDNodes!"); | 
 |    | 
 |   // Mask out any bits that are not valid for this constant. | 
 |   Val &= MVT::getIntVTBitMask(VT); | 
 |  | 
 |   unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); | 
 |   ID.AddInteger(Val); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new ConstantSDNode(isT, Val, VT); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT, | 
 |                                       bool isTarget) { | 
 |   assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!"); | 
 |                                  | 
 |   MVT::ValueType EltVT = | 
 |     MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT; | 
 |  | 
 |   // Do the map lookup using the actual bit pattern for the floating point | 
 |   // value, so that we don't have problems with 0.0 comparing equal to -0.0, and | 
 |   // we don't have issues with SNANs. | 
 |   unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0); | 
 |   ID.AddAPFloat(V); | 
 |   void *IP = 0; | 
 |   SDNode *N = NULL; | 
 |   if ((N = CSEMap.FindNodeOrInsertPos(ID, IP))) | 
 |     if (!MVT::isVector(VT)) | 
 |       return SDOperand(N, 0); | 
 |   if (!N) { | 
 |     N = new ConstantFPSDNode(isTarget, V, EltVT); | 
 |     CSEMap.InsertNode(N, IP); | 
 |     AllNodes.push_back(N); | 
 |   } | 
 |  | 
 |   SDOperand Result(N, 0); | 
 |   if (MVT::isVector(VT)) { | 
 |     SmallVector<SDOperand, 8> Ops; | 
 |     Ops.assign(MVT::getVectorNumElements(VT), Result); | 
 |     Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()); | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT, | 
 |                                       bool isTarget) { | 
 |   MVT::ValueType EltVT = | 
 |     MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT; | 
 |   if (EltVT==MVT::f32) | 
 |     return getConstantFP(APFloat((float)Val), VT, isTarget); | 
 |   else | 
 |     return getConstantFP(APFloat(Val), VT, isTarget); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV, | 
 |                                          MVT::ValueType VT, int Offset, | 
 |                                          bool isTargetGA) { | 
 |   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); | 
 |   unsigned Opc; | 
 |   if (GVar && GVar->isThreadLocal()) | 
 |     Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress; | 
 |   else | 
 |     Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); | 
 |   ID.AddPointer(GV); | 
 |   ID.AddInteger(Offset); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |    return SDOperand(E, 0); | 
 |   SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT, | 
 |                                       bool isTarget) { | 
 |   unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); | 
 |   ID.AddInteger(FI); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new FrameIndexSDNode(FI, VT, isTarget); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){ | 
 |   unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); | 
 |   ID.AddInteger(JTI); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new JumpTableSDNode(JTI, VT, isTarget); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT, | 
 |                                         unsigned Alignment, int Offset, | 
 |                                         bool isTarget) { | 
 |   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); | 
 |   ID.AddInteger(Alignment); | 
 |   ID.AddInteger(Offset); | 
 |   ID.AddPointer(C); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 |  | 
 | SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C, | 
 |                                         MVT::ValueType VT, | 
 |                                         unsigned Alignment, int Offset, | 
 |                                         bool isTarget) { | 
 |   unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0); | 
 |   ID.AddInteger(Alignment); | 
 |   ID.AddInteger(Offset); | 
 |   C->AddSelectionDAGCSEId(ID); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 |  | 
 | SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) { | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0); | 
 |   ID.AddPointer(MBB); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new BasicBlockSDNode(MBB); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getValueType(MVT::ValueType VT) { | 
 |   if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size()) | 
 |     ValueTypeNodes.resize(VT+1); | 
 |  | 
 |   SDNode *&N = MVT::isExtendedVT(VT) ? | 
 |     ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT]; | 
 |  | 
 |   if (N) return SDOperand(N, 0); | 
 |   N = new VTSDNode(VT); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) { | 
 |   SDNode *&N = ExternalSymbols[Sym]; | 
 |   if (N) return SDOperand(N, 0); | 
 |   N = new ExternalSymbolSDNode(false, Sym, VT); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym, | 
 |                                                 MVT::ValueType VT) { | 
 |   SDNode *&N = TargetExternalSymbols[Sym]; | 
 |   if (N) return SDOperand(N, 0); | 
 |   N = new ExternalSymbolSDNode(true, Sym, VT); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) { | 
 |   if ((unsigned)Cond >= CondCodeNodes.size()) | 
 |     CondCodeNodes.resize(Cond+1); | 
 |    | 
 |   if (CondCodeNodes[Cond] == 0) { | 
 |     CondCodeNodes[Cond] = new CondCodeSDNode(Cond); | 
 |     AllNodes.push_back(CondCodeNodes[Cond]); | 
 |   } | 
 |   return SDOperand(CondCodeNodes[Cond], 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) { | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0); | 
 |   ID.AddInteger(RegNo); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new RegisterSDNode(RegNo, VT); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) { | 
 |   assert((!V || isa<PointerType>(V->getType())) && | 
 |          "SrcValue is not a pointer?"); | 
 |  | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0); | 
 |   ID.AddPointer(V); | 
 |   ID.AddInteger(Offset); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new SrcValueSDNode(V, Offset); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | /// CreateStackTemporary - Create a stack temporary, suitable for holding the | 
 | /// specified value type. | 
 | SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) { | 
 |   MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo(); | 
 |   unsigned ByteSize = MVT::getSizeInBits(VT)/8; | 
 |   const Type *Ty = MVT::getTypeForValueType(VT); | 
 |   unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty); | 
 |   int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign); | 
 |   return getFrameIndex(FrameIdx, TLI.getPointerTy()); | 
 | } | 
 |  | 
 |  | 
 | SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1, | 
 |                                   SDOperand N2, ISD::CondCode Cond) { | 
 |   // These setcc operations always fold. | 
 |   switch (Cond) { | 
 |   default: break; | 
 |   case ISD::SETFALSE: | 
 |   case ISD::SETFALSE2: return getConstant(0, VT); | 
 |   case ISD::SETTRUE: | 
 |   case ISD::SETTRUE2:  return getConstant(1, VT); | 
 |      | 
 |   case ISD::SETOEQ: | 
 |   case ISD::SETOGT: | 
 |   case ISD::SETOGE: | 
 |   case ISD::SETOLT: | 
 |   case ISD::SETOLE: | 
 |   case ISD::SETONE: | 
 |   case ISD::SETO: | 
 |   case ISD::SETUO: | 
 |   case ISD::SETUEQ: | 
 |   case ISD::SETUNE: | 
 |     assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!"); | 
 |     break; | 
 |   } | 
 |    | 
 |   if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) { | 
 |     uint64_t C2 = N2C->getValue(); | 
 |     if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) { | 
 |       uint64_t C1 = N1C->getValue(); | 
 |        | 
 |       // Sign extend the operands if required | 
 |       if (ISD::isSignedIntSetCC(Cond)) { | 
 |         C1 = N1C->getSignExtended(); | 
 |         C2 = N2C->getSignExtended(); | 
 |       } | 
 |        | 
 |       switch (Cond) { | 
 |       default: assert(0 && "Unknown integer setcc!"); | 
 |       case ISD::SETEQ:  return getConstant(C1 == C2, VT); | 
 |       case ISD::SETNE:  return getConstant(C1 != C2, VT); | 
 |       case ISD::SETULT: return getConstant(C1 <  C2, VT); | 
 |       case ISD::SETUGT: return getConstant(C1 >  C2, VT); | 
 |       case ISD::SETULE: return getConstant(C1 <= C2, VT); | 
 |       case ISD::SETUGE: return getConstant(C1 >= C2, VT); | 
 |       case ISD::SETLT:  return getConstant((int64_t)C1 <  (int64_t)C2, VT); | 
 |       case ISD::SETGT:  return getConstant((int64_t)C1 >  (int64_t)C2, VT); | 
 |       case ISD::SETLE:  return getConstant((int64_t)C1 <= (int64_t)C2, VT); | 
 |       case ISD::SETGE:  return getConstant((int64_t)C1 >= (int64_t)C2, VT); | 
 |       } | 
 |     } | 
 |   } | 
 |   if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val)) | 
 |     if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) { | 
 |       // No compile time operations on this type yet. | 
 |       if (N1C->getValueType(0) == MVT::ppcf128) | 
 |         return SDOperand(); | 
 |  | 
 |       APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF()); | 
 |       switch (Cond) { | 
 |       default: break; | 
 |       case ISD::SETEQ:  if (R==APFloat::cmpUnordered)  | 
 |                           return getNode(ISD::UNDEF, VT); | 
 |                         // fall through | 
 |       case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT); | 
 |       case ISD::SETNE:  if (R==APFloat::cmpUnordered)  | 
 |                           return getNode(ISD::UNDEF, VT); | 
 |                         // fall through | 
 |       case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan || | 
 |                                            R==APFloat::cmpLessThan, VT); | 
 |       case ISD::SETLT:  if (R==APFloat::cmpUnordered)  | 
 |                           return getNode(ISD::UNDEF, VT); | 
 |                         // fall through | 
 |       case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT); | 
 |       case ISD::SETGT:  if (R==APFloat::cmpUnordered)  | 
 |                           return getNode(ISD::UNDEF, VT); | 
 |                         // fall through | 
 |       case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT); | 
 |       case ISD::SETLE:  if (R==APFloat::cmpUnordered)  | 
 |                           return getNode(ISD::UNDEF, VT); | 
 |                         // fall through | 
 |       case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan || | 
 |                                            R==APFloat::cmpEqual, VT); | 
 |       case ISD::SETGE:  if (R==APFloat::cmpUnordered)  | 
 |                           return getNode(ISD::UNDEF, VT); | 
 |                         // fall through | 
 |       case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan || | 
 |                                            R==APFloat::cmpEqual, VT); | 
 |       case ISD::SETO:   return getConstant(R!=APFloat::cmpUnordered, VT); | 
 |       case ISD::SETUO:  return getConstant(R==APFloat::cmpUnordered, VT); | 
 |       case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered || | 
 |                                            R==APFloat::cmpEqual, VT); | 
 |       case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT); | 
 |       case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered || | 
 |                                            R==APFloat::cmpLessThan, VT); | 
 |       case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan || | 
 |                                            R==APFloat::cmpUnordered, VT); | 
 |       case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT); | 
 |       case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT); | 
 |       } | 
 |     } else { | 
 |       // Ensure that the constant occurs on the RHS. | 
 |       return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond)); | 
 |     } | 
 |        | 
 |   // Could not fold it. | 
 |   return SDOperand(); | 
 | } | 
 |  | 
 | /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use | 
 | /// this predicate to simplify operations downstream.  Mask is known to be zero | 
 | /// for bits that V cannot have. | 
 | bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,  | 
 |                                      unsigned Depth) const { | 
 |   // The masks are not wide enough to represent this type!  Should use APInt. | 
 |   if (Op.getValueType() == MVT::i128) | 
 |     return false; | 
 |    | 
 |   uint64_t KnownZero, KnownOne; | 
 |   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); | 
 |   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |   return (KnownZero & Mask) == Mask; | 
 | } | 
 |  | 
 | /// ComputeMaskedBits - Determine which of the bits specified in Mask are | 
 | /// known to be either zero or one and return them in the KnownZero/KnownOne | 
 | /// bitsets.  This code only analyzes bits in Mask, in order to short-circuit | 
 | /// processing. | 
 | void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,  | 
 |                                      uint64_t &KnownZero, uint64_t &KnownOne, | 
 |                                      unsigned Depth) const { | 
 |   KnownZero = KnownOne = 0;   // Don't know anything. | 
 |   if (Depth == 6 || Mask == 0) | 
 |     return;  // Limit search depth. | 
 |    | 
 |   // The masks are not wide enough to represent this type!  Should use APInt. | 
 |   if (Op.getValueType() == MVT::i128) | 
 |     return; | 
 |    | 
 |   uint64_t KnownZero2, KnownOne2; | 
 |  | 
 |   switch (Op.getOpcode()) { | 
 |   case ISD::Constant: | 
 |     // We know all of the bits for a constant! | 
 |     KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask; | 
 |     KnownZero = ~KnownOne & Mask; | 
 |     return; | 
 |   case ISD::AND: | 
 |     // If either the LHS or the RHS are Zero, the result is zero. | 
 |     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
 |     Mask &= ~KnownZero; | 
 |     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |  | 
 |     // Output known-1 bits are only known if set in both the LHS & RHS. | 
 |     KnownOne &= KnownOne2; | 
 |     // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
 |     KnownZero |= KnownZero2; | 
 |     return; | 
 |   case ISD::OR: | 
 |     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
 |     Mask &= ~KnownOne; | 
 |     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // Output known-0 bits are only known if clear in both the LHS & RHS. | 
 |     KnownZero &= KnownZero2; | 
 |     // Output known-1 are known to be set if set in either the LHS | RHS. | 
 |     KnownOne |= KnownOne2; | 
 |     return; | 
 |   case ISD::XOR: { | 
 |     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
 |     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
 |     uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); | 
 |     // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
 |     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); | 
 |     KnownZero = KnownZeroOut; | 
 |     return; | 
 |   } | 
 |   case ISD::SELECT: | 
 |     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1); | 
 |     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // Only known if known in both the LHS and RHS. | 
 |     KnownOne &= KnownOne2; | 
 |     KnownZero &= KnownZero2; | 
 |     return; | 
 |   case ISD::SELECT_CC: | 
 |     ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1); | 
 |     ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // Only known if known in both the LHS and RHS. | 
 |     KnownOne &= KnownOne2; | 
 |     KnownZero &= KnownZero2; | 
 |     return; | 
 |   case ISD::SETCC: | 
 |     // If we know the result of a setcc has the top bits zero, use this info. | 
 |     if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) | 
 |       KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); | 
 |     return; | 
 |   case ISD::SHL: | 
 |     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0 | 
 |     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
 |       ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(), | 
 |                         KnownZero, KnownOne, Depth+1); | 
 |       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |       KnownZero <<= SA->getValue(); | 
 |       KnownOne  <<= SA->getValue(); | 
 |       KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero. | 
 |     } | 
 |     return; | 
 |   case ISD::SRL: | 
 |     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0 | 
 |     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
 |       MVT::ValueType VT = Op.getValueType(); | 
 |       unsigned ShAmt = SA->getValue(); | 
 |  | 
 |       uint64_t TypeMask = MVT::getIntVTBitMask(VT); | 
 |       ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask, | 
 |                         KnownZero, KnownOne, Depth+1); | 
 |       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |       KnownZero &= TypeMask; | 
 |       KnownOne  &= TypeMask; | 
 |       KnownZero >>= ShAmt; | 
 |       KnownOne  >>= ShAmt; | 
 |  | 
 |       uint64_t HighBits = (1ULL << ShAmt)-1; | 
 |       HighBits <<= MVT::getSizeInBits(VT)-ShAmt; | 
 |       KnownZero |= HighBits;  // High bits known zero. | 
 |     } | 
 |     return; | 
 |   case ISD::SRA: | 
 |     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
 |       MVT::ValueType VT = Op.getValueType(); | 
 |       unsigned ShAmt = SA->getValue(); | 
 |  | 
 |       // Compute the new bits that are at the top now. | 
 |       uint64_t TypeMask = MVT::getIntVTBitMask(VT); | 
 |  | 
 |       uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask; | 
 |       // If any of the demanded bits are produced by the sign extension, we also | 
 |       // demand the input sign bit. | 
 |       uint64_t HighBits = (1ULL << ShAmt)-1; | 
 |       HighBits <<= MVT::getSizeInBits(VT) - ShAmt; | 
 |       if (HighBits & Mask) | 
 |         InDemandedMask |= MVT::getIntVTSignBit(VT); | 
 |        | 
 |       ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne, | 
 |                         Depth+1); | 
 |       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |       KnownZero &= TypeMask; | 
 |       KnownOne  &= TypeMask; | 
 |       KnownZero >>= ShAmt; | 
 |       KnownOne  >>= ShAmt; | 
 |        | 
 |       // Handle the sign bits. | 
 |       uint64_t SignBit = MVT::getIntVTSignBit(VT); | 
 |       SignBit >>= ShAmt;  // Adjust to where it is now in the mask. | 
 |        | 
 |       if (KnownZero & SignBit) {        | 
 |         KnownZero |= HighBits;  // New bits are known zero. | 
 |       } else if (KnownOne & SignBit) { | 
 |         KnownOne  |= HighBits;  // New bits are known one. | 
 |       } | 
 |     } | 
 |     return; | 
 |   case ISD::SIGN_EXTEND_INREG: { | 
 |     MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
 |      | 
 |     // Sign extension.  Compute the demanded bits in the result that are not  | 
 |     // present in the input. | 
 |     uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask; | 
 |  | 
 |     uint64_t InSignBit = MVT::getIntVTSignBit(EVT); | 
 |     int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT); | 
 |      | 
 |     // If the sign extended bits are demanded, we know that the sign | 
 |     // bit is demanded. | 
 |     if (NewBits) | 
 |       InputDemandedBits |= InSignBit; | 
 |      | 
 |     ComputeMaskedBits(Op.getOperand(0), InputDemandedBits, | 
 |                       KnownZero, KnownOne, Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // If the sign bit of the input is known set or clear, then we know the | 
 |     // top bits of the result. | 
 |     if (KnownZero & InSignBit) {          // Input sign bit known clear | 
 |       KnownZero |= NewBits; | 
 |       KnownOne  &= ~NewBits; | 
 |     } else if (KnownOne & InSignBit) {    // Input sign bit known set | 
 |       KnownOne  |= NewBits; | 
 |       KnownZero &= ~NewBits; | 
 |     } else {                              // Input sign bit unknown | 
 |       KnownZero &= ~NewBits; | 
 |       KnownOne  &= ~NewBits; | 
 |     } | 
 |     return; | 
 |   } | 
 |   case ISD::CTTZ: | 
 |   case ISD::CTLZ: | 
 |   case ISD::CTPOP: { | 
 |     MVT::ValueType VT = Op.getValueType(); | 
 |     unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; | 
 |     KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); | 
 |     KnownOne  = 0; | 
 |     return; | 
 |   } | 
 |   case ISD::LOAD: { | 
 |     if (ISD::isZEXTLoad(Op.Val)) { | 
 |       LoadSDNode *LD = cast<LoadSDNode>(Op); | 
 |       MVT::ValueType VT = LD->getLoadedVT(); | 
 |       KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask; | 
 |     } | 
 |     return; | 
 |   } | 
 |   case ISD::ZERO_EXTEND: { | 
 |     uint64_t InMask  = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); | 
 |     uint64_t NewBits = (~InMask) & Mask; | 
 |     ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,  | 
 |                       KnownOne, Depth+1); | 
 |     KnownZero |= NewBits & Mask; | 
 |     KnownOne  &= ~NewBits; | 
 |     return; | 
 |   } | 
 |   case ISD::SIGN_EXTEND: { | 
 |     MVT::ValueType InVT = Op.getOperand(0).getValueType(); | 
 |     unsigned InBits    = MVT::getSizeInBits(InVT); | 
 |     uint64_t InMask    = MVT::getIntVTBitMask(InVT); | 
 |     uint64_t InSignBit = 1ULL << (InBits-1); | 
 |     uint64_t NewBits   = (~InMask) & Mask; | 
 |     uint64_t InDemandedBits = Mask & InMask; | 
 |  | 
 |     // If any of the sign extended bits are demanded, we know that the sign | 
 |     // bit is demanded. | 
 |     if (NewBits & Mask) | 
 |       InDemandedBits |= InSignBit; | 
 |      | 
 |     ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,  | 
 |                       KnownOne, Depth+1); | 
 |     // If the sign bit is known zero or one, the  top bits match. | 
 |     if (KnownZero & InSignBit) { | 
 |       KnownZero |= NewBits; | 
 |       KnownOne  &= ~NewBits; | 
 |     } else if (KnownOne & InSignBit) { | 
 |       KnownOne  |= NewBits; | 
 |       KnownZero &= ~NewBits; | 
 |     } else {   // Otherwise, top bits aren't known. | 
 |       KnownOne  &= ~NewBits; | 
 |       KnownZero &= ~NewBits; | 
 |     } | 
 |     return; | 
 |   } | 
 |   case ISD::ANY_EXTEND: { | 
 |     MVT::ValueType VT = Op.getOperand(0).getValueType(); | 
 |     ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT), | 
 |                       KnownZero, KnownOne, Depth+1); | 
 |     return; | 
 |   } | 
 |   case ISD::TRUNCATE: { | 
 |     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); | 
 |     KnownZero &= OutMask; | 
 |     KnownOne &= OutMask; | 
 |     break; | 
 |   } | 
 |   case ISD::AssertZext: { | 
 |     MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
 |     uint64_t InMask = MVT::getIntVTBitMask(VT); | 
 |     ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,  | 
 |                       KnownOne, Depth+1); | 
 |     KnownZero |= (~InMask) & Mask; | 
 |     return; | 
 |   } | 
 |   case ISD::ADD: { | 
 |     // If either the LHS or the RHS are Zero, the result is zero. | 
 |     ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
 |     ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1); | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // Output known-0 bits are known if clear or set in both the low clear bits | 
 |     // common to both LHS & RHS.  For example, 8+(X<<3) is known to have the | 
 |     // low 3 bits clear. | 
 |     uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),  | 
 |                                      CountTrailingZeros_64(~KnownZero2)); | 
 |      | 
 |     KnownZero = (1ULL << KnownZeroOut) - 1; | 
 |     KnownOne = 0; | 
 |     return; | 
 |   } | 
 |   case ISD::SUB: { | 
 |     ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)); | 
 |     if (!CLHS) return; | 
 |  | 
 |     // We know that the top bits of C-X are clear if X contains less bits | 
 |     // than C (i.e. no wrap-around can happen).  For example, 20-X is | 
 |     // positive if we can prove that X is >= 0 and < 16. | 
 |     MVT::ValueType VT = CLHS->getValueType(0); | 
 |     if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) {  // sign bit clear | 
 |       unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1); | 
 |       uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit | 
 |       MaskV = ~MaskV & MVT::getIntVTBitMask(VT); | 
 |       ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1); | 
 |  | 
 |       // If all of the MaskV bits are known to be zero, then we know the output | 
 |       // top bits are zero, because we now know that the output is from [0-C]. | 
 |       if ((KnownZero & MaskV) == MaskV) { | 
 |         unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue()); | 
 |         KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask;  // Top bits known zero. | 
 |         KnownOne = 0;   // No one bits known. | 
 |       } else { | 
 |         KnownZero = KnownOne = 0;  // Otherwise, nothing known. | 
 |       } | 
 |     } | 
 |     return; | 
 |   } | 
 |   default: | 
 |     // Allow the target to implement this method for its nodes. | 
 |     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { | 
 |   case ISD::INTRINSIC_WO_CHAIN: | 
 |   case ISD::INTRINSIC_W_CHAIN: | 
 |   case ISD::INTRINSIC_VOID: | 
 |       TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this); | 
 |     } | 
 |     return; | 
 |   } | 
 | } | 
 |  | 
 | /// ComputeNumSignBits - Return the number of times the sign bit of the | 
 | /// register is replicated into the other bits.  We know that at least 1 bit | 
 | /// is always equal to the sign bit (itself), but other cases can give us | 
 | /// information.  For example, immediately after an "SRA X, 2", we know that | 
 | /// the top 3 bits are all equal to each other, so we return 3. | 
 | unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{ | 
 |   MVT::ValueType VT = Op.getValueType(); | 
 |   assert(MVT::isInteger(VT) && "Invalid VT!"); | 
 |   unsigned VTBits = MVT::getSizeInBits(VT); | 
 |   unsigned Tmp, Tmp2; | 
 |    | 
 |   if (Depth == 6) | 
 |     return 1;  // Limit search depth. | 
 |  | 
 |   switch (Op.getOpcode()) { | 
 |   default: break; | 
 |   case ISD::AssertSext: | 
 |     Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); | 
 |     return VTBits-Tmp+1; | 
 |   case ISD::AssertZext: | 
 |     Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); | 
 |     return VTBits-Tmp; | 
 |      | 
 |   case ISD::Constant: { | 
 |     uint64_t Val = cast<ConstantSDNode>(Op)->getValue(); | 
 |     // If negative, invert the bits, then look at it. | 
 |     if (Val & MVT::getIntVTSignBit(VT)) | 
 |       Val = ~Val; | 
 |      | 
 |     // Shift the bits so they are the leading bits in the int64_t. | 
 |     Val <<= 64-VTBits; | 
 |      | 
 |     // Return # leading zeros.  We use 'min' here in case Val was zero before | 
 |     // shifting.  We don't want to return '64' as for an i32 "0". | 
 |     return std::min(VTBits, CountLeadingZeros_64(Val)); | 
 |   } | 
 |      | 
 |   case ISD::SIGN_EXTEND: | 
 |     Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType()); | 
 |     return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp; | 
 |      | 
 |   case ISD::SIGN_EXTEND_INREG: | 
 |     // Max of the input and what this extends. | 
 |     Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT()); | 
 |     Tmp = VTBits-Tmp+1; | 
 |      | 
 |     Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
 |     return std::max(Tmp, Tmp2); | 
 |  | 
 |   case ISD::SRA: | 
 |     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
 |     // SRA X, C   -> adds C sign bits. | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
 |       Tmp += C->getValue(); | 
 |       if (Tmp > VTBits) Tmp = VTBits; | 
 |     } | 
 |     return Tmp; | 
 |   case ISD::SHL: | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
 |       // shl destroys sign bits. | 
 |       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
 |       if (C->getValue() >= VTBits ||      // Bad shift. | 
 |           C->getValue() >= Tmp) break;    // Shifted all sign bits out. | 
 |       return Tmp - C->getValue(); | 
 |     } | 
 |     break; | 
 |   case ISD::AND: | 
 |   case ISD::OR: | 
 |   case ISD::XOR:    // NOT is handled here. | 
 |     // Logical binary ops preserve the number of sign bits. | 
 |     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
 |     if (Tmp == 1) return 1;  // Early out. | 
 |     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); | 
 |     return std::min(Tmp, Tmp2); | 
 |  | 
 |   case ISD::SELECT: | 
 |     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
 |     if (Tmp == 1) return 1;  // Early out. | 
 |     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); | 
 |     return std::min(Tmp, Tmp2); | 
 |      | 
 |   case ISD::SETCC: | 
 |     // If setcc returns 0/-1, all bits are sign bits. | 
 |     if (TLI.getSetCCResultContents() == | 
 |         TargetLowering::ZeroOrNegativeOneSetCCResult) | 
 |       return VTBits; | 
 |     break; | 
 |   case ISD::ROTL: | 
 |   case ISD::ROTR: | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
 |       unsigned RotAmt = C->getValue() & (VTBits-1); | 
 |        | 
 |       // Handle rotate right by N like a rotate left by 32-N. | 
 |       if (Op.getOpcode() == ISD::ROTR) | 
 |         RotAmt = (VTBits-RotAmt) & (VTBits-1); | 
 |  | 
 |       // If we aren't rotating out all of the known-in sign bits, return the | 
 |       // number that are left.  This handles rotl(sext(x), 1) for example. | 
 |       Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
 |       if (Tmp > RotAmt+1) return Tmp-RotAmt; | 
 |     } | 
 |     break; | 
 |   case ISD::ADD: | 
 |     // Add can have at most one carry bit.  Thus we know that the output | 
 |     // is, at worst, one more bit than the inputs. | 
 |     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
 |     if (Tmp == 1) return 1;  // Early out. | 
 |        | 
 |     // Special case decrementing a value (ADD X, -1): | 
 |     if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) | 
 |       if (CRHS->isAllOnesValue()) { | 
 |         uint64_t KnownZero, KnownOne; | 
 |         uint64_t Mask = MVT::getIntVTBitMask(VT); | 
 |         ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); | 
 |          | 
 |         // If the input is known to be 0 or 1, the output is 0/-1, which is all | 
 |         // sign bits set. | 
 |         if ((KnownZero|1) == Mask) | 
 |           return VTBits; | 
 |          | 
 |         // If we are subtracting one from a positive number, there is no carry | 
 |         // out of the result. | 
 |         if (KnownZero & MVT::getIntVTSignBit(VT)) | 
 |           return Tmp; | 
 |       } | 
 |        | 
 |     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); | 
 |     if (Tmp2 == 1) return 1; | 
 |       return std::min(Tmp, Tmp2)-1; | 
 |     break; | 
 |      | 
 |   case ISD::SUB: | 
 |     Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1); | 
 |     if (Tmp2 == 1) return 1; | 
 |        | 
 |     // Handle NEG. | 
 |     if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) | 
 |       if (CLHS->getValue() == 0) { | 
 |         uint64_t KnownZero, KnownOne; | 
 |         uint64_t Mask = MVT::getIntVTBitMask(VT); | 
 |         ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1); | 
 |         // If the input is known to be 0 or 1, the output is 0/-1, which is all | 
 |         // sign bits set. | 
 |         if ((KnownZero|1) == Mask) | 
 |           return VTBits; | 
 |          | 
 |         // If the input is known to be positive (the sign bit is known clear), | 
 |         // the output of the NEG has the same number of sign bits as the input. | 
 |         if (KnownZero & MVT::getIntVTSignBit(VT)) | 
 |           return Tmp2; | 
 |          | 
 |         // Otherwise, we treat this like a SUB. | 
 |       } | 
 |      | 
 |     // Sub can have at most one carry bit.  Thus we know that the output | 
 |     // is, at worst, one more bit than the inputs. | 
 |     Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1); | 
 |     if (Tmp == 1) return 1;  // Early out. | 
 |       return std::min(Tmp, Tmp2)-1; | 
 |     break; | 
 |   case ISD::TRUNCATE: | 
 |     // FIXME: it's tricky to do anything useful for this, but it is an important | 
 |     // case for targets like X86. | 
 |     break; | 
 |   } | 
 |    | 
 |   // Handle LOADX separately here. EXTLOAD case will fallthrough. | 
 |   if (Op.getOpcode() == ISD::LOAD) { | 
 |     LoadSDNode *LD = cast<LoadSDNode>(Op); | 
 |     unsigned ExtType = LD->getExtensionType(); | 
 |     switch (ExtType) { | 
 |     default: break; | 
 |     case ISD::SEXTLOAD:    // '17' bits known | 
 |       Tmp = MVT::getSizeInBits(LD->getLoadedVT()); | 
 |       return VTBits-Tmp+1; | 
 |     case ISD::ZEXTLOAD:    // '16' bits known | 
 |       Tmp = MVT::getSizeInBits(LD->getLoadedVT()); | 
 |       return VTBits-Tmp; | 
 |     } | 
 |   } | 
 |  | 
 |   // Allow the target to implement this method for its nodes. | 
 |   if (Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
 |       Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||  | 
 |       Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
 |       Op.getOpcode() == ISD::INTRINSIC_VOID) { | 
 |     unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth); | 
 |     if (NumBits > 1) return NumBits; | 
 |   } | 
 |    | 
 |   // Finally, if we can prove that the top bits of the result are 0's or 1's, | 
 |   // use this information. | 
 |   uint64_t KnownZero, KnownOne; | 
 |   uint64_t Mask = MVT::getIntVTBitMask(VT); | 
 |   ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth); | 
 |    | 
 |   uint64_t SignBit = MVT::getIntVTSignBit(VT); | 
 |   if (KnownZero & SignBit) {        // SignBit is 0 | 
 |     Mask = KnownZero; | 
 |   } else if (KnownOne & SignBit) {  // SignBit is 1; | 
 |     Mask = KnownOne; | 
 |   } else { | 
 |     // Nothing known. | 
 |     return 1; | 
 |   } | 
 |    | 
 |   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine | 
 |   // the number of identical bits in the top of the input value. | 
 |   Mask ^= ~0ULL; | 
 |   Mask <<= 64-VTBits; | 
 |   // Return # leading zeros.  We use 'min' here in case Val was zero before | 
 |   // shifting.  We don't want to return '64' as for an i32 "0". | 
 |   return std::min(VTBits, CountLeadingZeros_64(Mask)); | 
 | } | 
 |  | 
 |  | 
 | /// getNode - Gets or creates the specified node. | 
 | /// | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) { | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT)); | 
 |   CSEMap.InsertNode(N, IP); | 
 |    | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, | 
 |                                 SDOperand Operand) { | 
 |   unsigned Tmp1; | 
 |   // Constant fold unary operations with an integer constant operand. | 
 |   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) { | 
 |     uint64_t Val = C->getValue(); | 
 |     switch (Opcode) { | 
 |     default: break; | 
 |     case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT); | 
 |     case ISD::ANY_EXTEND: | 
 |     case ISD::ZERO_EXTEND: return getConstant(Val, VT); | 
 |     case ISD::TRUNCATE:    return getConstant(Val, VT); | 
 |     case ISD::UINT_TO_FP: | 
 |     case ISD::SINT_TO_FP: { | 
 |       const uint64_t zero[] = {0, 0}; | 
 |       // No compile time operations on this type. | 
 |       if (VT==MVT::ppcf128) | 
 |         break; | 
 |       APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero)); | 
 |       (void)apf.convertFromZeroExtendedInteger(&Val,  | 
 |                                MVT::getSizeInBits(Operand.getValueType()),  | 
 |                                Opcode==ISD::SINT_TO_FP, | 
 |                                APFloat::rmNearestTiesToEven); | 
 |       return getConstantFP(apf, VT); | 
 |     } | 
 |     case ISD::BIT_CONVERT: | 
 |       if (VT == MVT::f32 && C->getValueType(0) == MVT::i32) | 
 |         return getConstantFP(BitsToFloat(Val), VT); | 
 |       else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64) | 
 |         return getConstantFP(BitsToDouble(Val), VT); | 
 |       break; | 
 |     case ISD::BSWAP: | 
 |       switch(VT) { | 
 |       default: assert(0 && "Invalid bswap!"); break; | 
 |       case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT); | 
 |       case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT); | 
 |       case MVT::i64: return getConstant(ByteSwap_64(Val), VT); | 
 |       } | 
 |       break; | 
 |     case ISD::CTPOP: | 
 |       switch(VT) { | 
 |       default: assert(0 && "Invalid ctpop!"); break; | 
 |       case MVT::i1: return getConstant(Val != 0, VT); | 
 |       case MVT::i8:  | 
 |         Tmp1 = (unsigned)Val & 0xFF; | 
 |         return getConstant(CountPopulation_32(Tmp1), VT); | 
 |       case MVT::i16: | 
 |         Tmp1 = (unsigned)Val & 0xFFFF; | 
 |         return getConstant(CountPopulation_32(Tmp1), VT); | 
 |       case MVT::i32: | 
 |         return getConstant(CountPopulation_32((unsigned)Val), VT); | 
 |       case MVT::i64: | 
 |         return getConstant(CountPopulation_64(Val), VT); | 
 |       } | 
 |     case ISD::CTLZ: | 
 |       switch(VT) { | 
 |       default: assert(0 && "Invalid ctlz!"); break; | 
 |       case MVT::i1: return getConstant(Val == 0, VT); | 
 |       case MVT::i8:  | 
 |         Tmp1 = (unsigned)Val & 0xFF; | 
 |         return getConstant(CountLeadingZeros_32(Tmp1)-24, VT); | 
 |       case MVT::i16: | 
 |         Tmp1 = (unsigned)Val & 0xFFFF; | 
 |         return getConstant(CountLeadingZeros_32(Tmp1)-16, VT); | 
 |       case MVT::i32: | 
 |         return getConstant(CountLeadingZeros_32((unsigned)Val), VT); | 
 |       case MVT::i64: | 
 |         return getConstant(CountLeadingZeros_64(Val), VT); | 
 |       } | 
 |     case ISD::CTTZ: | 
 |       switch(VT) { | 
 |       default: assert(0 && "Invalid cttz!"); break; | 
 |       case MVT::i1: return getConstant(Val == 0, VT); | 
 |       case MVT::i8:  | 
 |         Tmp1 = (unsigned)Val | 0x100; | 
 |         return getConstant(CountTrailingZeros_32(Tmp1), VT); | 
 |       case MVT::i16: | 
 |         Tmp1 = (unsigned)Val | 0x10000; | 
 |         return getConstant(CountTrailingZeros_32(Tmp1), VT); | 
 |       case MVT::i32: | 
 |         return getConstant(CountTrailingZeros_32((unsigned)Val), VT); | 
 |       case MVT::i64: | 
 |         return getConstant(CountTrailingZeros_64(Val), VT); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Constant fold unary operations with a floating point constant operand. | 
 |   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) { | 
 |     APFloat V = C->getValueAPF();    // make copy | 
 |     if (VT!=MVT::ppcf128 && Operand.getValueType()!=MVT::ppcf128) { | 
 |       switch (Opcode) { | 
 |       case ISD::FNEG: | 
 |         V.changeSign(); | 
 |         return getConstantFP(V, VT); | 
 |       case ISD::FABS: | 
 |         V.clearSign(); | 
 |         return getConstantFP(V, VT); | 
 |       case ISD::FP_ROUND: | 
 |       case ISD::FP_EXTEND: | 
 |         // This can return overflow, underflow, or inexact; we don't care. | 
 |         // FIXME need to be more flexible about rounding mode. | 
 |         (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :  | 
 |                          VT==MVT::f64 ? APFloat::IEEEdouble : | 
 |                          VT==MVT::f80 ? APFloat::x87DoubleExtended : | 
 |                          VT==MVT::f128 ? APFloat::IEEEquad : | 
 |                          APFloat::Bogus, | 
 |                          APFloat::rmNearestTiesToEven); | 
 |         return getConstantFP(V, VT); | 
 |       case ISD::FP_TO_SINT: | 
 |       case ISD::FP_TO_UINT: { | 
 |         integerPart x; | 
 |         assert(integerPartWidth >= 64); | 
 |         // FIXME need to be more flexible about rounding mode. | 
 |         APFloat::opStatus s = V.convertToInteger(&x, 64U, | 
 |                               Opcode==ISD::FP_TO_SINT, | 
 |                               APFloat::rmTowardZero); | 
 |         if (s==APFloat::opInvalidOp)     // inexact is OK, in fact usual | 
 |           break; | 
 |         return getConstant(x, VT); | 
 |       } | 
 |       case ISD::BIT_CONVERT: | 
 |         if (VT == MVT::i32 && C->getValueType(0) == MVT::f32) | 
 |           return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT); | 
 |         else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64) | 
 |           return getConstant(V.convertToAPInt().getZExtValue(), VT); | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   unsigned OpOpcode = Operand.Val->getOpcode(); | 
 |   switch (Opcode) { | 
 |   case ISD::TokenFactor: | 
 |     return Operand;         // Factor of one node?  No factor. | 
 |   case ISD::FP_ROUND: | 
 |   case ISD::FP_EXTEND: | 
 |     assert(MVT::isFloatingPoint(VT) && | 
 |            MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!"); | 
 |     break; | 
 |   case ISD::SIGN_EXTEND: | 
 |     assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && | 
 |            "Invalid SIGN_EXTEND!"); | 
 |     if (Operand.getValueType() == VT) return Operand;   // noop extension | 
 |     assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT) | 
 |            && "Invalid sext node, dst < src!"); | 
 |     if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND) | 
 |       return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); | 
 |     break; | 
 |   case ISD::ZERO_EXTEND: | 
 |     assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && | 
 |            "Invalid ZERO_EXTEND!"); | 
 |     if (Operand.getValueType() == VT) return Operand;   // noop extension | 
 |     assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT) | 
 |            && "Invalid zext node, dst < src!"); | 
 |     if (OpOpcode == ISD::ZERO_EXTEND)   // (zext (zext x)) -> (zext x) | 
 |       return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0)); | 
 |     break; | 
 |   case ISD::ANY_EXTEND: | 
 |     assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && | 
 |            "Invalid ANY_EXTEND!"); | 
 |     if (Operand.getValueType() == VT) return Operand;   // noop extension | 
 |     assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT) | 
 |            && "Invalid anyext node, dst < src!"); | 
 |     if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND) | 
 |       // (ext (zext x)) -> (zext x)  and  (ext (sext x)) -> (sext x) | 
 |       return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); | 
 |     break; | 
 |   case ISD::TRUNCATE: | 
 |     assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) && | 
 |            "Invalid TRUNCATE!"); | 
 |     if (Operand.getValueType() == VT) return Operand;   // noop truncate | 
 |     assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT) | 
 |            && "Invalid truncate node, src < dst!"); | 
 |     if (OpOpcode == ISD::TRUNCATE) | 
 |       return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); | 
 |     else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND || | 
 |              OpOpcode == ISD::ANY_EXTEND) { | 
 |       // If the source is smaller than the dest, we still need an extend. | 
 |       if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType()) | 
 |           < MVT::getSizeInBits(VT)) | 
 |         return getNode(OpOpcode, VT, Operand.Val->getOperand(0)); | 
 |       else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType()) | 
 |                > MVT::getSizeInBits(VT)) | 
 |         return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0)); | 
 |       else | 
 |         return Operand.Val->getOperand(0); | 
 |     } | 
 |     break; | 
 |   case ISD::BIT_CONVERT: | 
 |     // Basic sanity checking. | 
 |     assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType()) | 
 |            && "Cannot BIT_CONVERT between types of different sizes!"); | 
 |     if (VT == Operand.getValueType()) return Operand;  // noop conversion. | 
 |     if (OpOpcode == ISD::BIT_CONVERT)  // bitconv(bitconv(x)) -> bitconv(x) | 
 |       return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0)); | 
 |     if (OpOpcode == ISD::UNDEF) | 
 |       return getNode(ISD::UNDEF, VT); | 
 |     break; | 
 |   case ISD::SCALAR_TO_VECTOR: | 
 |     assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) && | 
 |            MVT::getVectorElementType(VT) == Operand.getValueType() && | 
 |            "Illegal SCALAR_TO_VECTOR node!"); | 
 |     break; | 
 |   case ISD::FNEG: | 
 |     if (OpOpcode == ISD::FSUB)   // -(X-Y) -> (Y-X) | 
 |       return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1), | 
 |                      Operand.Val->getOperand(0)); | 
 |     if (OpOpcode == ISD::FNEG)  // --X -> X | 
 |       return Operand.Val->getOperand(0); | 
 |     break; | 
 |   case ISD::FABS: | 
 |     if (OpOpcode == ISD::FNEG)  // abs(-X) -> abs(X) | 
 |       return getNode(ISD::FABS, VT, Operand.Val->getOperand(0)); | 
 |     break; | 
 |   } | 
 |  | 
 |   SDNode *N; | 
 |   SDVTList VTs = getVTList(VT); | 
 |   if (VT != MVT::Flag) { // Don't CSE flag producing nodes | 
 |     FoldingSetNodeID ID; | 
 |     SDOperand Ops[1] = { Operand }; | 
 |     AddNodeIDNode(ID, Opcode, VTs, Ops, 1); | 
 |     void *IP = 0; | 
 |     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |       return SDOperand(E, 0); | 
 |     N = new UnarySDNode(Opcode, VTs, Operand); | 
 |     CSEMap.InsertNode(N, IP); | 
 |   } else { | 
 |     N = new UnarySDNode(Opcode, VTs, Operand); | 
 |   } | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, | 
 |                                 SDOperand N1, SDOperand N2) { | 
 | #ifndef NDEBUG | 
 |   switch (Opcode) { | 
 |   case ISD::TokenFactor: | 
 |     assert(VT == MVT::Other && N1.getValueType() == MVT::Other && | 
 |            N2.getValueType() == MVT::Other && "Invalid token factor!"); | 
 |     break; | 
 |   case ISD::AND: | 
 |   case ISD::OR: | 
 |   case ISD::XOR: | 
 |   case ISD::UDIV: | 
 |   case ISD::UREM: | 
 |   case ISD::MULHU: | 
 |   case ISD::MULHS: | 
 |     assert(MVT::isInteger(VT) && "This operator does not apply to FP types!"); | 
 |     // fall through | 
 |   case ISD::ADD: | 
 |   case ISD::SUB: | 
 |   case ISD::MUL: | 
 |   case ISD::SDIV: | 
 |   case ISD::SREM: | 
 |     assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops"); | 
 |     // fall through. | 
 |   case ISD::FADD: | 
 |   case ISD::FSUB: | 
 |   case ISD::FMUL: | 
 |   case ISD::FDIV: | 
 |   case ISD::FREM: | 
 |     assert(N1.getValueType() == N2.getValueType() && | 
 |            N1.getValueType() == VT && "Binary operator types must match!"); | 
 |     break; | 
 |   case ISD::FCOPYSIGN:   // N1 and result must match.  N1/N2 need not match. | 
 |     assert(N1.getValueType() == VT && | 
 |            MVT::isFloatingPoint(N1.getValueType()) &&  | 
 |            MVT::isFloatingPoint(N2.getValueType()) && | 
 |            "Invalid FCOPYSIGN!"); | 
 |     break; | 
 |   case ISD::SHL: | 
 |   case ISD::SRA: | 
 |   case ISD::SRL: | 
 |   case ISD::ROTL: | 
 |   case ISD::ROTR: | 
 |     assert(VT == N1.getValueType() && | 
 |            "Shift operators return type must be the same as their first arg"); | 
 |     assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) && | 
 |            VT != MVT::i1 && "Shifts only work on integers"); | 
 |     break; | 
 |   case ISD::FP_ROUND_INREG: { | 
 |     MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); | 
 |     assert(VT == N1.getValueType() && "Not an inreg round!"); | 
 |     assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) && | 
 |            "Cannot FP_ROUND_INREG integer types"); | 
 |     assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) && | 
 |            "Not rounding down!"); | 
 |     break; | 
 |   } | 
 |   case ISD::AssertSext: | 
 |   case ISD::AssertZext: | 
 |   case ISD::SIGN_EXTEND_INREG: { | 
 |     MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); | 
 |     assert(VT == N1.getValueType() && "Not an inreg extend!"); | 
 |     assert(MVT::isInteger(VT) && MVT::isInteger(EVT) && | 
 |            "Cannot *_EXTEND_INREG FP types"); | 
 |     assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) && | 
 |            "Not extending!"); | 
 |   } | 
 |  | 
 |   default: break; | 
 |   } | 
 | #endif | 
 |  | 
 |   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); | 
 |   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); | 
 |   if (N1C) { | 
 |     if (Opcode == ISD::SIGN_EXTEND_INREG) { | 
 |       int64_t Val = N1C->getValue(); | 
 |       unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT()); | 
 |       Val <<= 64-FromBits; | 
 |       Val >>= 64-FromBits; | 
 |       return getConstant(Val, VT); | 
 |     } | 
 |      | 
 |     if (N2C) { | 
 |       uint64_t C1 = N1C->getValue(), C2 = N2C->getValue(); | 
 |       switch (Opcode) { | 
 |       case ISD::ADD: return getConstant(C1 + C2, VT); | 
 |       case ISD::SUB: return getConstant(C1 - C2, VT); | 
 |       case ISD::MUL: return getConstant(C1 * C2, VT); | 
 |       case ISD::UDIV: | 
 |         if (C2) return getConstant(C1 / C2, VT); | 
 |         break; | 
 |       case ISD::UREM : | 
 |         if (C2) return getConstant(C1 % C2, VT); | 
 |         break; | 
 |       case ISD::SDIV : | 
 |         if (C2) return getConstant(N1C->getSignExtended() / | 
 |                                    N2C->getSignExtended(), VT); | 
 |         break; | 
 |       case ISD::SREM : | 
 |         if (C2) return getConstant(N1C->getSignExtended() % | 
 |                                    N2C->getSignExtended(), VT); | 
 |         break; | 
 |       case ISD::AND  : return getConstant(C1 & C2, VT); | 
 |       case ISD::OR   : return getConstant(C1 | C2, VT); | 
 |       case ISD::XOR  : return getConstant(C1 ^ C2, VT); | 
 |       case ISD::SHL  : return getConstant(C1 << C2, VT); | 
 |       case ISD::SRL  : return getConstant(C1 >> C2, VT); | 
 |       case ISD::SRA  : return getConstant(N1C->getSignExtended() >>(int)C2, VT); | 
 |       case ISD::ROTL :  | 
 |         return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)), | 
 |                            VT); | 
 |       case ISD::ROTR :  | 
 |         return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),  | 
 |                            VT); | 
 |       default: break; | 
 |       } | 
 |     } else {      // Cannonicalize constant to RHS if commutative | 
 |       if (isCommutativeBinOp(Opcode)) { | 
 |         std::swap(N1C, N2C); | 
 |         std::swap(N1, N2); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val); | 
 |   ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val); | 
 |   if (N1CFP) { | 
 |     if (N2CFP && VT!=MVT::ppcf128) { | 
 |       APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF(); | 
 |       APFloat::opStatus s; | 
 |       switch (Opcode) { | 
 |       case ISD::FADD:  | 
 |         s = V1.add(V2, APFloat::rmNearestTiesToEven); | 
 |         if (s!=APFloat::opInvalidOp) | 
 |           return getConstantFP(V1, VT); | 
 |         break; | 
 |       case ISD::FSUB:  | 
 |         s = V1.subtract(V2, APFloat::rmNearestTiesToEven); | 
 |         if (s!=APFloat::opInvalidOp) | 
 |           return getConstantFP(V1, VT); | 
 |         break; | 
 |       case ISD::FMUL: | 
 |         s = V1.multiply(V2, APFloat::rmNearestTiesToEven); | 
 |         if (s!=APFloat::opInvalidOp) | 
 |           return getConstantFP(V1, VT); | 
 |         break; | 
 |       case ISD::FDIV: | 
 |         s = V1.divide(V2, APFloat::rmNearestTiesToEven); | 
 |         if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero) | 
 |           return getConstantFP(V1, VT); | 
 |         break; | 
 |       case ISD::FREM : | 
 |         s = V1.mod(V2, APFloat::rmNearestTiesToEven); | 
 |         if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero) | 
 |           return getConstantFP(V1, VT); | 
 |         break; | 
 |       case ISD::FCOPYSIGN: | 
 |         V1.copySign(V2); | 
 |         return getConstantFP(V1, VT); | 
 |       default: break; | 
 |       } | 
 |     } else {      // Cannonicalize constant to RHS if commutative | 
 |       if (isCommutativeBinOp(Opcode)) { | 
 |         std::swap(N1CFP, N2CFP); | 
 |         std::swap(N1, N2); | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   // Canonicalize an UNDEF to the RHS, even over a constant. | 
 |   if (N1.getOpcode() == ISD::UNDEF) { | 
 |     if (isCommutativeBinOp(Opcode)) { | 
 |       std::swap(N1, N2); | 
 |     } else { | 
 |       switch (Opcode) { | 
 |       case ISD::FP_ROUND_INREG: | 
 |       case ISD::SIGN_EXTEND_INREG: | 
 |       case ISD::SUB: | 
 |       case ISD::FSUB: | 
 |       case ISD::FDIV: | 
 |       case ISD::FREM: | 
 |       case ISD::SRA: | 
 |         return N1;     // fold op(undef, arg2) -> undef | 
 |       case ISD::UDIV: | 
 |       case ISD::SDIV: | 
 |       case ISD::UREM: | 
 |       case ISD::SREM: | 
 |       case ISD::SRL: | 
 |       case ISD::SHL: | 
 |         if (!MVT::isVector(VT))  | 
 |           return getConstant(0, VT);    // fold op(undef, arg2) -> 0 | 
 |         // For vectors, we can't easily build an all zero vector, just return | 
 |         // the LHS. | 
 |         return N2; | 
 |       } | 
 |     } | 
 |   } | 
 |    | 
 |   // Fold a bunch of operators when the RHS is undef.  | 
 |   if (N2.getOpcode() == ISD::UNDEF) { | 
 |     switch (Opcode) { | 
 |     case ISD::ADD: | 
 |     case ISD::ADDC: | 
 |     case ISD::ADDE: | 
 |     case ISD::SUB: | 
 |     case ISD::FADD: | 
 |     case ISD::FSUB: | 
 |     case ISD::FMUL: | 
 |     case ISD::FDIV: | 
 |     case ISD::FREM: | 
 |     case ISD::UDIV: | 
 |     case ISD::SDIV: | 
 |     case ISD::UREM: | 
 |     case ISD::SREM: | 
 |     case ISD::XOR: | 
 |       return N2;       // fold op(arg1, undef) -> undef | 
 |     case ISD::MUL:  | 
 |     case ISD::AND: | 
 |     case ISD::SRL: | 
 |     case ISD::SHL: | 
 |       if (!MVT::isVector(VT))  | 
 |         return getConstant(0, VT);  // fold op(arg1, undef) -> 0 | 
 |       // For vectors, we can't easily build an all zero vector, just return | 
 |       // the LHS. | 
 |       return N1; | 
 |     case ISD::OR: | 
 |       if (!MVT::isVector(VT))  | 
 |         return getConstant(MVT::getIntVTBitMask(VT), VT); | 
 |       // For vectors, we can't easily build an all one vector, just return | 
 |       // the LHS. | 
 |       return N1; | 
 |     case ISD::SRA: | 
 |       return N1; | 
 |     } | 
 |   } | 
 |  | 
 |   // Fold operations. | 
 |   switch (Opcode) { | 
 |   case ISD::TokenFactor: | 
 |     // Fold trivial token factors. | 
 |     if (N1.getOpcode() == ISD::EntryToken) return N2; | 
 |     if (N2.getOpcode() == ISD::EntryToken) return N1; | 
 |     break; | 
 |        | 
 |   case ISD::AND: | 
 |     // (X & 0) -> 0.  This commonly occurs when legalizing i64 values, so it's | 
 |     // worth handling here. | 
 |     if (N2C && N2C->getValue() == 0) | 
 |       return N2; | 
 |     break; | 
 |   case ISD::OR: | 
 |   case ISD::XOR: | 
 |     // (X ^| 0) -> X.  This commonly occurs when legalizing i64 values, so it's | 
 |     // worth handling here. | 
 |     if (N2C && N2C->getValue() == 0) | 
 |       return N1; | 
 |     break; | 
 |   case ISD::FP_ROUND_INREG: | 
 |     if (cast<VTSDNode>(N2)->getVT() == VT) return N1;  // Not actually rounding. | 
 |     break; | 
 |   case ISD::SIGN_EXTEND_INREG: { | 
 |     MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT(); | 
 |     if (EVT == VT) return N1;  // Not actually extending | 
 |     break; | 
 |   } | 
 |   case ISD::EXTRACT_VECTOR_ELT: | 
 |     assert(N2C && "Bad EXTRACT_VECTOR_ELT!"); | 
 |  | 
 |     // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is | 
 |     // expanding copies of large vectors from registers. | 
 |     if (N1.getOpcode() == ISD::CONCAT_VECTORS && | 
 |         N1.getNumOperands() > 0) { | 
 |       unsigned Factor = | 
 |         MVT::getVectorNumElements(N1.getOperand(0).getValueType()); | 
 |       return getNode(ISD::EXTRACT_VECTOR_ELT, VT, | 
 |                      N1.getOperand(N2C->getValue() / Factor), | 
 |                      getConstant(N2C->getValue() % Factor, N2.getValueType())); | 
 |     } | 
 |  | 
 |     // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is | 
 |     // expanding large vector constants. | 
 |     if (N1.getOpcode() == ISD::BUILD_VECTOR) | 
 |       return N1.getOperand(N2C->getValue()); | 
 |  | 
 |     // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector | 
 |     // operations are lowered to scalars. | 
 |     if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) | 
 |       if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) { | 
 |         if (IEC == N2C) | 
 |           return N1.getOperand(1); | 
 |         else | 
 |           return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2); | 
 |       } | 
 |     break; | 
 |   case ISD::EXTRACT_ELEMENT: | 
 |     assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!"); | 
 |      | 
 |     // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding | 
 |     // 64-bit integers into 32-bit parts.  Instead of building the extract of | 
 |     // the BUILD_PAIR, only to have legalize rip it apart, just do it now.  | 
 |     if (N1.getOpcode() == ISD::BUILD_PAIR) | 
 |       return N1.getOperand(N2C->getValue()); | 
 |      | 
 |     // EXTRACT_ELEMENT of a constant int is also very common. | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { | 
 |       unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue(); | 
 |       return getConstant(C->getValue() >> Shift, VT); | 
 |     } | 
 |     break; | 
 |  | 
 |   // FIXME: figure out how to safely handle things like | 
 |   // int foo(int x) { return 1 << (x & 255); } | 
 |   // int bar() { return foo(256); } | 
 | #if 0 | 
 |   case ISD::SHL: | 
 |   case ISD::SRL: | 
 |   case ISD::SRA: | 
 |     if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
 |         cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1) | 
 |       return getNode(Opcode, VT, N1, N2.getOperand(0)); | 
 |     else if (N2.getOpcode() == ISD::AND) | 
 |       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) { | 
 |         // If the and is only masking out bits that cannot effect the shift, | 
 |         // eliminate the and. | 
 |         unsigned NumBits = MVT::getSizeInBits(VT); | 
 |         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) | 
 |           return getNode(Opcode, VT, N1, N2.getOperand(0)); | 
 |       } | 
 |     break; | 
 | #endif | 
 |   } | 
 |  | 
 |   // Memoize this node if possible. | 
 |   SDNode *N; | 
 |   SDVTList VTs = getVTList(VT); | 
 |   if (VT != MVT::Flag) { | 
 |     SDOperand Ops[] = { N1, N2 }; | 
 |     FoldingSetNodeID ID; | 
 |     AddNodeIDNode(ID, Opcode, VTs, Ops, 2); | 
 |     void *IP = 0; | 
 |     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |       return SDOperand(E, 0); | 
 |     N = new BinarySDNode(Opcode, VTs, N1, N2); | 
 |     CSEMap.InsertNode(N, IP); | 
 |   } else { | 
 |     N = new BinarySDNode(Opcode, VTs, N1, N2); | 
 |   } | 
 |  | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, | 
 |                                 SDOperand N1, SDOperand N2, SDOperand N3) { | 
 |   // Perform various simplifications. | 
 |   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val); | 
 |   ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val); | 
 |   switch (Opcode) { | 
 |   case ISD::SETCC: { | 
 |     // Use FoldSetCC to simplify SETCC's. | 
 |     SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get()); | 
 |     if (Simp.Val) return Simp; | 
 |     break; | 
 |   } | 
 |   case ISD::SELECT: | 
 |     if (N1C) | 
 |       if (N1C->getValue()) | 
 |         return N2;             // select true, X, Y -> X | 
 |       else | 
 |         return N3;             // select false, X, Y -> Y | 
 |  | 
 |     if (N2 == N3) return N2;   // select C, X, X -> X | 
 |     break; | 
 |   case ISD::BRCOND: | 
 |     if (N2C) | 
 |       if (N2C->getValue()) // Unconditional branch | 
 |         return getNode(ISD::BR, MVT::Other, N1, N3); | 
 |       else | 
 |         return N1;         // Never-taken branch | 
 |     break; | 
 |   case ISD::VECTOR_SHUFFLE: | 
 |     assert(VT == N1.getValueType() && VT == N2.getValueType() && | 
 |            MVT::isVector(VT) && MVT::isVector(N3.getValueType()) && | 
 |            N3.getOpcode() == ISD::BUILD_VECTOR && | 
 |            MVT::getVectorNumElements(VT) == N3.getNumOperands() && | 
 |            "Illegal VECTOR_SHUFFLE node!"); | 
 |     break; | 
 |   case ISD::BIT_CONVERT: | 
 |     // Fold bit_convert nodes from a type to themselves. | 
 |     if (N1.getValueType() == VT) | 
 |       return N1; | 
 |     break; | 
 |   } | 
 |  | 
 |   // Memoize node if it doesn't produce a flag. | 
 |   SDNode *N; | 
 |   SDVTList VTs = getVTList(VT); | 
 |   if (VT != MVT::Flag) { | 
 |     SDOperand Ops[] = { N1, N2, N3 }; | 
 |     FoldingSetNodeID ID; | 
 |     AddNodeIDNode(ID, Opcode, VTs, Ops, 3); | 
 |     void *IP = 0; | 
 |     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |       return SDOperand(E, 0); | 
 |     N = new TernarySDNode(Opcode, VTs, N1, N2, N3); | 
 |     CSEMap.InsertNode(N, IP); | 
 |   } else { | 
 |     N = new TernarySDNode(Opcode, VTs, N1, N2, N3); | 
 |   } | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, | 
 |                                 SDOperand N1, SDOperand N2, SDOperand N3, | 
 |                                 SDOperand N4) { | 
 |   SDOperand Ops[] = { N1, N2, N3, N4 }; | 
 |   return getNode(Opcode, VT, Ops, 4); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, | 
 |                                 SDOperand N1, SDOperand N2, SDOperand N3, | 
 |                                 SDOperand N4, SDOperand N5) { | 
 |   SDOperand Ops[] = { N1, N2, N3, N4, N5 }; | 
 |   return getNode(Opcode, VT, Ops, 5); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest, | 
 |                                   SDOperand Src, SDOperand Size, | 
 |                                   SDOperand Align, | 
 |                                   SDOperand AlwaysInline) { | 
 |   SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline }; | 
 |   return getNode(ISD::MEMCPY, MVT::Other, Ops, 6); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest, | 
 |                                   SDOperand Src, SDOperand Size, | 
 |                                   SDOperand Align, | 
 |                                   SDOperand AlwaysInline) { | 
 |   SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline }; | 
 |   return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest, | 
 |                                   SDOperand Src, SDOperand Size, | 
 |                                   SDOperand Align, | 
 |                                   SDOperand AlwaysInline) { | 
 |   SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline }; | 
 |   return getNode(ISD::MEMSET, MVT::Other, Ops, 6); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getLoad(MVT::ValueType VT, | 
 |                                 SDOperand Chain, SDOperand Ptr, | 
 |                                 const Value *SV, int SVOffset, | 
 |                                 bool isVolatile, unsigned Alignment) { | 
 |   if (Alignment == 0) { // Ensure that codegen never sees alignment 0 | 
 |     const Type *Ty = 0; | 
 |     if (VT != MVT::iPTR) { | 
 |       Ty = MVT::getTypeForValueType(VT); | 
 |     } else if (SV) { | 
 |       const PointerType *PT = dyn_cast<PointerType>(SV->getType()); | 
 |       assert(PT && "Value for load must be a pointer"); | 
 |       Ty = PT->getElementType(); | 
 |     }   | 
 |     assert(Ty && "Could not get type information for load"); | 
 |     Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); | 
 |   } | 
 |   SDVTList VTs = getVTList(VT, MVT::Other); | 
 |   SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); | 
 |   SDOperand Ops[] = { Chain, Ptr, Undef }; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); | 
 |   ID.AddInteger(ISD::UNINDEXED); | 
 |   ID.AddInteger(ISD::NON_EXTLOAD); | 
 |   ID.AddInteger((unsigned int)VT); | 
 |   ID.AddPointer(SV); | 
 |   ID.AddInteger(SVOffset); | 
 |   ID.AddInteger(Alignment); | 
 |   ID.AddInteger(isVolatile); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, | 
 |                              ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment, | 
 |                              isVolatile); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT, | 
 |                                    SDOperand Chain, SDOperand Ptr, | 
 |                                    const Value *SV, | 
 |                                    int SVOffset, MVT::ValueType EVT, | 
 |                                    bool isVolatile, unsigned Alignment) { | 
 |   // If they are asking for an extending load from/to the same thing, return a | 
 |   // normal load. | 
 |   if (VT == EVT) | 
 |     return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment); | 
 |  | 
 |   if (MVT::isVector(VT)) | 
 |     assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!"); | 
 |   else | 
 |     assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) && | 
 |            "Should only be an extending load, not truncating!"); | 
 |   assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) && | 
 |          "Cannot sign/zero extend a FP/Vector load!"); | 
 |   assert(MVT::isInteger(VT) == MVT::isInteger(EVT) && | 
 |          "Cannot convert from FP to Int or Int -> FP!"); | 
 |  | 
 |   if (Alignment == 0) { // Ensure that codegen never sees alignment 0 | 
 |     const Type *Ty = 0; | 
 |     if (VT != MVT::iPTR) { | 
 |       Ty = MVT::getTypeForValueType(VT); | 
 |     } else if (SV) { | 
 |       const PointerType *PT = dyn_cast<PointerType>(SV->getType()); | 
 |       assert(PT && "Value for load must be a pointer"); | 
 |       Ty = PT->getElementType(); | 
 |     }   | 
 |     assert(Ty && "Could not get type information for load"); | 
 |     Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); | 
 |   } | 
 |   SDVTList VTs = getVTList(VT, MVT::Other); | 
 |   SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); | 
 |   SDOperand Ops[] = { Chain, Ptr, Undef }; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); | 
 |   ID.AddInteger(ISD::UNINDEXED); | 
 |   ID.AddInteger(ExtType); | 
 |   ID.AddInteger((unsigned int)EVT); | 
 |   ID.AddPointer(SV); | 
 |   ID.AddInteger(SVOffset); | 
 |   ID.AddInteger(Alignment); | 
 |   ID.AddInteger(isVolatile); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT, | 
 |                              SV, SVOffset, Alignment, isVolatile); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand | 
 | SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base, | 
 |                              SDOperand Offset, ISD::MemIndexedMode AM) { | 
 |   LoadSDNode *LD = cast<LoadSDNode>(OrigLoad); | 
 |   assert(LD->getOffset().getOpcode() == ISD::UNDEF && | 
 |          "Load is already a indexed load!"); | 
 |   MVT::ValueType VT = OrigLoad.getValueType(); | 
 |   SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other); | 
 |   SDOperand Ops[] = { LD->getChain(), Base, Offset }; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3); | 
 |   ID.AddInteger(AM); | 
 |   ID.AddInteger(LD->getExtensionType()); | 
 |   ID.AddInteger((unsigned int)(LD->getLoadedVT())); | 
 |   ID.AddPointer(LD->getSrcValue()); | 
 |   ID.AddInteger(LD->getSrcValueOffset()); | 
 |   ID.AddInteger(LD->getAlignment()); | 
 |   ID.AddInteger(LD->isVolatile()); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new LoadSDNode(Ops, VTs, AM, | 
 |                              LD->getExtensionType(), LD->getLoadedVT(), | 
 |                              LD->getSrcValue(), LD->getSrcValueOffset(), | 
 |                              LD->getAlignment(), LD->isVolatile()); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val, | 
 |                                  SDOperand Ptr, const Value *SV, int SVOffset, | 
 |                                  bool isVolatile, unsigned Alignment) { | 
 |   MVT::ValueType VT = Val.getValueType(); | 
 |  | 
 |   if (Alignment == 0) { // Ensure that codegen never sees alignment 0 | 
 |     const Type *Ty = 0; | 
 |     if (VT != MVT::iPTR) { | 
 |       Ty = MVT::getTypeForValueType(VT); | 
 |     } else if (SV) { | 
 |       const PointerType *PT = dyn_cast<PointerType>(SV->getType()); | 
 |       assert(PT && "Value for store must be a pointer"); | 
 |       Ty = PT->getElementType(); | 
 |     } | 
 |     assert(Ty && "Could not get type information for store"); | 
 |     Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); | 
 |   } | 
 |   SDVTList VTs = getVTList(MVT::Other); | 
 |   SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); | 
 |   SDOperand Ops[] = { Chain, Val, Ptr, Undef }; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); | 
 |   ID.AddInteger(ISD::UNINDEXED); | 
 |   ID.AddInteger(false); | 
 |   ID.AddInteger((unsigned int)VT); | 
 |   ID.AddPointer(SV); | 
 |   ID.AddInteger(SVOffset); | 
 |   ID.AddInteger(Alignment); | 
 |   ID.AddInteger(isVolatile); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false, | 
 |                               VT, SV, SVOffset, Alignment, isVolatile); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val, | 
 |                                       SDOperand Ptr, const Value *SV, | 
 |                                       int SVOffset, MVT::ValueType SVT, | 
 |                                       bool isVolatile, unsigned Alignment) { | 
 |   MVT::ValueType VT = Val.getValueType(); | 
 |  | 
 |   if (VT == SVT) | 
 |     return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment); | 
 |  | 
 |   assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) && | 
 |          "Not a truncation?"); | 
 |   assert(MVT::isInteger(VT) == MVT::isInteger(SVT) && | 
 |          "Can't do FP-INT conversion!"); | 
 |  | 
 |   if (Alignment == 0) { // Ensure that codegen never sees alignment 0 | 
 |     const Type *Ty = 0; | 
 |     if (VT != MVT::iPTR) { | 
 |       Ty = MVT::getTypeForValueType(VT); | 
 |     } else if (SV) { | 
 |       const PointerType *PT = dyn_cast<PointerType>(SV->getType()); | 
 |       assert(PT && "Value for store must be a pointer"); | 
 |       Ty = PT->getElementType(); | 
 |     } | 
 |     assert(Ty && "Could not get type information for store"); | 
 |     Alignment = TLI.getTargetData()->getABITypeAlignment(Ty); | 
 |   } | 
 |   SDVTList VTs = getVTList(MVT::Other); | 
 |   SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType()); | 
 |   SDOperand Ops[] = { Chain, Val, Ptr, Undef }; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); | 
 |   ID.AddInteger(ISD::UNINDEXED); | 
 |   ID.AddInteger(1); | 
 |   ID.AddInteger((unsigned int)SVT); | 
 |   ID.AddPointer(SV); | 
 |   ID.AddInteger(SVOffset); | 
 |   ID.AddInteger(Alignment); | 
 |   ID.AddInteger(isVolatile); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true, | 
 |                               SVT, SV, SVOffset, Alignment, isVolatile); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand | 
 | SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base, | 
 |                               SDOperand Offset, ISD::MemIndexedMode AM) { | 
 |   StoreSDNode *ST = cast<StoreSDNode>(OrigStore); | 
 |   assert(ST->getOffset().getOpcode() == ISD::UNDEF && | 
 |          "Store is already a indexed store!"); | 
 |   SDVTList VTs = getVTList(Base.getValueType(), MVT::Other); | 
 |   SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset }; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4); | 
 |   ID.AddInteger(AM); | 
 |   ID.AddInteger(ST->isTruncatingStore()); | 
 |   ID.AddInteger((unsigned int)(ST->getStoredVT())); | 
 |   ID.AddPointer(ST->getSrcValue()); | 
 |   ID.AddInteger(ST->getSrcValueOffset()); | 
 |   ID.AddInteger(ST->getAlignment()); | 
 |   ID.AddInteger(ST->isVolatile()); | 
 |   void *IP = 0; | 
 |   if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return SDOperand(E, 0); | 
 |   SDNode *N = new StoreSDNode(Ops, VTs, AM, | 
 |                               ST->isTruncatingStore(), ST->getStoredVT(), | 
 |                               ST->getSrcValue(), ST->getSrcValueOffset(), | 
 |                               ST->getAlignment(), ST->isVolatile()); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getVAArg(MVT::ValueType VT, | 
 |                                  SDOperand Chain, SDOperand Ptr, | 
 |                                  SDOperand SV) { | 
 |   SDOperand Ops[] = { Chain, Ptr, SV }; | 
 |   return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT, | 
 |                                 const SDOperand *Ops, unsigned NumOps) { | 
 |   switch (NumOps) { | 
 |   case 0: return getNode(Opcode, VT); | 
 |   case 1: return getNode(Opcode, VT, Ops[0]); | 
 |   case 2: return getNode(Opcode, VT, Ops[0], Ops[1]); | 
 |   case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]); | 
 |   default: break; | 
 |   } | 
 |    | 
 |   switch (Opcode) { | 
 |   default: break; | 
 |   case ISD::SELECT_CC: { | 
 |     assert(NumOps == 5 && "SELECT_CC takes 5 operands!"); | 
 |     assert(Ops[0].getValueType() == Ops[1].getValueType() && | 
 |            "LHS and RHS of condition must have same type!"); | 
 |     assert(Ops[2].getValueType() == Ops[3].getValueType() && | 
 |            "True and False arms of SelectCC must have same type!"); | 
 |     assert(Ops[2].getValueType() == VT && | 
 |            "select_cc node must be of same type as true and false value!"); | 
 |     break; | 
 |   } | 
 |   case ISD::BR_CC: { | 
 |     assert(NumOps == 5 && "BR_CC takes 5 operands!"); | 
 |     assert(Ops[2].getValueType() == Ops[3].getValueType() && | 
 |            "LHS/RHS of comparison should match types!"); | 
 |     break; | 
 |   } | 
 |   } | 
 |  | 
 |   // Memoize nodes. | 
 |   SDNode *N; | 
 |   SDVTList VTs = getVTList(VT); | 
 |   if (VT != MVT::Flag) { | 
 |     FoldingSetNodeID ID; | 
 |     AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps); | 
 |     void *IP = 0; | 
 |     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |       return SDOperand(E, 0); | 
 |     N = new SDNode(Opcode, VTs, Ops, NumOps); | 
 |     CSEMap.InsertNode(N, IP); | 
 |   } else { | 
 |     N = new SDNode(Opcode, VTs, Ops, NumOps); | 
 |   } | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, | 
 |                                 std::vector<MVT::ValueType> &ResultTys, | 
 |                                 const SDOperand *Ops, unsigned NumOps) { | 
 |   return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(), | 
 |                  Ops, NumOps); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, | 
 |                                 const MVT::ValueType *VTs, unsigned NumVTs, | 
 |                                 const SDOperand *Ops, unsigned NumOps) { | 
 |   if (NumVTs == 1) | 
 |     return getNode(Opcode, VTs[0], Ops, NumOps); | 
 |   return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps); | 
 | }   | 
 |    | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, | 
 |                                 const SDOperand *Ops, unsigned NumOps) { | 
 |   if (VTList.NumVTs == 1) | 
 |     return getNode(Opcode, VTList.VTs[0], Ops, NumOps); | 
 |  | 
 |   switch (Opcode) { | 
 |   // FIXME: figure out how to safely handle things like | 
 |   // int foo(int x) { return 1 << (x & 255); } | 
 |   // int bar() { return foo(256); } | 
 | #if 0 | 
 |   case ISD::SRA_PARTS: | 
 |   case ISD::SRL_PARTS: | 
 |   case ISD::SHL_PARTS: | 
 |     if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
 |         cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1) | 
 |       return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); | 
 |     else if (N3.getOpcode() == ISD::AND) | 
 |       if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) { | 
 |         // If the and is only masking out bits that cannot effect the shift, | 
 |         // eliminate the and. | 
 |         unsigned NumBits = MVT::getSizeInBits(VT)*2; | 
 |         if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1) | 
 |           return getNode(Opcode, VT, N1, N2, N3.getOperand(0)); | 
 |       } | 
 |     break; | 
 | #endif | 
 |   } | 
 |  | 
 |   // Memoize the node unless it returns a flag. | 
 |   SDNode *N; | 
 |   if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) { | 
 |     FoldingSetNodeID ID; | 
 |     AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps); | 
 |     void *IP = 0; | 
 |     if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |       return SDOperand(E, 0); | 
 |     if (NumOps == 1) | 
 |       N = new UnarySDNode(Opcode, VTList, Ops[0]); | 
 |     else if (NumOps == 2) | 
 |       N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]); | 
 |     else if (NumOps == 3) | 
 |       N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]); | 
 |     else | 
 |       N = new SDNode(Opcode, VTList, Ops, NumOps); | 
 |     CSEMap.InsertNode(N, IP); | 
 |   } else { | 
 |     if (NumOps == 1) | 
 |       N = new UnarySDNode(Opcode, VTList, Ops[0]); | 
 |     else if (NumOps == 2) | 
 |       N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]); | 
 |     else if (NumOps == 3) | 
 |       N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]); | 
 |     else | 
 |       N = new SDNode(Opcode, VTList, Ops, NumOps); | 
 |   } | 
 |   AllNodes.push_back(N); | 
 |   return SDOperand(N, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) { | 
 |   return getNode(Opcode, VTList, 0, 0); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, | 
 |                                 SDOperand N1) { | 
 |   SDOperand Ops[] = { N1 }; | 
 |   return getNode(Opcode, VTList, Ops, 1); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, | 
 |                                 SDOperand N1, SDOperand N2) { | 
 |   SDOperand Ops[] = { N1, N2 }; | 
 |   return getNode(Opcode, VTList, Ops, 2); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, | 
 |                                 SDOperand N1, SDOperand N2, SDOperand N3) { | 
 |   SDOperand Ops[] = { N1, N2, N3 }; | 
 |   return getNode(Opcode, VTList, Ops, 3); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, | 
 |                                 SDOperand N1, SDOperand N2, SDOperand N3, | 
 |                                 SDOperand N4) { | 
 |   SDOperand Ops[] = { N1, N2, N3, N4 }; | 
 |   return getNode(Opcode, VTList, Ops, 4); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList, | 
 |                                 SDOperand N1, SDOperand N2, SDOperand N3, | 
 |                                 SDOperand N4, SDOperand N5) { | 
 |   SDOperand Ops[] = { N1, N2, N3, N4, N5 }; | 
 |   return getNode(Opcode, VTList, Ops, 5); | 
 | } | 
 |  | 
 | SDVTList SelectionDAG::getVTList(MVT::ValueType VT) { | 
 |   return makeVTList(SDNode::getValueTypeList(VT), 1); | 
 | } | 
 |  | 
 | SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) { | 
 |   for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(), | 
 |        E = VTList.end(); I != E; ++I) { | 
 |     if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2) | 
 |       return makeVTList(&(*I)[0], 2); | 
 |   } | 
 |   std::vector<MVT::ValueType> V; | 
 |   V.push_back(VT1); | 
 |   V.push_back(VT2); | 
 |   VTList.push_front(V); | 
 |   return makeVTList(&(*VTList.begin())[0], 2); | 
 | } | 
 | SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2, | 
 |                                  MVT::ValueType VT3) { | 
 |   for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(), | 
 |        E = VTList.end(); I != E; ++I) { | 
 |     if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 && | 
 |         (*I)[2] == VT3) | 
 |       return makeVTList(&(*I)[0], 3); | 
 |   } | 
 |   std::vector<MVT::ValueType> V; | 
 |   V.push_back(VT1); | 
 |   V.push_back(VT2); | 
 |   V.push_back(VT3); | 
 |   VTList.push_front(V); | 
 |   return makeVTList(&(*VTList.begin())[0], 3); | 
 | } | 
 |  | 
 | SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) { | 
 |   switch (NumVTs) { | 
 |     case 0: assert(0 && "Cannot have nodes without results!"); | 
 |     case 1: return getVTList(VTs[0]); | 
 |     case 2: return getVTList(VTs[0], VTs[1]); | 
 |     case 3: return getVTList(VTs[0], VTs[1], VTs[2]); | 
 |     default: break; | 
 |   } | 
 |  | 
 |   for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(), | 
 |        E = VTList.end(); I != E; ++I) { | 
 |     if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue; | 
 |     | 
 |     bool NoMatch = false; | 
 |     for (unsigned i = 2; i != NumVTs; ++i) | 
 |       if (VTs[i] != (*I)[i]) { | 
 |         NoMatch = true; | 
 |         break; | 
 |       } | 
 |     if (!NoMatch) | 
 |       return makeVTList(&*I->begin(), NumVTs); | 
 |   } | 
 |    | 
 |   VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs)); | 
 |   return makeVTList(&*VTList.begin()->begin(), NumVTs); | 
 | } | 
 |  | 
 |  | 
 | /// UpdateNodeOperands - *Mutate* the specified node in-place to have the | 
 | /// specified operands.  If the resultant node already exists in the DAG, | 
 | /// this does not modify the specified node, instead it returns the node that | 
 | /// already exists.  If the resultant node does not exist in the DAG, the | 
 | /// input node is returned.  As a degenerate case, if you specify the same | 
 | /// input operands as the node already has, the input node is returned. | 
 | SDOperand SelectionDAG:: | 
 | UpdateNodeOperands(SDOperand InN, SDOperand Op) { | 
 |   SDNode *N = InN.Val; | 
 |   assert(N->getNumOperands() == 1 && "Update with wrong number of operands"); | 
 |    | 
 |   // Check to see if there is no change. | 
 |   if (Op == N->getOperand(0)) return InN; | 
 |    | 
 |   // See if the modified node already exists. | 
 |   void *InsertPos = 0; | 
 |   if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos)) | 
 |     return SDOperand(Existing, InN.ResNo); | 
 |    | 
 |   // Nope it doesn't.  Remove the node from it's current place in the maps. | 
 |   if (InsertPos) | 
 |     RemoveNodeFromCSEMaps(N); | 
 |    | 
 |   // Now we update the operands. | 
 |   N->OperandList[0].Val->removeUser(N); | 
 |   Op.Val->addUser(N); | 
 |   N->OperandList[0] = Op; | 
 |    | 
 |   // If this gets put into a CSE map, add it. | 
 |   if (InsertPos) CSEMap.InsertNode(N, InsertPos); | 
 |   return InN; | 
 | } | 
 |  | 
 | SDOperand SelectionDAG:: | 
 | UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) { | 
 |   SDNode *N = InN.Val; | 
 |   assert(N->getNumOperands() == 2 && "Update with wrong number of operands"); | 
 |    | 
 |   // Check to see if there is no change. | 
 |   if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1)) | 
 |     return InN;   // No operands changed, just return the input node. | 
 |    | 
 |   // See if the modified node already exists. | 
 |   void *InsertPos = 0; | 
 |   if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos)) | 
 |     return SDOperand(Existing, InN.ResNo); | 
 |    | 
 |   // Nope it doesn't.  Remove the node from it's current place in the maps. | 
 |   if (InsertPos) | 
 |     RemoveNodeFromCSEMaps(N); | 
 |    | 
 |   // Now we update the operands. | 
 |   if (N->OperandList[0] != Op1) { | 
 |     N->OperandList[0].Val->removeUser(N); | 
 |     Op1.Val->addUser(N); | 
 |     N->OperandList[0] = Op1; | 
 |   } | 
 |   if (N->OperandList[1] != Op2) { | 
 |     N->OperandList[1].Val->removeUser(N); | 
 |     Op2.Val->addUser(N); | 
 |     N->OperandList[1] = Op2; | 
 |   } | 
 |    | 
 |   // If this gets put into a CSE map, add it. | 
 |   if (InsertPos) CSEMap.InsertNode(N, InsertPos); | 
 |   return InN; | 
 | } | 
 |  | 
 | SDOperand SelectionDAG:: | 
 | UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) { | 
 |   SDOperand Ops[] = { Op1, Op2, Op3 }; | 
 |   return UpdateNodeOperands(N, Ops, 3); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG:: | 
 | UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,  | 
 |                    SDOperand Op3, SDOperand Op4) { | 
 |   SDOperand Ops[] = { Op1, Op2, Op3, Op4 }; | 
 |   return UpdateNodeOperands(N, Ops, 4); | 
 | } | 
 |  | 
 | SDOperand SelectionDAG:: | 
 | UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, | 
 |                    SDOperand Op3, SDOperand Op4, SDOperand Op5) { | 
 |   SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 }; | 
 |   return UpdateNodeOperands(N, Ops, 5); | 
 | } | 
 |  | 
 |  | 
 | SDOperand SelectionDAG:: | 
 | UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) { | 
 |   SDNode *N = InN.Val; | 
 |   assert(N->getNumOperands() == NumOps && | 
 |          "Update with wrong number of operands"); | 
 |    | 
 |   // Check to see if there is no change. | 
 |   bool AnyChange = false; | 
 |   for (unsigned i = 0; i != NumOps; ++i) { | 
 |     if (Ops[i] != N->getOperand(i)) { | 
 |       AnyChange = true; | 
 |       break; | 
 |     } | 
 |   } | 
 |    | 
 |   // No operands changed, just return the input node. | 
 |   if (!AnyChange) return InN; | 
 |    | 
 |   // See if the modified node already exists. | 
 |   void *InsertPos = 0; | 
 |   if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos)) | 
 |     return SDOperand(Existing, InN.ResNo); | 
 |    | 
 |   // Nope it doesn't.  Remove the node from it's current place in the maps. | 
 |   if (InsertPos) | 
 |     RemoveNodeFromCSEMaps(N); | 
 |    | 
 |   // Now we update the operands. | 
 |   for (unsigned i = 0; i != NumOps; ++i) { | 
 |     if (N->OperandList[i] != Ops[i]) { | 
 |       N->OperandList[i].Val->removeUser(N); | 
 |       Ops[i].Val->addUser(N); | 
 |       N->OperandList[i] = Ops[i]; | 
 |     } | 
 |   } | 
 |  | 
 |   // If this gets put into a CSE map, add it. | 
 |   if (InsertPos) CSEMap.InsertNode(N, InsertPos); | 
 |   return InN; | 
 | } | 
 |  | 
 |  | 
 | /// MorphNodeTo - This frees the operands of the current node, resets the | 
 | /// opcode, types, and operands to the specified value.  This should only be | 
 | /// used by the SelectionDAG class. | 
 | void SDNode::MorphNodeTo(unsigned Opc, SDVTList L, | 
 |                          const SDOperand *Ops, unsigned NumOps) { | 
 |   NodeType = Opc; | 
 |   ValueList = L.VTs; | 
 |   NumValues = L.NumVTs; | 
 |    | 
 |   // Clear the operands list, updating used nodes to remove this from their | 
 |   // use list. | 
 |   for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) | 
 |     I->Val->removeUser(this); | 
 |    | 
 |   // If NumOps is larger than the # of operands we currently have, reallocate | 
 |   // the operand list. | 
 |   if (NumOps > NumOperands) { | 
 |     if (OperandsNeedDelete) | 
 |       delete [] OperandList; | 
 |     OperandList = new SDOperand[NumOps]; | 
 |     OperandsNeedDelete = true; | 
 |   } | 
 |    | 
 |   // Assign the new operands. | 
 |   NumOperands = NumOps; | 
 |    | 
 |   for (unsigned i = 0, e = NumOps; i != e; ++i) { | 
 |     OperandList[i] = Ops[i]; | 
 |     SDNode *N = OperandList[i].Val; | 
 |     N->Uses.push_back(this); | 
 |   } | 
 | } | 
 |  | 
 | /// SelectNodeTo - These are used for target selectors to *mutate* the | 
 | /// specified node to have the specified return type, Target opcode, and | 
 | /// operands.  Note that target opcodes are stored as | 
 | /// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field. | 
 | /// | 
 | /// Note that SelectNodeTo returns the resultant node.  If there is already a | 
 | /// node of the specified opcode and operands, it returns that node instead of | 
 | /// the current one. | 
 | SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
 |                                    MVT::ValueType VT) { | 
 |   SDVTList VTs = getVTList(VT); | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0); | 
 |   void *IP = 0; | 
 |   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return ON; | 
 |     | 
 |   RemoveNodeFromCSEMaps(N); | 
 |    | 
 |   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0); | 
 |  | 
 |   CSEMap.InsertNode(N, IP); | 
 |   return N; | 
 | } | 
 |  | 
 | SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
 |                                    MVT::ValueType VT, SDOperand Op1) { | 
 |   // If an identical node already exists, use it. | 
 |   SDVTList VTs = getVTList(VT); | 
 |   SDOperand Ops[] = { Op1 }; | 
 |    | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1); | 
 |   void *IP = 0; | 
 |   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return ON; | 
 |                                         | 
 |   RemoveNodeFromCSEMaps(N); | 
 |   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1); | 
 |   CSEMap.InsertNode(N, IP); | 
 |   return N; | 
 | } | 
 |  | 
 | SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
 |                                    MVT::ValueType VT, SDOperand Op1, | 
 |                                    SDOperand Op2) { | 
 |   // If an identical node already exists, use it. | 
 |   SDVTList VTs = getVTList(VT); | 
 |   SDOperand Ops[] = { Op1, Op2 }; | 
 |    | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); | 
 |   void *IP = 0; | 
 |   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return ON; | 
 |                                         | 
 |   RemoveNodeFromCSEMaps(N); | 
 |    | 
 |   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); | 
 |    | 
 |   CSEMap.InsertNode(N, IP);   // Memoize the new node. | 
 |   return N; | 
 | } | 
 |  | 
 | SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
 |                                    MVT::ValueType VT, SDOperand Op1, | 
 |                                    SDOperand Op2, SDOperand Op3) { | 
 |   // If an identical node already exists, use it. | 
 |   SDVTList VTs = getVTList(VT); | 
 |   SDOperand Ops[] = { Op1, Op2, Op3 }; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); | 
 |   void *IP = 0; | 
 |   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return ON; | 
 |                                         | 
 |   RemoveNodeFromCSEMaps(N); | 
 |    | 
 |   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); | 
 |  | 
 |   CSEMap.InsertNode(N, IP);   // Memoize the new node. | 
 |   return N; | 
 | } | 
 |  | 
 | SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
 |                                    MVT::ValueType VT, const SDOperand *Ops, | 
 |                                    unsigned NumOps) { | 
 |   // If an identical node already exists, use it. | 
 |   SDVTList VTs = getVTList(VT); | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps); | 
 |   void *IP = 0; | 
 |   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return ON; | 
 |                                         | 
 |   RemoveNodeFromCSEMaps(N); | 
 |   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps); | 
 |    | 
 |   CSEMap.InsertNode(N, IP);   // Memoize the new node. | 
 |   return N; | 
 | } | 
 |  | 
 | SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,  | 
 |                                    MVT::ValueType VT1, MVT::ValueType VT2, | 
 |                                    SDOperand Op1, SDOperand Op2) { | 
 |   SDVTList VTs = getVTList(VT1, VT2); | 
 |   FoldingSetNodeID ID; | 
 |   SDOperand Ops[] = { Op1, Op2 }; | 
 |   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); | 
 |   void *IP = 0; | 
 |   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return ON; | 
 |  | 
 |   RemoveNodeFromCSEMaps(N); | 
 |   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2); | 
 |   CSEMap.InsertNode(N, IP);   // Memoize the new node. | 
 |   return N; | 
 | } | 
 |  | 
 | SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc, | 
 |                                    MVT::ValueType VT1, MVT::ValueType VT2, | 
 |                                    SDOperand Op1, SDOperand Op2,  | 
 |                                    SDOperand Op3) { | 
 |   // If an identical node already exists, use it. | 
 |   SDVTList VTs = getVTList(VT1, VT2); | 
 |   SDOperand Ops[] = { Op1, Op2, Op3 }; | 
 |   FoldingSetNodeID ID; | 
 |   AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); | 
 |   void *IP = 0; | 
 |   if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP)) | 
 |     return ON; | 
 |  | 
 |   RemoveNodeFromCSEMaps(N); | 
 |  | 
 |   N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3); | 
 |   CSEMap.InsertNode(N, IP);   // Memoize the new node. | 
 |   return N; | 
 | } | 
 |  | 
 |  | 
 | /// getTargetNode - These are used for target selectors to create a new node | 
 | /// with specified return type(s), target opcode, and operands. | 
 | /// | 
 | /// Note that getTargetNode returns the resultant node.  If there is already a | 
 | /// node of the specified opcode and operands, it returns that node instead of | 
 | /// the current one. | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) { | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
 |                                     SDOperand Op1) { | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
 |                                     SDOperand Op1, SDOperand Op2) { | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
 |                                     SDOperand Op1, SDOperand Op2, | 
 |                                     SDOperand Op3) { | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT, | 
 |                                     const SDOperand *Ops, unsigned NumOps) { | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
 |                                     MVT::ValueType VT2) { | 
 |   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); | 
 |   SDOperand Op; | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
 |                                     MVT::ValueType VT2, SDOperand Op1) { | 
 |   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
 |                                     MVT::ValueType VT2, SDOperand Op1, | 
 |                                     SDOperand Op2) { | 
 |   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); | 
 |   SDOperand Ops[] = { Op1, Op2 }; | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
 |                                     MVT::ValueType VT2, SDOperand Op1, | 
 |                                     SDOperand Op2, SDOperand Op3) { | 
 |   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); | 
 |   SDOperand Ops[] = { Op1, Op2, Op3 }; | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,  | 
 |                                     MVT::ValueType VT2, | 
 |                                     const SDOperand *Ops, unsigned NumOps) { | 
 |   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2); | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
 |                                     MVT::ValueType VT2, MVT::ValueType VT3, | 
 |                                     SDOperand Op1, SDOperand Op2) { | 
 |   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3); | 
 |   SDOperand Ops[] = { Op1, Op2 }; | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1, | 
 |                                     MVT::ValueType VT2, MVT::ValueType VT3, | 
 |                                     SDOperand Op1, SDOperand Op2, | 
 |                                     SDOperand Op3) { | 
 |   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3); | 
 |   SDOperand Ops[] = { Op1, Op2, Op3 }; | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,  | 
 |                                     MVT::ValueType VT2, MVT::ValueType VT3, | 
 |                                     const SDOperand *Ops, unsigned NumOps) { | 
 |   const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3); | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,  | 
 |                                     MVT::ValueType VT2, MVT::ValueType VT3, | 
 |                                     MVT::ValueType VT4, | 
 |                                     const SDOperand *Ops, unsigned NumOps) { | 
 |   std::vector<MVT::ValueType> VTList; | 
 |   VTList.push_back(VT1); | 
 |   VTList.push_back(VT2); | 
 |   VTList.push_back(VT3); | 
 |   VTList.push_back(VT4); | 
 |   const MVT::ValueType *VTs = getNodeValueTypes(VTList); | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val; | 
 | } | 
 | SDNode *SelectionDAG::getTargetNode(unsigned Opcode, | 
 |                                     std::vector<MVT::ValueType> &ResultTys, | 
 |                                     const SDOperand *Ops, unsigned NumOps) { | 
 |   const MVT::ValueType *VTs = getNodeValueTypes(ResultTys); | 
 |   return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(), | 
 |                  Ops, NumOps).Val; | 
 | } | 
 |  | 
 | /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. | 
 | /// This can cause recursive merging of nodes in the DAG. | 
 | /// | 
 | /// This version assumes From/To have a single result value. | 
 | /// | 
 | void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN, | 
 |                                       std::vector<SDNode*> *Deleted) { | 
 |   SDNode *From = FromN.Val, *To = ToN.Val; | 
 |   assert(From->getNumValues() == 1 && To->getNumValues() == 1 && | 
 |          "Cannot replace with this method!"); | 
 |   assert(From != To && "Cannot replace uses of with self"); | 
 |    | 
 |   while (!From->use_empty()) { | 
 |     // Process users until they are all gone. | 
 |     SDNode *U = *From->use_begin(); | 
 |      | 
 |     // This node is about to morph, remove its old self from the CSE maps. | 
 |     RemoveNodeFromCSEMaps(U); | 
 |      | 
 |     for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; | 
 |          I != E; ++I) | 
 |       if (I->Val == From) { | 
 |         From->removeUser(U); | 
 |         I->Val = To; | 
 |         To->addUser(U); | 
 |       } | 
 |  | 
 |     // Now that we have modified U, add it back to the CSE maps.  If it already | 
 |     // exists there, recursively merge the results together. | 
 |     if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { | 
 |       ReplaceAllUsesWith(U, Existing, Deleted); | 
 |       // U is now dead. | 
 |       if (Deleted) Deleted->push_back(U); | 
 |       DeleteNodeNotInCSEMaps(U); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. | 
 | /// This can cause recursive merging of nodes in the DAG. | 
 | /// | 
 | /// This version assumes From/To have matching types and numbers of result | 
 | /// values. | 
 | /// | 
 | void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To, | 
 |                                       std::vector<SDNode*> *Deleted) { | 
 |   assert(From != To && "Cannot replace uses of with self"); | 
 |   assert(From->getNumValues() == To->getNumValues() && | 
 |          "Cannot use this version of ReplaceAllUsesWith!"); | 
 |   if (From->getNumValues() == 1) {  // If possible, use the faster version. | 
 |     ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted); | 
 |     return; | 
 |   } | 
 |    | 
 |   while (!From->use_empty()) { | 
 |     // Process users until they are all gone. | 
 |     SDNode *U = *From->use_begin(); | 
 |      | 
 |     // This node is about to morph, remove its old self from the CSE maps. | 
 |     RemoveNodeFromCSEMaps(U); | 
 |      | 
 |     for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; | 
 |          I != E; ++I) | 
 |       if (I->Val == From) { | 
 |         From->removeUser(U); | 
 |         I->Val = To; | 
 |         To->addUser(U); | 
 |       } | 
 |          | 
 |     // Now that we have modified U, add it back to the CSE maps.  If it already | 
 |     // exists there, recursively merge the results together. | 
 |     if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { | 
 |       ReplaceAllUsesWith(U, Existing, Deleted); | 
 |       // U is now dead. | 
 |       if (Deleted) Deleted->push_back(U); | 
 |       DeleteNodeNotInCSEMaps(U); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead. | 
 | /// This can cause recursive merging of nodes in the DAG. | 
 | /// | 
 | /// This version can replace From with any result values.  To must match the | 
 | /// number and types of values returned by From. | 
 | void SelectionDAG::ReplaceAllUsesWith(SDNode *From, | 
 |                                       const SDOperand *To, | 
 |                                       std::vector<SDNode*> *Deleted) { | 
 |   if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) { | 
 |     // Degenerate case handled above. | 
 |     ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted); | 
 |     return; | 
 |   } | 
 |  | 
 |   while (!From->use_empty()) { | 
 |     // Process users until they are all gone. | 
 |     SDNode *U = *From->use_begin(); | 
 |      | 
 |     // This node is about to morph, remove its old self from the CSE maps. | 
 |     RemoveNodeFromCSEMaps(U); | 
 |      | 
 |     for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands; | 
 |          I != E; ++I) | 
 |       if (I->Val == From) { | 
 |         const SDOperand &ToOp = To[I->ResNo]; | 
 |         From->removeUser(U); | 
 |         *I = ToOp; | 
 |         ToOp.Val->addUser(U); | 
 |       } | 
 |          | 
 |     // Now that we have modified U, add it back to the CSE maps.  If it already | 
 |     // exists there, recursively merge the results together. | 
 |     if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) { | 
 |       ReplaceAllUsesWith(U, Existing, Deleted); | 
 |       // U is now dead. | 
 |       if (Deleted) Deleted->push_back(U); | 
 |       DeleteNodeNotInCSEMaps(U); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving | 
 | /// uses of other values produced by From.Val alone.  The Deleted vector is | 
 | /// handled the same was as for ReplaceAllUsesWith. | 
 | void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To, | 
 |                                              std::vector<SDNode*> *Deleted) { | 
 |   assert(From != To && "Cannot replace a value with itself"); | 
 |   // Handle the simple, trivial, case efficiently. | 
 |   if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) { | 
 |     ReplaceAllUsesWith(From, To, Deleted); | 
 |     return; | 
 |   } | 
 |    | 
 |   // Get all of the users of From.Val.  We want these in a nice, | 
 |   // deterministically ordered and uniqued set, so we use a SmallSetVector. | 
 |   SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end()); | 
 |  | 
 |   std::vector<SDNode*> LocalDeletionVector; | 
 |    | 
 |   // Pick a deletion vector to use.  If the user specified one, use theirs, | 
 |   // otherwise use a local one. | 
 |   std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector; | 
 |   while (!Users.empty()) { | 
 |     // We know that this user uses some value of From.  If it is the right | 
 |     // value, update it. | 
 |     SDNode *User = Users.back(); | 
 |     Users.pop_back(); | 
 |      | 
 |     // Scan for an operand that matches From. | 
 |     SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands; | 
 |     for (; Op != E; ++Op) | 
 |       if (*Op == From) break; | 
 |      | 
 |     // If there are no matches, the user must use some other result of From. | 
 |     if (Op == E) continue; | 
 |        | 
 |     // Okay, we know this user needs to be updated.  Remove its old self | 
 |     // from the CSE maps. | 
 |     RemoveNodeFromCSEMaps(User); | 
 |      | 
 |     // Update all operands that match "From". | 
 |     for (; Op != E; ++Op) { | 
 |       if (*Op == From) { | 
 |         From.Val->removeUser(User); | 
 |         *Op = To; | 
 |         To.Val->addUser(User); | 
 |       } | 
 |     } | 
 |                 | 
 |     // Now that we have modified User, add it back to the CSE maps.  If it | 
 |     // already exists there, recursively merge the results together. | 
 |     SDNode *Existing = AddNonLeafNodeToCSEMaps(User); | 
 |     if (!Existing) continue;  // Continue on to next user. | 
 |      | 
 |     // If there was already an existing matching node, use ReplaceAllUsesWith | 
 |     // to replace the dead one with the existing one.  However, this can cause | 
 |     // recursive merging of other unrelated nodes down the line.  The merging | 
 |     // can cause deletion of nodes that used the old value.  In this case, | 
 |     // we have to be certain to remove them from the Users set. | 
 |     unsigned NumDeleted = DeleteVector->size(); | 
 |     ReplaceAllUsesWith(User, Existing, DeleteVector); | 
 |      | 
 |     // User is now dead. | 
 |     DeleteVector->push_back(User); | 
 |     DeleteNodeNotInCSEMaps(User); | 
 |      | 
 |     // We have to be careful here, because ReplaceAllUsesWith could have | 
 |     // deleted a user of From, which means there may be dangling pointers | 
 |     // in the "Users" setvector.  Scan over the deleted node pointers and | 
 |     // remove them from the setvector. | 
 |     for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i) | 
 |       Users.remove((*DeleteVector)[i]); | 
 |  | 
 |     // If the user doesn't need the set of deleted elements, don't retain them | 
 |     // to the next loop iteration. | 
 |     if (Deleted == 0) | 
 |       LocalDeletionVector.clear(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /// AssignNodeIds - Assign a unique node id for each node in the DAG based on | 
 | /// their allnodes order. It returns the maximum id. | 
 | unsigned SelectionDAG::AssignNodeIds() { | 
 |   unsigned Id = 0; | 
 |   for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){ | 
 |     SDNode *N = I; | 
 |     N->setNodeId(Id++); | 
 |   } | 
 |   return Id; | 
 | } | 
 |  | 
 | /// AssignTopologicalOrder - Assign a unique node id for each node in the DAG | 
 | /// based on their topological order. It returns the maximum id and a vector | 
 | /// of the SDNodes* in assigned order by reference. | 
 | unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) { | 
 |   unsigned DAGSize = AllNodes.size(); | 
 |   std::vector<unsigned> InDegree(DAGSize); | 
 |   std::vector<SDNode*> Sources; | 
 |  | 
 |   // Use a two pass approach to avoid using a std::map which is slow. | 
 |   unsigned Id = 0; | 
 |   for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){ | 
 |     SDNode *N = I; | 
 |     N->setNodeId(Id++); | 
 |     unsigned Degree = N->use_size(); | 
 |     InDegree[N->getNodeId()] = Degree; | 
 |     if (Degree == 0) | 
 |       Sources.push_back(N); | 
 |   } | 
 |  | 
 |   TopOrder.clear(); | 
 |   while (!Sources.empty()) { | 
 |     SDNode *N = Sources.back(); | 
 |     Sources.pop_back(); | 
 |     TopOrder.push_back(N); | 
 |     for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) { | 
 |       SDNode *P = I->Val; | 
 |       unsigned Degree = --InDegree[P->getNodeId()]; | 
 |       if (Degree == 0) | 
 |         Sources.push_back(P); | 
 |     } | 
 |   } | 
 |  | 
 |   // Second pass, assign the actual topological order as node ids. | 
 |   Id = 0; | 
 |   for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end(); | 
 |        TI != TE; ++TI) | 
 |     (*TI)->setNodeId(Id++); | 
 |  | 
 |   return Id; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                              SDNode Class | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | // Out-of-line virtual method to give class a home. | 
 | void SDNode::ANCHOR() {} | 
 | void UnarySDNode::ANCHOR() {} | 
 | void BinarySDNode::ANCHOR() {} | 
 | void TernarySDNode::ANCHOR() {} | 
 | void HandleSDNode::ANCHOR() {} | 
 | void StringSDNode::ANCHOR() {} | 
 | void ConstantSDNode::ANCHOR() {} | 
 | void ConstantFPSDNode::ANCHOR() {} | 
 | void GlobalAddressSDNode::ANCHOR() {} | 
 | void FrameIndexSDNode::ANCHOR() {} | 
 | void JumpTableSDNode::ANCHOR() {} | 
 | void ConstantPoolSDNode::ANCHOR() {} | 
 | void BasicBlockSDNode::ANCHOR() {} | 
 | void SrcValueSDNode::ANCHOR() {} | 
 | void RegisterSDNode::ANCHOR() {} | 
 | void ExternalSymbolSDNode::ANCHOR() {} | 
 | void CondCodeSDNode::ANCHOR() {} | 
 | void VTSDNode::ANCHOR() {} | 
 | void LoadSDNode::ANCHOR() {} | 
 | void StoreSDNode::ANCHOR() {} | 
 |  | 
 | HandleSDNode::~HandleSDNode() { | 
 |   SDVTList VTs = { 0, 0 }; | 
 |   MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0);  // Drops operand uses. | 
 | } | 
 |  | 
 | GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA, | 
 |                                          MVT::ValueType VT, int o) | 
 |   : SDNode(isa<GlobalVariable>(GA) && | 
 |            cast<GlobalVariable>(GA)->isThreadLocal() ? | 
 |            // Thread Local | 
 |            (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) : | 
 |            // Non Thread Local | 
 |            (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress), | 
 |            getSDVTList(VT)), Offset(o) { | 
 |   TheGlobal = const_cast<GlobalValue*>(GA); | 
 | } | 
 |  | 
 | /// Profile - Gather unique data for the node. | 
 | /// | 
 | void SDNode::Profile(FoldingSetNodeID &ID) { | 
 |   AddNodeIDNode(ID, this); | 
 | } | 
 |  | 
 | /// getValueTypeList - Return a pointer to the specified value type. | 
 | /// | 
 | MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) { | 
 |   if (MVT::isExtendedVT(VT)) { | 
 |     static std::set<MVT::ValueType> EVTs; | 
 |     return (MVT::ValueType *)&(*EVTs.insert(VT).first); | 
 |   } else { | 
 |     static MVT::ValueType VTs[MVT::LAST_VALUETYPE]; | 
 |     VTs[VT] = VT; | 
 |     return &VTs[VT]; | 
 |   } | 
 | } | 
 |  | 
 | /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the | 
 | /// indicated value.  This method ignores uses of other values defined by this | 
 | /// operation. | 
 | bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const { | 
 |   assert(Value < getNumValues() && "Bad value!"); | 
 |  | 
 |   // If there is only one value, this is easy. | 
 |   if (getNumValues() == 1) | 
 |     return use_size() == NUses; | 
 |   if (use_size() < NUses) return false; | 
 |  | 
 |   SDOperand TheValue(const_cast<SDNode *>(this), Value); | 
 |  | 
 |   SmallPtrSet<SDNode*, 32> UsersHandled; | 
 |  | 
 |   for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) { | 
 |     SDNode *User = *UI; | 
 |     if (User->getNumOperands() == 1 || | 
 |         UsersHandled.insert(User))     // First time we've seen this? | 
 |       for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) | 
 |         if (User->getOperand(i) == TheValue) { | 
 |           if (NUses == 0) | 
 |             return false;   // too many uses | 
 |           --NUses; | 
 |         } | 
 |   } | 
 |  | 
 |   // Found exactly the right number of uses? | 
 |   return NUses == 0; | 
 | } | 
 |  | 
 |  | 
 | /// hasAnyUseOfValue - Return true if there are any use of the indicated | 
 | /// value. This method ignores uses of other values defined by this operation. | 
 | bool SDNode::hasAnyUseOfValue(unsigned Value) const { | 
 |   assert(Value < getNumValues() && "Bad value!"); | 
 |  | 
 |   if (use_size() == 0) return false; | 
 |  | 
 |   SDOperand TheValue(const_cast<SDNode *>(this), Value); | 
 |  | 
 |   SmallPtrSet<SDNode*, 32> UsersHandled; | 
 |  | 
 |   for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) { | 
 |     SDNode *User = *UI; | 
 |     if (User->getNumOperands() == 1 || | 
 |         UsersHandled.insert(User))     // First time we've seen this? | 
 |       for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) | 
 |         if (User->getOperand(i) == TheValue) { | 
 |           return true; | 
 |         } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 |  | 
 | /// isOnlyUse - Return true if this node is the only use of N. | 
 | /// | 
 | bool SDNode::isOnlyUse(SDNode *N) const { | 
 |   bool Seen = false; | 
 |   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { | 
 |     SDNode *User = *I; | 
 |     if (User == this) | 
 |       Seen = true; | 
 |     else | 
 |       return false; | 
 |   } | 
 |  | 
 |   return Seen; | 
 | } | 
 |  | 
 | /// isOperand - Return true if this node is an operand of N. | 
 | /// | 
 | bool SDOperand::isOperand(SDNode *N) const { | 
 |   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
 |     if (*this == N->getOperand(i)) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | bool SDNode::isOperand(SDNode *N) const { | 
 |   for (unsigned i = 0, e = N->NumOperands; i != e; ++i) | 
 |     if (this == N->OperandList[i].Val) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | static void findPredecessor(SDNode *N, const SDNode *P, bool &found, | 
 |                             SmallPtrSet<SDNode *, 32> &Visited) { | 
 |   if (found || !Visited.insert(N)) | 
 |     return; | 
 |  | 
 |   for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) { | 
 |     SDNode *Op = N->getOperand(i).Val; | 
 |     if (Op == P) { | 
 |       found = true; | 
 |       return; | 
 |     } | 
 |     findPredecessor(Op, P, found, Visited); | 
 |   } | 
 | } | 
 |  | 
 | /// isPredecessor - Return true if this node is a predecessor of N. This node | 
 | /// is either an operand of N or it can be reached by recursively traversing | 
 | /// up the operands. | 
 | /// NOTE: this is an expensive method. Use it carefully. | 
 | bool SDNode::isPredecessor(SDNode *N) const { | 
 |   SmallPtrSet<SDNode *, 32> Visited; | 
 |   bool found = false; | 
 |   findPredecessor(N, this, found, Visited); | 
 |   return found; | 
 | } | 
 |  | 
 | uint64_t SDNode::getConstantOperandVal(unsigned Num) const { | 
 |   assert(Num < NumOperands && "Invalid child # of SDNode!"); | 
 |   return cast<ConstantSDNode>(OperandList[Num])->getValue(); | 
 | } | 
 |  | 
 | std::string SDNode::getOperationName(const SelectionDAG *G) const { | 
 |   switch (getOpcode()) { | 
 |   default: | 
 |     if (getOpcode() < ISD::BUILTIN_OP_END) | 
 |       return "<<Unknown DAG Node>>"; | 
 |     else { | 
 |       if (G) { | 
 |         if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo()) | 
 |           if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes()) | 
 |             return TII->getName(getOpcode()-ISD::BUILTIN_OP_END); | 
 |  | 
 |         TargetLowering &TLI = G->getTargetLoweringInfo(); | 
 |         const char *Name = | 
 |           TLI.getTargetNodeName(getOpcode()); | 
 |         if (Name) return Name; | 
 |       } | 
 |  | 
 |       return "<<Unknown Target Node>>"; | 
 |     } | 
 |     | 
 |   case ISD::PCMARKER:      return "PCMarker"; | 
 |   case ISD::READCYCLECOUNTER: return "ReadCycleCounter"; | 
 |   case ISD::SRCVALUE:      return "SrcValue"; | 
 |   case ISD::EntryToken:    return "EntryToken"; | 
 |   case ISD::TokenFactor:   return "TokenFactor"; | 
 |   case ISD::AssertSext:    return "AssertSext"; | 
 |   case ISD::AssertZext:    return "AssertZext"; | 
 |  | 
 |   case ISD::STRING:        return "String"; | 
 |   case ISD::BasicBlock:    return "BasicBlock"; | 
 |   case ISD::VALUETYPE:     return "ValueType"; | 
 |   case ISD::Register:      return "Register"; | 
 |  | 
 |   case ISD::Constant:      return "Constant"; | 
 |   case ISD::ConstantFP:    return "ConstantFP"; | 
 |   case ISD::GlobalAddress: return "GlobalAddress"; | 
 |   case ISD::GlobalTLSAddress: return "GlobalTLSAddress"; | 
 |   case ISD::FrameIndex:    return "FrameIndex"; | 
 |   case ISD::JumpTable:     return "JumpTable"; | 
 |   case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE"; | 
 |   case ISD::RETURNADDR: return "RETURNADDR"; | 
 |   case ISD::FRAMEADDR: return "FRAMEADDR"; | 
 |   case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET"; | 
 |   case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR"; | 
 |   case ISD::EHSELECTION: return "EHSELECTION"; | 
 |   case ISD::EH_RETURN: return "EH_RETURN"; | 
 |   case ISD::ConstantPool:  return "ConstantPool"; | 
 |   case ISD::ExternalSymbol: return "ExternalSymbol"; | 
 |   case ISD::INTRINSIC_WO_CHAIN: { | 
 |     unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue(); | 
 |     return Intrinsic::getName((Intrinsic::ID)IID); | 
 |   } | 
 |   case ISD::INTRINSIC_VOID: | 
 |   case ISD::INTRINSIC_W_CHAIN: { | 
 |     unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue(); | 
 |     return Intrinsic::getName((Intrinsic::ID)IID); | 
 |   } | 
 |  | 
 |   case ISD::BUILD_VECTOR:   return "BUILD_VECTOR"; | 
 |   case ISD::TargetConstant: return "TargetConstant"; | 
 |   case ISD::TargetConstantFP:return "TargetConstantFP"; | 
 |   case ISD::TargetGlobalAddress: return "TargetGlobalAddress"; | 
 |   case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress"; | 
 |   case ISD::TargetFrameIndex: return "TargetFrameIndex"; | 
 |   case ISD::TargetJumpTable:  return "TargetJumpTable"; | 
 |   case ISD::TargetConstantPool:  return "TargetConstantPool"; | 
 |   case ISD::TargetExternalSymbol: return "TargetExternalSymbol"; | 
 |  | 
 |   case ISD::CopyToReg:     return "CopyToReg"; | 
 |   case ISD::CopyFromReg:   return "CopyFromReg"; | 
 |   case ISD::UNDEF:         return "undef"; | 
 |   case ISD::MERGE_VALUES:  return "merge_values"; | 
 |   case ISD::INLINEASM:     return "inlineasm"; | 
 |   case ISD::LABEL:         return "label"; | 
 |   case ISD::HANDLENODE:    return "handlenode"; | 
 |   case ISD::FORMAL_ARGUMENTS: return "formal_arguments"; | 
 |   case ISD::CALL:          return "call"; | 
 |      | 
 |   // Unary operators | 
 |   case ISD::FABS:   return "fabs"; | 
 |   case ISD::FNEG:   return "fneg"; | 
 |   case ISD::FSQRT:  return "fsqrt"; | 
 |   case ISD::FSIN:   return "fsin"; | 
 |   case ISD::FCOS:   return "fcos"; | 
 |   case ISD::FPOWI:  return "fpowi"; | 
 |   case ISD::FPOW:   return "fpow"; | 
 |  | 
 |   // Binary operators | 
 |   case ISD::ADD:    return "add"; | 
 |   case ISD::SUB:    return "sub"; | 
 |   case ISD::MUL:    return "mul"; | 
 |   case ISD::MULHU:  return "mulhu"; | 
 |   case ISD::MULHS:  return "mulhs"; | 
 |   case ISD::SDIV:   return "sdiv"; | 
 |   case ISD::UDIV:   return "udiv"; | 
 |   case ISD::SREM:   return "srem"; | 
 |   case ISD::UREM:   return "urem"; | 
 |   case ISD::SMUL_LOHI:  return "smul_lohi"; | 
 |   case ISD::UMUL_LOHI:  return "umul_lohi"; | 
 |   case ISD::SDIVREM:    return "sdivrem"; | 
 |   case ISD::UDIVREM:    return "divrem"; | 
 |   case ISD::AND:    return "and"; | 
 |   case ISD::OR:     return "or"; | 
 |   case ISD::XOR:    return "xor"; | 
 |   case ISD::SHL:    return "shl"; | 
 |   case ISD::SRA:    return "sra"; | 
 |   case ISD::SRL:    return "srl"; | 
 |   case ISD::ROTL:   return "rotl"; | 
 |   case ISD::ROTR:   return "rotr"; | 
 |   case ISD::FADD:   return "fadd"; | 
 |   case ISD::FSUB:   return "fsub"; | 
 |   case ISD::FMUL:   return "fmul"; | 
 |   case ISD::FDIV:   return "fdiv"; | 
 |   case ISD::FREM:   return "frem"; | 
 |   case ISD::FCOPYSIGN: return "fcopysign"; | 
 |  | 
 |   case ISD::SETCC:       return "setcc"; | 
 |   case ISD::SELECT:      return "select"; | 
 |   case ISD::SELECT_CC:   return "select_cc"; | 
 |   case ISD::INSERT_VECTOR_ELT:   return "insert_vector_elt"; | 
 |   case ISD::EXTRACT_VECTOR_ELT:  return "extract_vector_elt"; | 
 |   case ISD::CONCAT_VECTORS:      return "concat_vectors"; | 
 |   case ISD::EXTRACT_SUBVECTOR:   return "extract_subvector"; | 
 |   case ISD::SCALAR_TO_VECTOR:    return "scalar_to_vector"; | 
 |   case ISD::VECTOR_SHUFFLE:      return "vector_shuffle"; | 
 |   case ISD::CARRY_FALSE:         return "carry_false"; | 
 |   case ISD::ADDC:        return "addc"; | 
 |   case ISD::ADDE:        return "adde"; | 
 |   case ISD::SUBC:        return "subc"; | 
 |   case ISD::SUBE:        return "sube"; | 
 |   case ISD::SHL_PARTS:   return "shl_parts"; | 
 |   case ISD::SRA_PARTS:   return "sra_parts"; | 
 |   case ISD::SRL_PARTS:   return "srl_parts"; | 
 |    | 
 |   case ISD::EXTRACT_SUBREG:     return "extract_subreg"; | 
 |   case ISD::INSERT_SUBREG:      return "insert_subreg"; | 
 |    | 
 |   // Conversion operators. | 
 |   case ISD::SIGN_EXTEND: return "sign_extend"; | 
 |   case ISD::ZERO_EXTEND: return "zero_extend"; | 
 |   case ISD::ANY_EXTEND:  return "any_extend"; | 
 |   case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg"; | 
 |   case ISD::TRUNCATE:    return "truncate"; | 
 |   case ISD::FP_ROUND:    return "fp_round"; | 
 |   case ISD::FLT_ROUNDS:  return "flt_rounds"; | 
 |   case ISD::FP_ROUND_INREG: return "fp_round_inreg"; | 
 |   case ISD::FP_EXTEND:   return "fp_extend"; | 
 |  | 
 |   case ISD::SINT_TO_FP:  return "sint_to_fp"; | 
 |   case ISD::UINT_TO_FP:  return "uint_to_fp"; | 
 |   case ISD::FP_TO_SINT:  return "fp_to_sint"; | 
 |   case ISD::FP_TO_UINT:  return "fp_to_uint"; | 
 |   case ISD::BIT_CONVERT: return "bit_convert"; | 
 |  | 
 |     // Control flow instructions | 
 |   case ISD::BR:      return "br"; | 
 |   case ISD::BRIND:   return "brind"; | 
 |   case ISD::BR_JT:   return "br_jt"; | 
 |   case ISD::BRCOND:  return "brcond"; | 
 |   case ISD::BR_CC:   return "br_cc"; | 
 |   case ISD::RET:     return "ret"; | 
 |   case ISD::CALLSEQ_START:  return "callseq_start"; | 
 |   case ISD::CALLSEQ_END:    return "callseq_end"; | 
 |  | 
 |     // Other operators | 
 |   case ISD::LOAD:               return "load"; | 
 |   case ISD::STORE:              return "store"; | 
 |   case ISD::VAARG:              return "vaarg"; | 
 |   case ISD::VACOPY:             return "vacopy"; | 
 |   case ISD::VAEND:              return "vaend"; | 
 |   case ISD::VASTART:            return "vastart"; | 
 |   case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc"; | 
 |   case ISD::EXTRACT_ELEMENT:    return "extract_element"; | 
 |   case ISD::BUILD_PAIR:         return "build_pair"; | 
 |   case ISD::STACKSAVE:          return "stacksave"; | 
 |   case ISD::STACKRESTORE:       return "stackrestore"; | 
 |      | 
 |   // Block memory operations. | 
 |   case ISD::MEMSET:  return "memset"; | 
 |   case ISD::MEMCPY:  return "memcpy"; | 
 |   case ISD::MEMMOVE: return "memmove"; | 
 |  | 
 |   // Bit manipulation | 
 |   case ISD::BSWAP:   return "bswap"; | 
 |   case ISD::CTPOP:   return "ctpop"; | 
 |   case ISD::CTTZ:    return "cttz"; | 
 |   case ISD::CTLZ:    return "ctlz"; | 
 |  | 
 |   // Debug info | 
 |   case ISD::LOCATION: return "location"; | 
 |   case ISD::DEBUG_LOC: return "debug_loc"; | 
 |  | 
 |   // Trampolines | 
 |   case ISD::TRAMPOLINE: return "trampoline"; | 
 |  | 
 |   case ISD::CONDCODE: | 
 |     switch (cast<CondCodeSDNode>(this)->get()) { | 
 |     default: assert(0 && "Unknown setcc condition!"); | 
 |     case ISD::SETOEQ:  return "setoeq"; | 
 |     case ISD::SETOGT:  return "setogt"; | 
 |     case ISD::SETOGE:  return "setoge"; | 
 |     case ISD::SETOLT:  return "setolt"; | 
 |     case ISD::SETOLE:  return "setole"; | 
 |     case ISD::SETONE:  return "setone"; | 
 |  | 
 |     case ISD::SETO:    return "seto"; | 
 |     case ISD::SETUO:   return "setuo"; | 
 |     case ISD::SETUEQ:  return "setue"; | 
 |     case ISD::SETUGT:  return "setugt"; | 
 |     case ISD::SETUGE:  return "setuge"; | 
 |     case ISD::SETULT:  return "setult"; | 
 |     case ISD::SETULE:  return "setule"; | 
 |     case ISD::SETUNE:  return "setune"; | 
 |  | 
 |     case ISD::SETEQ:   return "seteq"; | 
 |     case ISD::SETGT:   return "setgt"; | 
 |     case ISD::SETGE:   return "setge"; | 
 |     case ISD::SETLT:   return "setlt"; | 
 |     case ISD::SETLE:   return "setle"; | 
 |     case ISD::SETNE:   return "setne"; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) { | 
 |   switch (AM) { | 
 |   default: | 
 |     return ""; | 
 |   case ISD::PRE_INC: | 
 |     return "<pre-inc>"; | 
 |   case ISD::PRE_DEC: | 
 |     return "<pre-dec>"; | 
 |   case ISD::POST_INC: | 
 |     return "<post-inc>"; | 
 |   case ISD::POST_DEC: | 
 |     return "<post-dec>"; | 
 |   } | 
 | } | 
 |  | 
 | void SDNode::dump() const { dump(0); } | 
 | void SDNode::dump(const SelectionDAG *G) const { | 
 |   cerr << (void*)this << ": "; | 
 |  | 
 |   for (unsigned i = 0, e = getNumValues(); i != e; ++i) { | 
 |     if (i) cerr << ","; | 
 |     if (getValueType(i) == MVT::Other) | 
 |       cerr << "ch"; | 
 |     else | 
 |       cerr << MVT::getValueTypeString(getValueType(i)); | 
 |   } | 
 |   cerr << " = " << getOperationName(G); | 
 |  | 
 |   cerr << " "; | 
 |   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { | 
 |     if (i) cerr << ", "; | 
 |     cerr << (void*)getOperand(i).Val; | 
 |     if (unsigned RN = getOperand(i).ResNo) | 
 |       cerr << ":" << RN; | 
 |   } | 
 |  | 
 |   if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) { | 
 |     cerr << "<" << CSDN->getValue() << ">"; | 
 |   } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) { | 
 |     if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle) | 
 |       cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">"; | 
 |     else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble) | 
 |       cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">"; | 
 |     else { | 
 |       cerr << "<APFloat("; | 
 |       CSDN->getValueAPF().convertToAPInt().dump(); | 
 |       cerr << ")>"; | 
 |     } | 
 |   } else if (const GlobalAddressSDNode *GADN = | 
 |              dyn_cast<GlobalAddressSDNode>(this)) { | 
 |     int offset = GADN->getOffset(); | 
 |     cerr << "<"; | 
 |     WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">"; | 
 |     if (offset > 0) | 
 |       cerr << " + " << offset; | 
 |     else | 
 |       cerr << " " << offset; | 
 |   } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) { | 
 |     cerr << "<" << FIDN->getIndex() << ">"; | 
 |   } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) { | 
 |     cerr << "<" << JTDN->getIndex() << ">"; | 
 |   } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){ | 
 |     int offset = CP->getOffset(); | 
 |     if (CP->isMachineConstantPoolEntry()) | 
 |       cerr << "<" << *CP->getMachineCPVal() << ">"; | 
 |     else | 
 |       cerr << "<" << *CP->getConstVal() << ">"; | 
 |     if (offset > 0) | 
 |       cerr << " + " << offset; | 
 |     else | 
 |       cerr << " " << offset; | 
 |   } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) { | 
 |     cerr << "<"; | 
 |     const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock(); | 
 |     if (LBB) | 
 |       cerr << LBB->getName() << " "; | 
 |     cerr << (const void*)BBDN->getBasicBlock() << ">"; | 
 |   } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) { | 
 |     if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) { | 
 |       cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg()); | 
 |     } else { | 
 |       cerr << " #" << R->getReg(); | 
 |     } | 
 |   } else if (const ExternalSymbolSDNode *ES = | 
 |              dyn_cast<ExternalSymbolSDNode>(this)) { | 
 |     cerr << "'" << ES->getSymbol() << "'"; | 
 |   } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) { | 
 |     if (M->getValue()) | 
 |       cerr << "<" << M->getValue() << ":" << M->getOffset() << ">"; | 
 |     else | 
 |       cerr << "<null:" << M->getOffset() << ">"; | 
 |   } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) { | 
 |     cerr << ":" << MVT::getValueTypeString(N->getVT()); | 
 |   } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) { | 
 |     bool doExt = true; | 
 |     switch (LD->getExtensionType()) { | 
 |     default: doExt = false; break; | 
 |     case ISD::EXTLOAD: | 
 |       cerr << " <anyext "; | 
 |       break; | 
 |     case ISD::SEXTLOAD: | 
 |       cerr << " <sext "; | 
 |       break; | 
 |     case ISD::ZEXTLOAD: | 
 |       cerr << " <zext "; | 
 |       break; | 
 |     } | 
 |     if (doExt) | 
 |       cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">"; | 
 |  | 
 |     const char *AM = getIndexedModeName(LD->getAddressingMode()); | 
 |     if (*AM) | 
 |       cerr << " " << AM; | 
 |   } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) { | 
 |     if (ST->isTruncatingStore()) | 
 |       cerr << " <trunc " | 
 |            << MVT::getValueTypeString(ST->getStoredVT()) << ">"; | 
 |  | 
 |     const char *AM = getIndexedModeName(ST->getAddressingMode()); | 
 |     if (*AM) | 
 |       cerr << " " << AM; | 
 |   } | 
 | } | 
 |  | 
 | static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) { | 
 |   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
 |     if (N->getOperand(i).Val->hasOneUse()) | 
 |       DumpNodes(N->getOperand(i).Val, indent+2, G); | 
 |     else | 
 |       cerr << "\n" << std::string(indent+2, ' ') | 
 |            << (void*)N->getOperand(i).Val << ": <multiple use>"; | 
 |  | 
 |  | 
 |   cerr << "\n" << std::string(indent, ' '); | 
 |   N->dump(G); | 
 | } | 
 |  | 
 | void SelectionDAG::dump() const { | 
 |   cerr << "SelectionDAG has " << AllNodes.size() << " nodes:"; | 
 |   std::vector<const SDNode*> Nodes; | 
 |   for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end(); | 
 |        I != E; ++I) | 
 |     Nodes.push_back(I); | 
 |    | 
 |   std::sort(Nodes.begin(), Nodes.end()); | 
 |  | 
 |   for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { | 
 |     if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val) | 
 |       DumpNodes(Nodes[i], 2, this); | 
 |   } | 
 |  | 
 |   if (getRoot().Val) DumpNodes(getRoot().Val, 2, this); | 
 |  | 
 |   cerr << "\n\n"; | 
 | } | 
 |  | 
 | const Type *ConstantPoolSDNode::getType() const { | 
 |   if (isMachineConstantPoolEntry()) | 
 |     return Val.MachineCPVal->getType(); | 
 |   return Val.ConstVal->getType(); | 
 | } |