| //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file was developed by the LLVM research group and is distributed under | 
 | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This implements the TargetLowering class. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Target/TargetLowering.h" | 
 | #include "llvm/Target/TargetSubtarget.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/MRegisterInfo.h" | 
 | #include "llvm/DerivedTypes.h" | 
 | #include "llvm/CodeGen/SelectionDAG.h" | 
 | #include "llvm/ADT/StringExtras.h" | 
 | #include "llvm/ADT/STLExtras.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Target/TargetAsmInfo.h" | 
 | #include "llvm/CallingConv.h" | 
 | using namespace llvm; | 
 |  | 
 | /// InitLibcallNames - Set default libcall names. | 
 | /// | 
 | static void InitLibcallNames(const char **Names) { | 
 |   Names[RTLIB::SHL_I32] = "__ashlsi3"; | 
 |   Names[RTLIB::SHL_I64] = "__ashldi3"; | 
 |   Names[RTLIB::SRL_I32] = "__lshrsi3"; | 
 |   Names[RTLIB::SRL_I64] = "__lshrdi3"; | 
 |   Names[RTLIB::SRA_I32] = "__ashrsi3"; | 
 |   Names[RTLIB::SRA_I64] = "__ashrdi3"; | 
 |   Names[RTLIB::MUL_I32] = "__mulsi3"; | 
 |   Names[RTLIB::MUL_I64] = "__muldi3"; | 
 |   Names[RTLIB::SDIV_I32] = "__divsi3"; | 
 |   Names[RTLIB::SDIV_I64] = "__divdi3"; | 
 |   Names[RTLIB::UDIV_I32] = "__udivsi3"; | 
 |   Names[RTLIB::UDIV_I64] = "__udivdi3"; | 
 |   Names[RTLIB::SREM_I32] = "__modsi3"; | 
 |   Names[RTLIB::SREM_I64] = "__moddi3"; | 
 |   Names[RTLIB::UREM_I32] = "__umodsi3"; | 
 |   Names[RTLIB::UREM_I64] = "__umoddi3"; | 
 |   Names[RTLIB::NEG_I32] = "__negsi2"; | 
 |   Names[RTLIB::NEG_I64] = "__negdi2"; | 
 |   Names[RTLIB::ADD_F32] = "__addsf3"; | 
 |   Names[RTLIB::ADD_F64] = "__adddf3"; | 
 |   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; | 
 |   Names[RTLIB::SUB_F32] = "__subsf3"; | 
 |   Names[RTLIB::SUB_F64] = "__subdf3"; | 
 |   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; | 
 |   Names[RTLIB::MUL_F32] = "__mulsf3"; | 
 |   Names[RTLIB::MUL_F64] = "__muldf3"; | 
 |   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; | 
 |   Names[RTLIB::DIV_F32] = "__divsf3"; | 
 |   Names[RTLIB::DIV_F64] = "__divdf3"; | 
 |   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; | 
 |   Names[RTLIB::REM_F32] = "fmodf"; | 
 |   Names[RTLIB::REM_F64] = "fmod"; | 
 |   Names[RTLIB::REM_PPCF128] = "fmodl"; | 
 |   Names[RTLIB::NEG_F32] = "__negsf2"; | 
 |   Names[RTLIB::NEG_F64] = "__negdf2"; | 
 |   Names[RTLIB::POWI_F32] = "__powisf2"; | 
 |   Names[RTLIB::POWI_F64] = "__powidf2"; | 
 |   Names[RTLIB::POWI_F80] = "__powixf2"; | 
 |   Names[RTLIB::POWI_PPCF128] = "__powitf2"; | 
 |   Names[RTLIB::SQRT_F32] = "sqrtf"; | 
 |   Names[RTLIB::SQRT_F64] = "sqrt"; | 
 |   Names[RTLIB::SQRT_F80] = "sqrtl"; | 
 |   Names[RTLIB::SQRT_PPCF128] = "sqrtl"; | 
 |   Names[RTLIB::SIN_F32] = "sinf"; | 
 |   Names[RTLIB::SIN_F64] = "sin"; | 
 |   Names[RTLIB::COS_F32] = "cosf"; | 
 |   Names[RTLIB::COS_F64] = "cos"; | 
 |   Names[RTLIB::POW_F32] = "powf"; | 
 |   Names[RTLIB::POW_F64] = "pow"; | 
 |   Names[RTLIB::POW_F80] = "powl"; | 
 |   Names[RTLIB::POW_PPCF128] = "powl"; | 
 |   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; | 
 |   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; | 
 |   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; | 
 |   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; | 
 |   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; | 
 |   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; | 
 |   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; | 
 |   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; | 
 |   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; | 
 |   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; | 
 |   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; | 
 |   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; | 
 |   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; | 
 |   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; | 
 |   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; | 
 |   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; | 
 |   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; | 
 |   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; | 
 |   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; | 
 |   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; | 
 |   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; | 
 |   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; | 
 |   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; | 
 |   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; | 
 |   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; | 
 |   Names[RTLIB::OEQ_F32] = "__eqsf2"; | 
 |   Names[RTLIB::OEQ_F64] = "__eqdf2"; | 
 |   Names[RTLIB::UNE_F32] = "__nesf2"; | 
 |   Names[RTLIB::UNE_F64] = "__nedf2"; | 
 |   Names[RTLIB::OGE_F32] = "__gesf2"; | 
 |   Names[RTLIB::OGE_F64] = "__gedf2"; | 
 |   Names[RTLIB::OLT_F32] = "__ltsf2"; | 
 |   Names[RTLIB::OLT_F64] = "__ltdf2"; | 
 |   Names[RTLIB::OLE_F32] = "__lesf2"; | 
 |   Names[RTLIB::OLE_F64] = "__ledf2"; | 
 |   Names[RTLIB::OGT_F32] = "__gtsf2"; | 
 |   Names[RTLIB::OGT_F64] = "__gtdf2"; | 
 |   Names[RTLIB::UO_F32] = "__unordsf2"; | 
 |   Names[RTLIB::UO_F64] = "__unorddf2"; | 
 |   Names[RTLIB::O_F32] = "__unordsf2"; | 
 |   Names[RTLIB::O_F64] = "__unorddf2"; | 
 | } | 
 |  | 
 | /// InitCmpLibcallCCs - Set default comparison libcall CC. | 
 | /// | 
 | static void InitCmpLibcallCCs(ISD::CondCode *CCs) { | 
 |   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); | 
 |   CCs[RTLIB::OEQ_F32] = ISD::SETEQ; | 
 |   CCs[RTLIB::OEQ_F64] = ISD::SETEQ; | 
 |   CCs[RTLIB::UNE_F32] = ISD::SETNE; | 
 |   CCs[RTLIB::UNE_F64] = ISD::SETNE; | 
 |   CCs[RTLIB::OGE_F32] = ISD::SETGE; | 
 |   CCs[RTLIB::OGE_F64] = ISD::SETGE; | 
 |   CCs[RTLIB::OLT_F32] = ISD::SETLT; | 
 |   CCs[RTLIB::OLT_F64] = ISD::SETLT; | 
 |   CCs[RTLIB::OLE_F32] = ISD::SETLE; | 
 |   CCs[RTLIB::OLE_F64] = ISD::SETLE; | 
 |   CCs[RTLIB::OGT_F32] = ISD::SETGT; | 
 |   CCs[RTLIB::OGT_F64] = ISD::SETGT; | 
 |   CCs[RTLIB::UO_F32] = ISD::SETNE; | 
 |   CCs[RTLIB::UO_F64] = ISD::SETNE; | 
 |   CCs[RTLIB::O_F32] = ISD::SETEQ; | 
 |   CCs[RTLIB::O_F64] = ISD::SETEQ; | 
 | } | 
 |  | 
 | TargetLowering::TargetLowering(TargetMachine &tm) | 
 |   : TM(tm), TD(TM.getTargetData()) { | 
 |   assert(ISD::BUILTIN_OP_END <= 156 && | 
 |          "Fixed size array in TargetLowering is not large enough!"); | 
 |   // All operations default to being supported. | 
 |   memset(OpActions, 0, sizeof(OpActions)); | 
 |   memset(LoadXActions, 0, sizeof(LoadXActions)); | 
 |   memset(&StoreXActions, 0, sizeof(StoreXActions)); | 
 |   memset(&IndexedModeActions, 0, sizeof(IndexedModeActions)); | 
 |   memset(&ConvertActions, 0, sizeof(ConvertActions)); | 
 |  | 
 |   // Set all indexed load / store to expand. | 
 |   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { | 
 |     for (unsigned IM = (unsigned)ISD::PRE_INC; | 
 |          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { | 
 |       setIndexedLoadAction(IM, (MVT::ValueType)VT, Expand); | 
 |       setIndexedStoreAction(IM, (MVT::ValueType)VT, Expand); | 
 |     } | 
 |   } | 
 |  | 
 |   IsLittleEndian = TD->isLittleEndian(); | 
 |   UsesGlobalOffsetTable = false; | 
 |   ShiftAmountTy = SetCCResultTy = PointerTy = getValueType(TD->getIntPtrType()); | 
 |   ShiftAmtHandling = Undefined; | 
 |   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); | 
 |   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); | 
 |   maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; | 
 |   allowUnalignedMemoryAccesses = false; | 
 |   UseUnderscoreSetJmp = false; | 
 |   UseUnderscoreLongJmp = false; | 
 |   SelectIsExpensive = false; | 
 |   IntDivIsCheap = false; | 
 |   Pow2DivIsCheap = false; | 
 |   StackPointerRegisterToSaveRestore = 0; | 
 |   ExceptionPointerRegister = 0; | 
 |   ExceptionSelectorRegister = 0; | 
 |   SetCCResultContents = UndefinedSetCCResult; | 
 |   SchedPreferenceInfo = SchedulingForLatency; | 
 |   JumpBufSize = 0; | 
 |   JumpBufAlignment = 0; | 
 |   IfCvtBlockSizeLimit = 2; | 
 |  | 
 |   InitLibcallNames(LibcallRoutineNames); | 
 |   InitCmpLibcallCCs(CmpLibcallCCs); | 
 |  | 
 |   // Tell Legalize whether the assembler supports DEBUG_LOC. | 
 |   if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile()) | 
 |     setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); | 
 | } | 
 |  | 
 | TargetLowering::~TargetLowering() {} | 
 |  | 
 |  | 
 | SDOperand TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) { | 
 |   assert(getSubtarget() && "Subtarget not defined"); | 
 |   SDOperand ChainOp = Op.getOperand(0); | 
 |   SDOperand DestOp = Op.getOperand(1); | 
 |   SDOperand SourceOp = Op.getOperand(2); | 
 |   SDOperand CountOp = Op.getOperand(3); | 
 |   SDOperand AlignOp = Op.getOperand(4); | 
 |   SDOperand AlwaysInlineOp = Op.getOperand(5); | 
 |  | 
 |   bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue(); | 
 |   unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue(); | 
 |   if (Align == 0) Align = 1; | 
 |  | 
 |   // If size is unknown, call memcpy. | 
 |   ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp); | 
 |   if (!I) { | 
 |     assert(!AlwaysInline && "Cannot inline copy of unknown size"); | 
 |     return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG); | 
 |   } | 
 |  | 
 |   // If not DWORD aligned or if size is more than threshold, then call memcpy. | 
 |   // The libc version is likely to be faster for the following cases. It can | 
 |   // use the address value and run time information about the CPU. | 
 |   // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster | 
 |   unsigned Size = I->getValue(); | 
 |   if (AlwaysInline || | 
 |       (Size <= getSubtarget()->getMaxInlineSizeThreshold() && | 
 |        (Align & 3) == 0)) | 
 |     return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG); | 
 |   return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG); | 
 | } | 
 |  | 
 |  | 
 | SDOperand TargetLowering::LowerMEMCPYCall(SDOperand Chain, | 
 |                                           SDOperand Dest, | 
 |                                           SDOperand Source, | 
 |                                           SDOperand Count, | 
 |                                           SelectionDAG &DAG) { | 
 |   MVT::ValueType IntPtr = getPointerTy(); | 
 |   TargetLowering::ArgListTy Args; | 
 |   TargetLowering::ArgListEntry Entry; | 
 |   Entry.Ty = getTargetData()->getIntPtrType(); | 
 |   Entry.Node = Dest; Args.push_back(Entry); | 
 |   Entry.Node = Source; Args.push_back(Entry); | 
 |   Entry.Node = Count; Args.push_back(Entry); | 
 |   std::pair<SDOperand,SDOperand> CallResult = | 
 |       LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false, | 
 |                   DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG); | 
 |   return CallResult.second; | 
 | } | 
 |  | 
 |  | 
 | /// computeRegisterProperties - Once all of the register classes are added, | 
 | /// this allows us to compute derived properties we expose. | 
 | void TargetLowering::computeRegisterProperties() { | 
 |   assert(MVT::LAST_VALUETYPE <= 32 && | 
 |          "Too many value types for ValueTypeActions to hold!"); | 
 |  | 
 |   // Everything defaults to needing one register. | 
 |   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { | 
 |     NumRegistersForVT[i] = 1; | 
 |     RegisterTypeForVT[i] = TransformToType[i] = i; | 
 |   } | 
 |   // ...except isVoid, which doesn't need any registers. | 
 |   NumRegistersForVT[MVT::isVoid] = 0; | 
 |  | 
 |   // Find the largest integer register class. | 
 |   unsigned LargestIntReg = MVT::i128; | 
 |   for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) | 
 |     assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); | 
 |  | 
 |   // Every integer value type larger than this largest register takes twice as | 
 |   // many registers to represent as the previous ValueType. | 
 |   for (MVT::ValueType ExpandedReg = LargestIntReg + 1; | 
 |        MVT::isInteger(ExpandedReg); ++ExpandedReg) { | 
 |     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; | 
 |     RegisterTypeForVT[ExpandedReg] = LargestIntReg; | 
 |     TransformToType[ExpandedReg] = ExpandedReg - 1; | 
 |     ValueTypeActions.setTypeAction(ExpandedReg, Expand); | 
 |   } | 
 |  | 
 |   // Inspect all of the ValueType's smaller than the largest integer | 
 |   // register to see which ones need promotion. | 
 |   MVT::ValueType LegalIntReg = LargestIntReg; | 
 |   for (MVT::ValueType IntReg = LargestIntReg - 1; | 
 |        IntReg >= MVT::i1; --IntReg) { | 
 |     if (isTypeLegal(IntReg)) { | 
 |       LegalIntReg = IntReg; | 
 |     } else { | 
 |       RegisterTypeForVT[IntReg] = TransformToType[IntReg] = LegalIntReg; | 
 |       ValueTypeActions.setTypeAction(IntReg, Promote); | 
 |     } | 
 |   } | 
 |  | 
 |   // ppcf128 type is really two f64's. | 
 |   if (!isTypeLegal(MVT::ppcf128)) { | 
 |     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; | 
 |     RegisterTypeForVT[MVT::ppcf128] = MVT::f64; | 
 |     TransformToType[MVT::ppcf128] = MVT::f64; | 
 |     ValueTypeActions.setTypeAction(MVT::ppcf128, Expand); | 
 |   }     | 
 |  | 
 |   // Decide how to handle f64. If the target does not have native f64 support, | 
 |   // expand it to i64 and we will be generating soft float library calls. | 
 |   if (!isTypeLegal(MVT::f64)) { | 
 |     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; | 
 |     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; | 
 |     TransformToType[MVT::f64] = MVT::i64; | 
 |     ValueTypeActions.setTypeAction(MVT::f64, Expand); | 
 |   } | 
 |  | 
 |   // Decide how to handle f32. If the target does not have native support for | 
 |   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. | 
 |   if (!isTypeLegal(MVT::f32)) { | 
 |     if (isTypeLegal(MVT::f64)) { | 
 |       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; | 
 |       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; | 
 |       TransformToType[MVT::f32] = MVT::f64; | 
 |       ValueTypeActions.setTypeAction(MVT::f32, Promote); | 
 |     } else { | 
 |       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; | 
 |       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; | 
 |       TransformToType[MVT::f32] = MVT::i32; | 
 |       ValueTypeActions.setTypeAction(MVT::f32, Expand); | 
 |     } | 
 |   } | 
 |    | 
 |   // Loop over all of the vector value types to see which need transformations. | 
 |   for (MVT::ValueType i = MVT::FIRST_VECTOR_VALUETYPE; | 
 |        i <= MVT::LAST_VECTOR_VALUETYPE; ++i) { | 
 |     if (!isTypeLegal(i)) { | 
 |       MVT::ValueType IntermediateVT, RegisterVT; | 
 |       unsigned NumIntermediates; | 
 |       NumRegistersForVT[i] = | 
 |         getVectorTypeBreakdown(i, | 
 |                                IntermediateVT, NumIntermediates, | 
 |                                RegisterVT); | 
 |       RegisterTypeForVT[i] = RegisterVT; | 
 |       TransformToType[i] = MVT::Other; // this isn't actually used | 
 |       ValueTypeActions.setTypeAction(i, Expand); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
 |   return NULL; | 
 | } | 
 |  | 
 | /// getVectorTypeBreakdown - Vector types are broken down into some number of | 
 | /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32 | 
 | /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. | 
 | /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. | 
 | /// | 
 | /// This method returns the number of registers needed, and the VT for each | 
 | /// register.  It also returns the VT and quantity of the intermediate values | 
 | /// before they are promoted/expanded. | 
 | /// | 
 | unsigned TargetLowering::getVectorTypeBreakdown(MVT::ValueType VT,  | 
 |                                                 MVT::ValueType &IntermediateVT, | 
 |                                                 unsigned &NumIntermediates, | 
 |                                       MVT::ValueType &RegisterVT) const { | 
 |   // Figure out the right, legal destination reg to copy into. | 
 |   unsigned NumElts = MVT::getVectorNumElements(VT); | 
 |   MVT::ValueType EltTy = MVT::getVectorElementType(VT); | 
 |    | 
 |   unsigned NumVectorRegs = 1; | 
 |    | 
 |   // Divide the input until we get to a supported size.  This will always | 
 |   // end with a scalar if the target doesn't support vectors. | 
 |   while (NumElts > 1 && | 
 |          !isTypeLegal(MVT::getVectorType(EltTy, NumElts))) { | 
 |     NumElts >>= 1; | 
 |     NumVectorRegs <<= 1; | 
 |   } | 
 |  | 
 |   NumIntermediates = NumVectorRegs; | 
 |    | 
 |   MVT::ValueType NewVT = MVT::getVectorType(EltTy, NumElts); | 
 |   if (!isTypeLegal(NewVT)) | 
 |     NewVT = EltTy; | 
 |   IntermediateVT = NewVT; | 
 |  | 
 |   MVT::ValueType DestVT = getTypeToTransformTo(NewVT); | 
 |   RegisterVT = DestVT; | 
 |   if (DestVT < NewVT) { | 
 |     // Value is expanded, e.g. i64 -> i16. | 
 |     return NumVectorRegs*(MVT::getSizeInBits(NewVT)/MVT::getSizeInBits(DestVT)); | 
 |   } else { | 
 |     // Otherwise, promotion or legal types use the same number of registers as | 
 |     // the vector decimated to the appropriate level. | 
 |     return NumVectorRegs; | 
 |   } | 
 |    | 
 |   return 1; | 
 | } | 
 |  | 
 | SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table, | 
 |                                                    SelectionDAG &DAG) const { | 
 |   if (usesGlobalOffsetTable()) | 
 |     return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy()); | 
 |   return Table; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Optimization Methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// ShrinkDemandedConstant - Check to see if the specified operand of the  | 
 | /// specified instruction is a constant integer.  If so, check to see if there | 
 | /// are any bits set in the constant that are not demanded.  If so, shrink the | 
 | /// constant and return true. | 
 | bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,  | 
 |                                                             uint64_t Demanded) { | 
 |   // FIXME: ISD::SELECT, ISD::SELECT_CC | 
 |   switch(Op.getOpcode()) { | 
 |   default: break; | 
 |   case ISD::AND: | 
 |   case ISD::OR: | 
 |   case ISD::XOR: | 
 |     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) | 
 |       if ((~Demanded & C->getValue()) != 0) { | 
 |         MVT::ValueType VT = Op.getValueType(); | 
 |         SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0), | 
 |                                     DAG.getConstant(Demanded & C->getValue(),  | 
 |                                                     VT)); | 
 |         return CombineTo(Op, New); | 
 |       } | 
 |     break; | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// SimplifyDemandedBits - Look at Op.  At this point, we know that only the | 
 | /// DemandedMask bits of the result of Op are ever used downstream.  If we can | 
 | /// use this information to simplify Op, create a new simplified DAG node and | 
 | /// return true, returning the original and new nodes in Old and New. Otherwise, | 
 | /// analyze the expression and return a mask of KnownOne and KnownZero bits for | 
 | /// the expression (used to simplify the caller).  The KnownZero/One bits may | 
 | /// only be accurate for those bits in the DemandedMask. | 
 | bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,  | 
 |                                           uint64_t &KnownZero, | 
 |                                           uint64_t &KnownOne, | 
 |                                           TargetLoweringOpt &TLO, | 
 |                                           unsigned Depth) const { | 
 |   KnownZero = KnownOne = 0;   // Don't know anything. | 
 |  | 
 |   // The masks are not wide enough to represent this type!  Should use APInt. | 
 |   if (Op.getValueType() == MVT::i128) | 
 |     return false; | 
 |    | 
 |   // Other users may use these bits. | 
 |   if (!Op.Val->hasOneUse()) {  | 
 |     if (Depth != 0) { | 
 |       // If not at the root, Just compute the KnownZero/KnownOne bits to  | 
 |       // simplify things downstream. | 
 |       TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); | 
 |       return false; | 
 |     } | 
 |     // If this is the root being simplified, allow it to have multiple uses, | 
 |     // just set the DemandedMask to all bits. | 
 |     DemandedMask = MVT::getIntVTBitMask(Op.getValueType()); | 
 |   } else if (DemandedMask == 0) {    | 
 |     // Not demanding any bits from Op. | 
 |     if (Op.getOpcode() != ISD::UNDEF) | 
 |       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType())); | 
 |     return false; | 
 |   } else if (Depth == 6) {        // Limit search depth. | 
 |     return false; | 
 |   } | 
 |  | 
 |   uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; | 
 |   switch (Op.getOpcode()) { | 
 |   case ISD::Constant: | 
 |     // We know all of the bits for a constant! | 
 |     KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask; | 
 |     KnownZero = ~KnownOne & DemandedMask; | 
 |     return false;   // Don't fall through, will infinitely loop. | 
 |   case ISD::AND: | 
 |     // If the RHS is a constant, check to see if the LHS would be zero without | 
 |     // using the bits from the RHS.  Below, we use knowledge about the RHS to | 
 |     // simplify the LHS, here we're using information from the LHS to simplify | 
 |     // the RHS. | 
 |     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
 |       uint64_t LHSZero, LHSOne; | 
 |       TLO.DAG.ComputeMaskedBits(Op.getOperand(0), DemandedMask, | 
 |                                 LHSZero, LHSOne, Depth+1); | 
 |       // If the LHS already has zeros where RHSC does, this and is dead. | 
 |       if ((LHSZero & DemandedMask) == (~RHSC->getValue() & DemandedMask)) | 
 |         return TLO.CombineTo(Op, Op.getOperand(0)); | 
 |       // If any of the set bits in the RHS are known zero on the LHS, shrink | 
 |       // the constant. | 
 |       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & DemandedMask)) | 
 |         return true; | 
 |     } | 
 |      | 
 |     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero, | 
 |                              KnownOne, TLO, Depth+1)) | 
 |       return true; | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero, | 
 |                              KnownZero2, KnownOne2, TLO, Depth+1)) | 
 |       return true; | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |        | 
 |     // If all of the demanded bits are known one on one side, return the other. | 
 |     // These bits cannot contribute to the result of the 'and'. | 
 |     if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2)) | 
 |       return TLO.CombineTo(Op, Op.getOperand(0)); | 
 |     if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero)) | 
 |       return TLO.CombineTo(Op, Op.getOperand(1)); | 
 |     // If all of the demanded bits in the inputs are known zeros, return zero. | 
 |     if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask) | 
 |       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); | 
 |     // If the RHS is a constant, see if we can simplify it. | 
 |     if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2)) | 
 |       return true; | 
 |        | 
 |     // Output known-1 bits are only known if set in both the LHS & RHS. | 
 |     KnownOne &= KnownOne2; | 
 |     // Output known-0 are known to be clear if zero in either the LHS | RHS. | 
 |     KnownZero |= KnownZero2; | 
 |     break; | 
 |   case ISD::OR: | 
 |     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,  | 
 |                              KnownOne, TLO, Depth+1)) | 
 |       return true; | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,  | 
 |                              KnownZero2, KnownOne2, TLO, Depth+1)) | 
 |       return true; | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // If all of the demanded bits are known zero on one side, return the other. | 
 |     // These bits cannot contribute to the result of the 'or'. | 
 |     if ((DemandedMask & ~KnownOne2 & KnownZero) == (DemandedMask & ~KnownOne2)) | 
 |       return TLO.CombineTo(Op, Op.getOperand(0)); | 
 |     if ((DemandedMask & ~KnownOne & KnownZero2) == (DemandedMask & ~KnownOne)) | 
 |       return TLO.CombineTo(Op, Op.getOperand(1)); | 
 |     // If all of the potentially set bits on one side are known to be set on | 
 |     // the other side, just use the 'other' side. | 
 |     if ((DemandedMask & (~KnownZero) & KnownOne2) ==  | 
 |         (DemandedMask & (~KnownZero))) | 
 |       return TLO.CombineTo(Op, Op.getOperand(0)); | 
 |     if ((DemandedMask & (~KnownZero2) & KnownOne) ==  | 
 |         (DemandedMask & (~KnownZero2))) | 
 |       return TLO.CombineTo(Op, Op.getOperand(1)); | 
 |     // If the RHS is a constant, see if we can simplify it. | 
 |     if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) | 
 |       return true; | 
 |            | 
 |     // Output known-0 bits are only known if clear in both the LHS & RHS. | 
 |     KnownZero &= KnownZero2; | 
 |     // Output known-1 are known to be set if set in either the LHS | RHS. | 
 |     KnownOne |= KnownOne2; | 
 |     break; | 
 |   case ISD::XOR: | 
 |     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,  | 
 |                              KnownOne, TLO, Depth+1)) | 
 |       return true; | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2, | 
 |                              KnownOne2, TLO, Depth+1)) | 
 |       return true; | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // If all of the demanded bits are known zero on one side, return the other. | 
 |     // These bits cannot contribute to the result of the 'xor'. | 
 |     if ((DemandedMask & KnownZero) == DemandedMask) | 
 |       return TLO.CombineTo(Op, Op.getOperand(0)); | 
 |     if ((DemandedMask & KnownZero2) == DemandedMask) | 
 |       return TLO.CombineTo(Op, Op.getOperand(1)); | 
 |        | 
 |     // If all of the unknown bits are known to be zero on one side or the other | 
 |     // (but not both) turn this into an *inclusive* or. | 
 |     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 | 
 |     if ((DemandedMask & ~KnownZero & ~KnownZero2) == 0) | 
 |       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(), | 
 |                                                Op.getOperand(0), | 
 |                                                Op.getOperand(1))); | 
 |      | 
 |     // Output known-0 bits are known if clear or set in both the LHS & RHS. | 
 |     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); | 
 |     // Output known-1 are known to be set if set in only one of the LHS, RHS. | 
 |     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); | 
 |      | 
 |     // If all of the demanded bits on one side are known, and all of the set | 
 |     // bits on that side are also known to be set on the other side, turn this | 
 |     // into an AND, as we know the bits will be cleared. | 
 |     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 | 
 |     if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known | 
 |       if ((KnownOne & KnownOne2) == KnownOne) { | 
 |         MVT::ValueType VT = Op.getValueType(); | 
 |         SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT); | 
 |         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0), | 
 |                                                  ANDC)); | 
 |       } | 
 |     } | 
 |      | 
 |     // If the RHS is a constant, see if we can simplify it. | 
 |     // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1. | 
 |     if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) | 
 |       return true; | 
 |      | 
 |     KnownZero = KnownZeroOut; | 
 |     KnownOne  = KnownOneOut; | 
 |     break; | 
 |   case ISD::SETCC: | 
 |     // If we know the result of a setcc has the top bits zero, use this info. | 
 |     if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult) | 
 |       KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL); | 
 |     break; | 
 |   case ISD::SELECT: | 
 |     if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,  | 
 |                              KnownOne, TLO, Depth+1)) | 
 |       return true; | 
 |     if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2, | 
 |                              KnownOne2, TLO, Depth+1)) | 
 |       return true; | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // If the operands are constants, see if we can simplify them. | 
 |     if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) | 
 |       return true; | 
 |      | 
 |     // Only known if known in both the LHS and RHS. | 
 |     KnownOne &= KnownOne2; | 
 |     KnownZero &= KnownZero2; | 
 |     break; | 
 |   case ISD::SELECT_CC: | 
 |     if (SimplifyDemandedBits(Op.getOperand(3), DemandedMask, KnownZero,  | 
 |                              KnownOne, TLO, Depth+1)) | 
 |       return true; | 
 |     if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero2, | 
 |                              KnownOne2, TLO, Depth+1)) | 
 |       return true; | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");  | 
 |      | 
 |     // If the operands are constants, see if we can simplify them. | 
 |     if (TLO.ShrinkDemandedConstant(Op, DemandedMask)) | 
 |       return true; | 
 |        | 
 |     // Only known if known in both the LHS and RHS. | 
 |     KnownOne &= KnownOne2; | 
 |     KnownZero &= KnownZero2; | 
 |     break; | 
 |   case ISD::SHL: | 
 |     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
 |       unsigned ShAmt = SA->getValue(); | 
 |       SDOperand InOp = Op.getOperand(0); | 
 |  | 
 |       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a | 
 |       // single shift.  We can do this if the bottom bits (which are shifted | 
 |       // out) are never demanded. | 
 |       if (InOp.getOpcode() == ISD::SRL && | 
 |           isa<ConstantSDNode>(InOp.getOperand(1))) { | 
 |         if (ShAmt && (DemandedMask & ((1ULL << ShAmt)-1)) == 0) { | 
 |           unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue(); | 
 |           unsigned Opc = ISD::SHL; | 
 |           int Diff = ShAmt-C1; | 
 |           if (Diff < 0) { | 
 |             Diff = -Diff; | 
 |             Opc = ISD::SRL; | 
 |           }           | 
 |            | 
 |           SDOperand NewSA =  | 
 |             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); | 
 |           MVT::ValueType VT = Op.getValueType(); | 
 |           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT, | 
 |                                                    InOp.getOperand(0), NewSA)); | 
 |         } | 
 |       }       | 
 |        | 
 |       if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> ShAmt, | 
 |                                KnownZero, KnownOne, TLO, Depth+1)) | 
 |         return true; | 
 |       KnownZero <<= SA->getValue(); | 
 |       KnownOne  <<= SA->getValue(); | 
 |       KnownZero |= (1ULL << SA->getValue())-1;  // low bits known zero. | 
 |     } | 
 |     break; | 
 |   case ISD::SRL: | 
 |     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
 |       MVT::ValueType VT = Op.getValueType(); | 
 |       unsigned ShAmt = SA->getValue(); | 
 |       uint64_t TypeMask = MVT::getIntVTBitMask(VT); | 
 |       unsigned VTSize = MVT::getSizeInBits(VT); | 
 |       SDOperand InOp = Op.getOperand(0); | 
 |        | 
 |       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a | 
 |       // single shift.  We can do this if the top bits (which are shifted out) | 
 |       // are never demanded. | 
 |       if (InOp.getOpcode() == ISD::SHL && | 
 |           isa<ConstantSDNode>(InOp.getOperand(1))) { | 
 |         if (ShAmt && (DemandedMask & (~0ULL << (VTSize-ShAmt))) == 0) { | 
 |           unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue(); | 
 |           unsigned Opc = ISD::SRL; | 
 |           int Diff = ShAmt-C1; | 
 |           if (Diff < 0) { | 
 |             Diff = -Diff; | 
 |             Opc = ISD::SHL; | 
 |           }           | 
 |            | 
 |           SDOperand NewSA = | 
 |             TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); | 
 |           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT, | 
 |                                                    InOp.getOperand(0), NewSA)); | 
 |         } | 
 |       }       | 
 |        | 
 |       // Compute the new bits that are at the top now. | 
 |       if (SimplifyDemandedBits(InOp, (DemandedMask << ShAmt) & TypeMask, | 
 |                                KnownZero, KnownOne, TLO, Depth+1)) | 
 |         return true; | 
 |       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |       KnownZero &= TypeMask; | 
 |       KnownOne  &= TypeMask; | 
 |       KnownZero >>= ShAmt; | 
 |       KnownOne  >>= ShAmt; | 
 |  | 
 |       uint64_t HighBits = (1ULL << ShAmt)-1; | 
 |       HighBits <<= VTSize - ShAmt; | 
 |       KnownZero |= HighBits;  // High bits known zero. | 
 |     } | 
 |     break; | 
 |   case ISD::SRA: | 
 |     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | 
 |       MVT::ValueType VT = Op.getValueType(); | 
 |       unsigned ShAmt = SA->getValue(); | 
 |        | 
 |       // Compute the new bits that are at the top now. | 
 |       uint64_t TypeMask = MVT::getIntVTBitMask(VT); | 
 |        | 
 |       uint64_t InDemandedMask = (DemandedMask << ShAmt) & TypeMask; | 
 |  | 
 |       // If any of the demanded bits are produced by the sign extension, we also | 
 |       // demand the input sign bit. | 
 |       uint64_t HighBits = (1ULL << ShAmt)-1; | 
 |       HighBits <<= MVT::getSizeInBits(VT) - ShAmt; | 
 |       if (HighBits & DemandedMask) | 
 |         InDemandedMask |= MVT::getIntVTSignBit(VT); | 
 |        | 
 |       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, | 
 |                                KnownZero, KnownOne, TLO, Depth+1)) | 
 |         return true; | 
 |       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |       KnownZero &= TypeMask; | 
 |       KnownOne  &= TypeMask; | 
 |       KnownZero >>= ShAmt; | 
 |       KnownOne  >>= ShAmt; | 
 |        | 
 |       // Handle the sign bits. | 
 |       uint64_t SignBit = MVT::getIntVTSignBit(VT); | 
 |       SignBit >>= ShAmt;  // Adjust to where it is now in the mask. | 
 |        | 
 |       // If the input sign bit is known to be zero, or if none of the top bits | 
 |       // are demanded, turn this into an unsigned shift right. | 
 |       if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) { | 
 |         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0), | 
 |                                                  Op.getOperand(1))); | 
 |       } else if (KnownOne & SignBit) { // New bits are known one. | 
 |         KnownOne |= HighBits; | 
 |       } | 
 |     } | 
 |     break; | 
 |   case ISD::SIGN_EXTEND_INREG: { | 
 |     MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
 |  | 
 |     // Sign extension.  Compute the demanded bits in the result that are not  | 
 |     // present in the input. | 
 |     uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & DemandedMask; | 
 |      | 
 |     // If none of the extended bits are demanded, eliminate the sextinreg. | 
 |     if (NewBits == 0) | 
 |       return TLO.CombineTo(Op, Op.getOperand(0)); | 
 |  | 
 |     uint64_t InSignBit = MVT::getIntVTSignBit(EVT); | 
 |     int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT); | 
 |      | 
 |     // Since the sign extended bits are demanded, we know that the sign | 
 |     // bit is demanded. | 
 |     InputDemandedBits |= InSignBit; | 
 |  | 
 |     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, | 
 |                              KnownZero, KnownOne, TLO, Depth+1)) | 
 |       return true; | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |  | 
 |     // If the sign bit of the input is known set or clear, then we know the | 
 |     // top bits of the result. | 
 |      | 
 |     // If the input sign bit is known zero, convert this into a zero extension. | 
 |     if (KnownZero & InSignBit) | 
 |       return TLO.CombineTo(Op,  | 
 |                            TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT)); | 
 |      | 
 |     if (KnownOne & InSignBit) {    // Input sign bit known set | 
 |       KnownOne |= NewBits; | 
 |       KnownZero &= ~NewBits; | 
 |     } else {                       // Input sign bit unknown | 
 |       KnownZero &= ~NewBits; | 
 |       KnownOne &= ~NewBits; | 
 |     } | 
 |     break; | 
 |   } | 
 |   case ISD::CTTZ: | 
 |   case ISD::CTLZ: | 
 |   case ISD::CTPOP: { | 
 |     MVT::ValueType VT = Op.getValueType(); | 
 |     unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1; | 
 |     KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT); | 
 |     KnownOne  = 0; | 
 |     break; | 
 |   } | 
 |   case ISD::LOAD: { | 
 |     if (ISD::isZEXTLoad(Op.Val)) { | 
 |       LoadSDNode *LD = cast<LoadSDNode>(Op); | 
 |       MVT::ValueType VT = LD->getLoadedVT(); | 
 |       KnownZero |= ~MVT::getIntVTBitMask(VT) & DemandedMask; | 
 |     } | 
 |     break; | 
 |   } | 
 |   case ISD::ZERO_EXTEND: { | 
 |     uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); | 
 |      | 
 |     // If none of the top bits are demanded, convert this into an any_extend. | 
 |     uint64_t NewBits = (~InMask) & DemandedMask; | 
 |     if (NewBits == 0) | 
 |       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,  | 
 |                                                Op.getValueType(),  | 
 |                                                Op.getOperand(0))); | 
 |      | 
 |     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, | 
 |                              KnownZero, KnownOne, TLO, Depth+1)) | 
 |       return true; | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     KnownZero |= NewBits; | 
 |     break; | 
 |   } | 
 |   case ISD::SIGN_EXTEND: { | 
 |     MVT::ValueType InVT = Op.getOperand(0).getValueType(); | 
 |     uint64_t InMask    = MVT::getIntVTBitMask(InVT); | 
 |     uint64_t InSignBit = MVT::getIntVTSignBit(InVT); | 
 |     uint64_t NewBits   = (~InMask) & DemandedMask; | 
 |      | 
 |     // If none of the top bits are demanded, convert this into an any_extend. | 
 |     if (NewBits == 0) | 
 |       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(), | 
 |                                            Op.getOperand(0))); | 
 |      | 
 |     // Since some of the sign extended bits are demanded, we know that the sign | 
 |     // bit is demanded. | 
 |     uint64_t InDemandedBits = DemandedMask & InMask; | 
 |     InDemandedBits |= InSignBit; | 
 |      | 
 |     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,  | 
 |                              KnownOne, TLO, Depth+1)) | 
 |       return true; | 
 |      | 
 |     // If the sign bit is known zero, convert this to a zero extend. | 
 |     if (KnownZero & InSignBit) | 
 |       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,  | 
 |                                                Op.getValueType(),  | 
 |                                                Op.getOperand(0))); | 
 |      | 
 |     // If the sign bit is known one, the top bits match. | 
 |     if (KnownOne & InSignBit) { | 
 |       KnownOne  |= NewBits; | 
 |       KnownZero &= ~NewBits; | 
 |     } else {   // Otherwise, top bits aren't known. | 
 |       KnownOne  &= ~NewBits; | 
 |       KnownZero &= ~NewBits; | 
 |     } | 
 |     break; | 
 |   } | 
 |   case ISD::ANY_EXTEND: { | 
 |     uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType()); | 
 |     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, | 
 |                              KnownZero, KnownOne, TLO, Depth+1)) | 
 |       return true; | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     break; | 
 |   } | 
 |   case ISD::TRUNCATE: { | 
 |     // Simplify the input, using demanded bit information, and compute the known | 
 |     // zero/one bits live out. | 
 |     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, | 
 |                              KnownZero, KnownOne, TLO, Depth+1)) | 
 |       return true; | 
 |      | 
 |     // If the input is only used by this truncate, see if we can shrink it based | 
 |     // on the known demanded bits. | 
 |     if (Op.getOperand(0).Val->hasOneUse()) { | 
 |       SDOperand In = Op.getOperand(0); | 
 |       switch (In.getOpcode()) { | 
 |       default: break; | 
 |       case ISD::SRL: | 
 |         // Shrink SRL by a constant if none of the high bits shifted in are | 
 |         // demanded. | 
 |         if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){ | 
 |           uint64_t HighBits = MVT::getIntVTBitMask(In.getValueType()); | 
 |           HighBits &= ~MVT::getIntVTBitMask(Op.getValueType()); | 
 |           HighBits >>= ShAmt->getValue(); | 
 |            | 
 |           if (ShAmt->getValue() < MVT::getSizeInBits(Op.getValueType()) && | 
 |               (DemandedMask & HighBits) == 0) { | 
 |             // None of the shifted in bits are needed.  Add a truncate of the | 
 |             // shift input, then shift it. | 
 |             SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,  | 
 |                                                  Op.getValueType(),  | 
 |                                                  In.getOperand(0)); | 
 |             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(), | 
 |                                                    NewTrunc, In.getOperand(1))); | 
 |           } | 
 |         } | 
 |         break; | 
 |       } | 
 |     } | 
 |      | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType()); | 
 |     KnownZero &= OutMask; | 
 |     KnownOne &= OutMask; | 
 |     break; | 
 |   } | 
 |   case ISD::AssertZext: { | 
 |     MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | 
 |     uint64_t InMask = MVT::getIntVTBitMask(VT); | 
 |     if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & InMask, | 
 |                              KnownZero, KnownOne, TLO, Depth+1)) | 
 |       return true; | 
 |     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");  | 
 |     KnownZero |= ~InMask & DemandedMask; | 
 |     break; | 
 |   } | 
 |   case ISD::ADD: | 
 |   case ISD::SUB: | 
 |   case ISD::INTRINSIC_WO_CHAIN: | 
 |   case ISD::INTRINSIC_W_CHAIN: | 
 |   case ISD::INTRINSIC_VOID: | 
 |     // Just use ComputeMaskedBits to compute output bits. | 
 |     TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth); | 
 |     break; | 
 |   } | 
 |    | 
 |   // If we know the value of all of the demanded bits, return this as a | 
 |   // constant. | 
 |   if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) | 
 |     return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); | 
 |    | 
 |   return false; | 
 | } | 
 |  | 
 | /// computeMaskedBitsForTargetNode - Determine which of the bits specified  | 
 | /// in Mask are known to be either zero or one and return them in the  | 
 | /// KnownZero/KnownOne bitsets. | 
 | void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,  | 
 |                                                     uint64_t Mask, | 
 |                                                     uint64_t &KnownZero,  | 
 |                                                     uint64_t &KnownOne, | 
 |                                                     const SelectionDAG &DAG, | 
 |                                                     unsigned Depth) const { | 
 |   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
 |           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
 |           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
 |           Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
 |          "Should use MaskedValueIsZero if you don't know whether Op" | 
 |          " is a target node!"); | 
 |   KnownZero = 0; | 
 |   KnownOne = 0; | 
 | } | 
 |  | 
 | /// ComputeNumSignBitsForTargetNode - This method can be implemented by | 
 | /// targets that want to expose additional information about sign bits to the | 
 | /// DAG Combiner. | 
 | unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op, | 
 |                                                          unsigned Depth) const { | 
 |   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || | 
 |           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || | 
 |           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || | 
 |           Op.getOpcode() == ISD::INTRINSIC_VOID) && | 
 |          "Should use ComputeNumSignBits if you don't know whether Op" | 
 |          " is a target node!"); | 
 |   return 1; | 
 | } | 
 |  | 
 |  | 
 | /// SimplifySetCC - Try to simplify a setcc built with the specified operands  | 
 | /// and cc. If it is unable to simplify it, return a null SDOperand. | 
 | SDOperand | 
 | TargetLowering::SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1, | 
 |                               ISD::CondCode Cond, bool foldBooleans, | 
 |                               DAGCombinerInfo &DCI) const { | 
 |   SelectionDAG &DAG = DCI.DAG; | 
 |  | 
 |   // These setcc operations always fold. | 
 |   switch (Cond) { | 
 |   default: break; | 
 |   case ISD::SETFALSE: | 
 |   case ISD::SETFALSE2: return DAG.getConstant(0, VT); | 
 |   case ISD::SETTRUE: | 
 |   case ISD::SETTRUE2:  return DAG.getConstant(1, VT); | 
 |   } | 
 |  | 
 |   if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) { | 
 |     uint64_t C1 = N1C->getValue(); | 
 |     if (isa<ConstantSDNode>(N0.Val)) { | 
 |       return DAG.FoldSetCC(VT, N0, N1, Cond); | 
 |     } else { | 
 |       // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an | 
 |       // equality comparison, then we're just comparing whether X itself is | 
 |       // zero. | 
 |       if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && | 
 |           N0.getOperand(0).getOpcode() == ISD::CTLZ && | 
 |           N0.getOperand(1).getOpcode() == ISD::Constant) { | 
 |         unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue(); | 
 |         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
 |             ShAmt == Log2_32(MVT::getSizeInBits(N0.getValueType()))) { | 
 |           if ((C1 == 0) == (Cond == ISD::SETEQ)) { | 
 |             // (srl (ctlz x), 5) == 0  -> X != 0 | 
 |             // (srl (ctlz x), 5) != 1  -> X != 0 | 
 |             Cond = ISD::SETNE; | 
 |           } else { | 
 |             // (srl (ctlz x), 5) != 0  -> X == 0 | 
 |             // (srl (ctlz x), 5) == 1  -> X == 0 | 
 |             Cond = ISD::SETEQ; | 
 |           } | 
 |           SDOperand Zero = DAG.getConstant(0, N0.getValueType()); | 
 |           return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0), | 
 |                               Zero, Cond); | 
 |         } | 
 |       } | 
 |        | 
 |       // If the LHS is a ZERO_EXTEND, perform the comparison on the input. | 
 |       if (N0.getOpcode() == ISD::ZERO_EXTEND) { | 
 |         unsigned InSize = MVT::getSizeInBits(N0.getOperand(0).getValueType()); | 
 |  | 
 |         // If the comparison constant has bits in the upper part, the | 
 |         // zero-extended value could never match. | 
 |         if (C1 & (~0ULL << InSize)) { | 
 |           unsigned VSize = MVT::getSizeInBits(N0.getValueType()); | 
 |           switch (Cond) { | 
 |           case ISD::SETUGT: | 
 |           case ISD::SETUGE: | 
 |           case ISD::SETEQ: return DAG.getConstant(0, VT); | 
 |           case ISD::SETULT: | 
 |           case ISD::SETULE: | 
 |           case ISD::SETNE: return DAG.getConstant(1, VT); | 
 |           case ISD::SETGT: | 
 |           case ISD::SETGE: | 
 |             // True if the sign bit of C1 is set. | 
 |             return DAG.getConstant((C1 & (1ULL << (VSize-1))) != 0, VT); | 
 |           case ISD::SETLT: | 
 |           case ISD::SETLE: | 
 |             // True if the sign bit of C1 isn't set. | 
 |             return DAG.getConstant((C1 & (1ULL << (VSize-1))) == 0, VT); | 
 |           default: | 
 |             break; | 
 |           } | 
 |         } | 
 |  | 
 |         // Otherwise, we can perform the comparison with the low bits. | 
 |         switch (Cond) { | 
 |         case ISD::SETEQ: | 
 |         case ISD::SETNE: | 
 |         case ISD::SETUGT: | 
 |         case ISD::SETUGE: | 
 |         case ISD::SETULT: | 
 |         case ISD::SETULE: | 
 |           return DAG.getSetCC(VT, N0.getOperand(0), | 
 |                           DAG.getConstant(C1, N0.getOperand(0).getValueType()), | 
 |                           Cond); | 
 |         default: | 
 |           break;   // todo, be more careful with signed comparisons | 
 |         } | 
 |       } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && | 
 |                  (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
 |         MVT::ValueType ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); | 
 |         unsigned ExtSrcTyBits = MVT::getSizeInBits(ExtSrcTy); | 
 |         MVT::ValueType ExtDstTy = N0.getValueType(); | 
 |         unsigned ExtDstTyBits = MVT::getSizeInBits(ExtDstTy); | 
 |  | 
 |         // If the extended part has any inconsistent bits, it cannot ever | 
 |         // compare equal.  In other words, they have to be all ones or all | 
 |         // zeros. | 
 |         uint64_t ExtBits = | 
 |           (~0ULL >> (64-ExtSrcTyBits)) & (~0ULL << (ExtDstTyBits-1)); | 
 |         if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits) | 
 |           return DAG.getConstant(Cond == ISD::SETNE, VT); | 
 |          | 
 |         SDOperand ZextOp; | 
 |         MVT::ValueType Op0Ty = N0.getOperand(0).getValueType(); | 
 |         if (Op0Ty == ExtSrcTy) { | 
 |           ZextOp = N0.getOperand(0); | 
 |         } else { | 
 |           int64_t Imm = ~0ULL >> (64-ExtSrcTyBits); | 
 |           ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0), | 
 |                                DAG.getConstant(Imm, Op0Ty)); | 
 |         } | 
 |         if (!DCI.isCalledByLegalizer()) | 
 |           DCI.AddToWorklist(ZextOp.Val); | 
 |         // Otherwise, make this a use of a zext. | 
 |         return DAG.getSetCC(VT, ZextOp,  | 
 |                             DAG.getConstant(C1 & (~0ULL>>(64-ExtSrcTyBits)),  | 
 |                                             ExtDstTy), | 
 |                             Cond); | 
 |       } else if ((N1C->getValue() == 0 || N1C->getValue() == 1) && | 
 |                  (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { | 
 |          | 
 |         // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC | 
 |         if (N0.getOpcode() == ISD::SETCC) { | 
 |           bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1); | 
 |           if (TrueWhenTrue) | 
 |             return N0; | 
 |            | 
 |           // Invert the condition. | 
 |           ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); | 
 |           CC = ISD::getSetCCInverse(CC,  | 
 |                                MVT::isInteger(N0.getOperand(0).getValueType())); | 
 |           return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC); | 
 |         } | 
 |          | 
 |         if ((N0.getOpcode() == ISD::XOR || | 
 |              (N0.getOpcode() == ISD::AND &&  | 
 |               N0.getOperand(0).getOpcode() == ISD::XOR && | 
 |               N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && | 
 |             isa<ConstantSDNode>(N0.getOperand(1)) && | 
 |             cast<ConstantSDNode>(N0.getOperand(1))->getValue() == 1) { | 
 |           // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We | 
 |           // can only do this if the top bits are known zero. | 
 |           if (DAG.MaskedValueIsZero(N0, | 
 |                                     MVT::getIntVTBitMask(N0.getValueType())-1)){ | 
 |             // Okay, get the un-inverted input value. | 
 |             SDOperand Val; | 
 |             if (N0.getOpcode() == ISD::XOR) | 
 |               Val = N0.getOperand(0); | 
 |             else { | 
 |               assert(N0.getOpcode() == ISD::AND &&  | 
 |                      N0.getOperand(0).getOpcode() == ISD::XOR); | 
 |               // ((X^1)&1)^1 -> X & 1 | 
 |               Val = DAG.getNode(ISD::AND, N0.getValueType(), | 
 |                                 N0.getOperand(0).getOperand(0), | 
 |                                 N0.getOperand(1)); | 
 |             } | 
 |             return DAG.getSetCC(VT, Val, N1, | 
 |                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); | 
 |           } | 
 |         } | 
 |       } | 
 |        | 
 |       uint64_t MinVal, MaxVal; | 
 |       unsigned OperandBitSize = MVT::getSizeInBits(N1C->getValueType(0)); | 
 |       if (ISD::isSignedIntSetCC(Cond)) { | 
 |         MinVal = 1ULL << (OperandBitSize-1); | 
 |         if (OperandBitSize != 1)   // Avoid X >> 64, which is undefined. | 
 |           MaxVal = ~0ULL >> (65-OperandBitSize); | 
 |         else | 
 |           MaxVal = 0; | 
 |       } else { | 
 |         MinVal = 0; | 
 |         MaxVal = ~0ULL >> (64-OperandBitSize); | 
 |       } | 
 |  | 
 |       // Canonicalize GE/LE comparisons to use GT/LT comparisons. | 
 |       if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { | 
 |         if (C1 == MinVal) return DAG.getConstant(1, VT);   // X >= MIN --> true | 
 |         --C1;                                          // X >= C0 --> X > (C0-1) | 
 |         return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()), | 
 |                         (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); | 
 |       } | 
 |  | 
 |       if (Cond == ISD::SETLE || Cond == ISD::SETULE) { | 
 |         if (C1 == MaxVal) return DAG.getConstant(1, VT);   // X <= MAX --> true | 
 |         ++C1;                                          // X <= C0 --> X < (C0+1) | 
 |         return DAG.getSetCC(VT, N0, DAG.getConstant(C1, N1.getValueType()), | 
 |                         (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); | 
 |       } | 
 |  | 
 |       if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) | 
 |         return DAG.getConstant(0, VT);      // X < MIN --> false | 
 |       if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) | 
 |         return DAG.getConstant(1, VT);      // X >= MIN --> true | 
 |       if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) | 
 |         return DAG.getConstant(0, VT);      // X > MAX --> false | 
 |       if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) | 
 |         return DAG.getConstant(1, VT);      // X <= MAX --> true | 
 |  | 
 |       // Canonicalize setgt X, Min --> setne X, Min | 
 |       if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) | 
 |         return DAG.getSetCC(VT, N0, N1, ISD::SETNE); | 
 |       // Canonicalize setlt X, Max --> setne X, Max | 
 |       if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) | 
 |         return DAG.getSetCC(VT, N0, N1, ISD::SETNE); | 
 |  | 
 |       // If we have setult X, 1, turn it into seteq X, 0 | 
 |       if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) | 
 |         return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()), | 
 |                         ISD::SETEQ); | 
 |       // If we have setugt X, Max-1, turn it into seteq X, Max | 
 |       else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) | 
 |         return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()), | 
 |                         ISD::SETEQ); | 
 |  | 
 |       // If we have "setcc X, C0", check to see if we can shrink the immediate | 
 |       // by changing cc. | 
 |  | 
 |       // SETUGT X, SINTMAX  -> SETLT X, 0 | 
 |       if (Cond == ISD::SETUGT && OperandBitSize != 1 && | 
 |           C1 == (~0ULL >> (65-OperandBitSize))) | 
 |         return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()), | 
 |                             ISD::SETLT); | 
 |  | 
 |       // FIXME: Implement the rest of these. | 
 |  | 
 |       // Fold bit comparisons when we can. | 
 |       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
 |           VT == N0.getValueType() && N0.getOpcode() == ISD::AND) | 
 |         if (ConstantSDNode *AndRHS = | 
 |                     dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
 |           if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3 | 
 |             // Perform the xform if the AND RHS is a single bit. | 
 |             if (isPowerOf2_64(AndRHS->getValue())) { | 
 |               return DAG.getNode(ISD::SRL, VT, N0, | 
 |                              DAG.getConstant(Log2_64(AndRHS->getValue()), | 
 |                                              getShiftAmountTy())); | 
 |             } | 
 |           } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) { | 
 |             // (X & 8) == 8  -->  (X & 8) >> 3 | 
 |             // Perform the xform if C1 is a single bit. | 
 |             if (isPowerOf2_64(C1)) { | 
 |               return DAG.getNode(ISD::SRL, VT, N0, | 
 |                           DAG.getConstant(Log2_64(C1), getShiftAmountTy())); | 
 |             } | 
 |           } | 
 |         } | 
 |     } | 
 |   } else if (isa<ConstantSDNode>(N0.Val)) { | 
 |       // Ensure that the constant occurs on the RHS. | 
 |     return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); | 
 |   } | 
 |  | 
 |   if (isa<ConstantFPSDNode>(N0.Val)) { | 
 |     // Constant fold or commute setcc. | 
 |     SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);     | 
 |     if (O.Val) return O; | 
 |   } | 
 |  | 
 |   if (N0 == N1) { | 
 |     // We can always fold X == X for integer setcc's. | 
 |     if (MVT::isInteger(N0.getValueType())) | 
 |       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); | 
 |     unsigned UOF = ISD::getUnorderedFlavor(Cond); | 
 |     if (UOF == 2)   // FP operators that are undefined on NaNs. | 
 |       return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); | 
 |     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) | 
 |       return DAG.getConstant(UOF, VT); | 
 |     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO | 
 |     // if it is not already. | 
 |     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; | 
 |     if (NewCond != Cond) | 
 |       return DAG.getSetCC(VT, N0, N1, NewCond); | 
 |   } | 
 |  | 
 |   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && | 
 |       MVT::isInteger(N0.getValueType())) { | 
 |     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || | 
 |         N0.getOpcode() == ISD::XOR) { | 
 |       // Simplify (X+Y) == (X+Z) -->  Y == Z | 
 |       if (N0.getOpcode() == N1.getOpcode()) { | 
 |         if (N0.getOperand(0) == N1.getOperand(0)) | 
 |           return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond); | 
 |         if (N0.getOperand(1) == N1.getOperand(1)) | 
 |           return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond); | 
 |         if (DAG.isCommutativeBinOp(N0.getOpcode())) { | 
 |           // If X op Y == Y op X, try other combinations. | 
 |           if (N0.getOperand(0) == N1.getOperand(1)) | 
 |             return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond); | 
 |           if (N0.getOperand(1) == N1.getOperand(0)) | 
 |             return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond); | 
 |         } | 
 |       } | 
 |        | 
 |       if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { | 
 |         if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { | 
 |           // Turn (X+C1) == C2 --> X == C2-C1 | 
 |           if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) { | 
 |             return DAG.getSetCC(VT, N0.getOperand(0), | 
 |                               DAG.getConstant(RHSC->getValue()-LHSR->getValue(), | 
 |                                 N0.getValueType()), Cond); | 
 |           } | 
 |            | 
 |           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. | 
 |           if (N0.getOpcode() == ISD::XOR) | 
 |             // If we know that all of the inverted bits are zero, don't bother | 
 |             // performing the inversion. | 
 |             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getValue())) | 
 |               return DAG.getSetCC(VT, N0.getOperand(0), | 
 |                               DAG.getConstant(LHSR->getValue()^RHSC->getValue(), | 
 |                                               N0.getValueType()), Cond); | 
 |         } | 
 |          | 
 |         // Turn (C1-X) == C2 --> X == C1-C2 | 
 |         if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { | 
 |           if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) { | 
 |             return DAG.getSetCC(VT, N0.getOperand(1), | 
 |                              DAG.getConstant(SUBC->getValue()-RHSC->getValue(), | 
 |                                              N0.getValueType()), Cond); | 
 |           } | 
 |         }           | 
 |       } | 
 |  | 
 |       // Simplify (X+Z) == X -->  Z == 0 | 
 |       if (N0.getOperand(0) == N1) | 
 |         return DAG.getSetCC(VT, N0.getOperand(1), | 
 |                         DAG.getConstant(0, N0.getValueType()), Cond); | 
 |       if (N0.getOperand(1) == N1) { | 
 |         if (DAG.isCommutativeBinOp(N0.getOpcode())) | 
 |           return DAG.getSetCC(VT, N0.getOperand(0), | 
 |                           DAG.getConstant(0, N0.getValueType()), Cond); | 
 |         else if (N0.Val->hasOneUse()) { | 
 |           assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); | 
 |           // (Z-X) == X  --> Z == X<<1 | 
 |           SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), | 
 |                                      N1,  | 
 |                                      DAG.getConstant(1, getShiftAmountTy())); | 
 |           if (!DCI.isCalledByLegalizer()) | 
 |             DCI.AddToWorklist(SH.Val); | 
 |           return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond); | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || | 
 |         N1.getOpcode() == ISD::XOR) { | 
 |       // Simplify  X == (X+Z) -->  Z == 0 | 
 |       if (N1.getOperand(0) == N0) { | 
 |         return DAG.getSetCC(VT, N1.getOperand(1), | 
 |                         DAG.getConstant(0, N1.getValueType()), Cond); | 
 |       } else if (N1.getOperand(1) == N0) { | 
 |         if (DAG.isCommutativeBinOp(N1.getOpcode())) { | 
 |           return DAG.getSetCC(VT, N1.getOperand(0), | 
 |                           DAG.getConstant(0, N1.getValueType()), Cond); | 
 |         } else if (N1.Val->hasOneUse()) { | 
 |           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); | 
 |           // X == (Z-X)  --> X<<1 == Z | 
 |           SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,  | 
 |                                      DAG.getConstant(1, getShiftAmountTy())); | 
 |           if (!DCI.isCalledByLegalizer()) | 
 |             DCI.AddToWorklist(SH.Val); | 
 |           return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Fold away ALL boolean setcc's. | 
 |   SDOperand Temp; | 
 |   if (N0.getValueType() == MVT::i1 && foldBooleans) { | 
 |     switch (Cond) { | 
 |     default: assert(0 && "Unknown integer setcc!"); | 
 |     case ISD::SETEQ:  // X == Y  -> (X^Y)^1 | 
 |       Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1); | 
 |       N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1)); | 
 |       if (!DCI.isCalledByLegalizer()) | 
 |         DCI.AddToWorklist(Temp.Val); | 
 |       break; | 
 |     case ISD::SETNE:  // X != Y   -->  (X^Y) | 
 |       N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1); | 
 |       break; | 
 |     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  X^1 & Y | 
 |     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  X^1 & Y | 
 |       Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1)); | 
 |       N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp); | 
 |       if (!DCI.isCalledByLegalizer()) | 
 |         DCI.AddToWorklist(Temp.Val); | 
 |       break; | 
 |     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  Y^1 & X | 
 |     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  Y^1 & X | 
 |       Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1)); | 
 |       N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp); | 
 |       if (!DCI.isCalledByLegalizer()) | 
 |         DCI.AddToWorklist(Temp.Val); | 
 |       break; | 
 |     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  X^1 | Y | 
 |     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  X^1 | Y | 
 |       Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1)); | 
 |       N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp); | 
 |       if (!DCI.isCalledByLegalizer()) | 
 |         DCI.AddToWorklist(Temp.Val); | 
 |       break; | 
 |     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  Y^1 | X | 
 |     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  Y^1 | X | 
 |       Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1)); | 
 |       N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp); | 
 |       break; | 
 |     } | 
 |     if (VT != MVT::i1) { | 
 |       if (!DCI.isCalledByLegalizer()) | 
 |         DCI.AddToWorklist(N0.Val); | 
 |       // FIXME: If running after legalize, we probably can't do this. | 
 |       N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0); | 
 |     } | 
 |     return N0; | 
 |   } | 
 |  | 
 |   // Could not fold it. | 
 |   return SDOperand(); | 
 | } | 
 |  | 
 | SDOperand TargetLowering:: | 
 | PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { | 
 |   // Default implementation: no optimization. | 
 |   return SDOperand(); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Inline Assembler Implementation Methods | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | TargetLowering::ConstraintType | 
 | TargetLowering::getConstraintType(const std::string &Constraint) const { | 
 |   // FIXME: lots more standard ones to handle. | 
 |   if (Constraint.size() == 1) { | 
 |     switch (Constraint[0]) { | 
 |     default: break; | 
 |     case 'r': return C_RegisterClass; | 
 |     case 'm':    // memory | 
 |     case 'o':    // offsetable | 
 |     case 'V':    // not offsetable | 
 |       return C_Memory; | 
 |     case 'i':    // Simple Integer or Relocatable Constant | 
 |     case 'n':    // Simple Integer | 
 |     case 's':    // Relocatable Constant | 
 |     case 'X':    // Allow ANY value. | 
 |     case 'I':    // Target registers. | 
 |     case 'J': | 
 |     case 'K': | 
 |     case 'L': | 
 |     case 'M': | 
 |     case 'N': | 
 |     case 'O': | 
 |     case 'P': | 
 |       return C_Other; | 
 |     } | 
 |   } | 
 |    | 
 |   if (Constraint.size() > 1 && Constraint[0] == '{' &&  | 
 |       Constraint[Constraint.size()-1] == '}') | 
 |     return C_Register; | 
 |   return C_Unknown; | 
 | } | 
 |  | 
 | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
 | /// vector.  If it is invalid, don't add anything to Ops. | 
 | void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op, | 
 |                                                   char ConstraintLetter, | 
 |                                                   std::vector<SDOperand> &Ops, | 
 |                                                   SelectionDAG &DAG) { | 
 |   switch (ConstraintLetter) { | 
 |   default: break; | 
 |   case 'X':     // Allows any operand; labels (basic block) use this. | 
 |     if (Op.getOpcode() == ISD::BasicBlock) { | 
 |       Ops.push_back(Op); | 
 |       return; | 
 |     } | 
 |     // fall through | 
 |   case 'i':    // Simple Integer or Relocatable Constant | 
 |   case 'n':    // Simple Integer | 
 |   case 's': {  // Relocatable Constant | 
 |     // These operands are interested in values of the form (GV+C), where C may | 
 |     // be folded in as an offset of GV, or it may be explicitly added.  Also, it | 
 |     // is possible and fine if either GV or C are missing. | 
 |     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); | 
 |     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); | 
 |      | 
 |     // If we have "(add GV, C)", pull out GV/C | 
 |     if (Op.getOpcode() == ISD::ADD) { | 
 |       C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | 
 |       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); | 
 |       if (C == 0 || GA == 0) { | 
 |         C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); | 
 |         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); | 
 |       } | 
 |       if (C == 0 || GA == 0) | 
 |         C = 0, GA = 0; | 
 |     } | 
 |      | 
 |     // If we find a valid operand, map to the TargetXXX version so that the | 
 |     // value itself doesn't get selected. | 
 |     if (GA) {   // Either &GV   or   &GV+C | 
 |       if (ConstraintLetter != 'n') { | 
 |         int64_t Offs = GA->getOffset(); | 
 |         if (C) Offs += C->getValue(); | 
 |         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), | 
 |                                                  Op.getValueType(), Offs)); | 
 |         return; | 
 |       } | 
 |     } | 
 |     if (C) {   // just C, no GV. | 
 |       // Simple constants are not allowed for 's'. | 
 |       if (ConstraintLetter != 's') { | 
 |         Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType())); | 
 |         return; | 
 |       } | 
 |     } | 
 |     break; | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | std::vector<unsigned> TargetLowering:: | 
 | getRegClassForInlineAsmConstraint(const std::string &Constraint, | 
 |                                   MVT::ValueType VT) const { | 
 |   return std::vector<unsigned>(); | 
 | } | 
 |  | 
 |  | 
 | std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: | 
 | getRegForInlineAsmConstraint(const std::string &Constraint, | 
 |                              MVT::ValueType VT) const { | 
 |   if (Constraint[0] != '{') | 
 |     return std::pair<unsigned, const TargetRegisterClass*>(0, 0); | 
 |   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); | 
 |  | 
 |   // Remove the braces from around the name. | 
 |   std::string RegName(Constraint.begin()+1, Constraint.end()-1); | 
 |  | 
 |   // Figure out which register class contains this reg. | 
 |   const MRegisterInfo *RI = TM.getRegisterInfo(); | 
 |   for (MRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), | 
 |        E = RI->regclass_end(); RCI != E; ++RCI) { | 
 |     const TargetRegisterClass *RC = *RCI; | 
 |      | 
 |     // If none of the the value types for this register class are valid, we  | 
 |     // can't use it.  For example, 64-bit reg classes on 32-bit targets. | 
 |     bool isLegal = false; | 
 |     for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); | 
 |          I != E; ++I) { | 
 |       if (isTypeLegal(*I)) { | 
 |         isLegal = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |      | 
 |     if (!isLegal) continue; | 
 |      | 
 |     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();  | 
 |          I != E; ++I) { | 
 |       if (StringsEqualNoCase(RegName, RI->get(*I).Name)) | 
 |         return std::make_pair(*I, RC); | 
 |     } | 
 |   } | 
 |    | 
 |   return std::pair<unsigned, const TargetRegisterClass*>(0, 0); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //  Loop Strength Reduction hooks | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// isLegalAddressingMode - Return true if the addressing mode represented | 
 | /// by AM is legal for this target, for a load/store of the specified type. | 
 | bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,  | 
 |                                            const Type *Ty) const { | 
 |   // The default implementation of this implements a conservative RISCy, r+r and | 
 |   // r+i addr mode. | 
 |  | 
 |   // Allows a sign-extended 16-bit immediate field. | 
 |   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) | 
 |     return false; | 
 |    | 
 |   // No global is ever allowed as a base. | 
 |   if (AM.BaseGV) | 
 |     return false; | 
 |    | 
 |   // Only support r+r,  | 
 |   switch (AM.Scale) { | 
 |   case 0:  // "r+i" or just "i", depending on HasBaseReg. | 
 |     break; | 
 |   case 1: | 
 |     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed. | 
 |       return false; | 
 |     // Otherwise we have r+r or r+i. | 
 |     break; | 
 |   case 2: | 
 |     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed. | 
 |       return false; | 
 |     // Allow 2*r as r+r. | 
 |     break; | 
 |   } | 
 |    | 
 |   return true; | 
 | } | 
 |  | 
 | // Magic for divide replacement | 
 |  | 
 | struct ms { | 
 |   int64_t m;  // magic number | 
 |   int64_t s;  // shift amount | 
 | }; | 
 |  | 
 | struct mu { | 
 |   uint64_t m; // magic number | 
 |   int64_t a;  // add indicator | 
 |   int64_t s;  // shift amount | 
 | }; | 
 |  | 
 | /// magic - calculate the magic numbers required to codegen an integer sdiv as | 
 | /// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1, | 
 | /// or -1. | 
 | static ms magic32(int32_t d) { | 
 |   int32_t p; | 
 |   uint32_t ad, anc, delta, q1, r1, q2, r2, t; | 
 |   const uint32_t two31 = 0x80000000U; | 
 |   struct ms mag; | 
 |    | 
 |   ad = abs(d); | 
 |   t = two31 + ((uint32_t)d >> 31); | 
 |   anc = t - 1 - t%ad;   // absolute value of nc | 
 |   p = 31;               // initialize p | 
 |   q1 = two31/anc;       // initialize q1 = 2p/abs(nc) | 
 |   r1 = two31 - q1*anc;  // initialize r1 = rem(2p,abs(nc)) | 
 |   q2 = two31/ad;        // initialize q2 = 2p/abs(d) | 
 |   r2 = two31 - q2*ad;   // initialize r2 = rem(2p,abs(d)) | 
 |   do { | 
 |     p = p + 1; | 
 |     q1 = 2*q1;        // update q1 = 2p/abs(nc) | 
 |     r1 = 2*r1;        // update r1 = rem(2p/abs(nc)) | 
 |     if (r1 >= anc) {  // must be unsigned comparison | 
 |       q1 = q1 + 1; | 
 |       r1 = r1 - anc; | 
 |     } | 
 |     q2 = 2*q2;        // update q2 = 2p/abs(d) | 
 |     r2 = 2*r2;        // update r2 = rem(2p/abs(d)) | 
 |     if (r2 >= ad) {   // must be unsigned comparison | 
 |       q2 = q2 + 1; | 
 |       r2 = r2 - ad; | 
 |     } | 
 |     delta = ad - r2; | 
 |   } while (q1 < delta || (q1 == delta && r1 == 0)); | 
 |    | 
 |   mag.m = (int32_t)(q2 + 1); // make sure to sign extend | 
 |   if (d < 0) mag.m = -mag.m; // resulting magic number | 
 |   mag.s = p - 32;            // resulting shift | 
 |   return mag; | 
 | } | 
 |  | 
 | /// magicu - calculate the magic numbers required to codegen an integer udiv as | 
 | /// a sequence of multiply, add and shifts.  Requires that the divisor not be 0. | 
 | static mu magicu32(uint32_t d) { | 
 |   int32_t p; | 
 |   uint32_t nc, delta, q1, r1, q2, r2; | 
 |   struct mu magu; | 
 |   magu.a = 0;               // initialize "add" indicator | 
 |   nc = - 1 - (-d)%d; | 
 |   p = 31;                   // initialize p | 
 |   q1 = 0x80000000/nc;       // initialize q1 = 2p/nc | 
 |   r1 = 0x80000000 - q1*nc;  // initialize r1 = rem(2p,nc) | 
 |   q2 = 0x7FFFFFFF/d;        // initialize q2 = (2p-1)/d | 
 |   r2 = 0x7FFFFFFF - q2*d;   // initialize r2 = rem((2p-1),d) | 
 |   do { | 
 |     p = p + 1; | 
 |     if (r1 >= nc - r1 ) { | 
 |       q1 = 2*q1 + 1;  // update q1 | 
 |       r1 = 2*r1 - nc; // update r1 | 
 |     } | 
 |     else { | 
 |       q1 = 2*q1; // update q1 | 
 |       r1 = 2*r1; // update r1 | 
 |     } | 
 |     if (r2 + 1 >= d - r2) { | 
 |       if (q2 >= 0x7FFFFFFF) magu.a = 1; | 
 |       q2 = 2*q2 + 1;     // update q2 | 
 |       r2 = 2*r2 + 1 - d; // update r2 | 
 |     } | 
 |     else { | 
 |       if (q2 >= 0x80000000) magu.a = 1; | 
 |       q2 = 2*q2;     // update q2 | 
 |       r2 = 2*r2 + 1; // update r2 | 
 |     } | 
 |     delta = d - 1 - r2; | 
 |   } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0))); | 
 |   magu.m = q2 + 1; // resulting magic number | 
 |   magu.s = p - 32;  // resulting shift | 
 |   return magu; | 
 | } | 
 |  | 
 | /// magic - calculate the magic numbers required to codegen an integer sdiv as | 
 | /// a sequence of multiply and shifts.  Requires that the divisor not be 0, 1, | 
 | /// or -1. | 
 | static ms magic64(int64_t d) { | 
 |   int64_t p; | 
 |   uint64_t ad, anc, delta, q1, r1, q2, r2, t; | 
 |   const uint64_t two63 = 9223372036854775808ULL; // 2^63 | 
 |   struct ms mag; | 
 |    | 
 |   ad = d >= 0 ? d : -d; | 
 |   t = two63 + ((uint64_t)d >> 63); | 
 |   anc = t - 1 - t%ad;   // absolute value of nc | 
 |   p = 63;               // initialize p | 
 |   q1 = two63/anc;       // initialize q1 = 2p/abs(nc) | 
 |   r1 = two63 - q1*anc;  // initialize r1 = rem(2p,abs(nc)) | 
 |   q2 = two63/ad;        // initialize q2 = 2p/abs(d) | 
 |   r2 = two63 - q2*ad;   // initialize r2 = rem(2p,abs(d)) | 
 |   do { | 
 |     p = p + 1; | 
 |     q1 = 2*q1;        // update q1 = 2p/abs(nc) | 
 |     r1 = 2*r1;        // update r1 = rem(2p/abs(nc)) | 
 |     if (r1 >= anc) {  // must be unsigned comparison | 
 |       q1 = q1 + 1; | 
 |       r1 = r1 - anc; | 
 |     } | 
 |     q2 = 2*q2;        // update q2 = 2p/abs(d) | 
 |     r2 = 2*r2;        // update r2 = rem(2p/abs(d)) | 
 |     if (r2 >= ad) {   // must be unsigned comparison | 
 |       q2 = q2 + 1; | 
 |       r2 = r2 - ad; | 
 |     } | 
 |     delta = ad - r2; | 
 |   } while (q1 < delta || (q1 == delta && r1 == 0)); | 
 |    | 
 |   mag.m = q2 + 1; | 
 |   if (d < 0) mag.m = -mag.m; // resulting magic number | 
 |   mag.s = p - 64;            // resulting shift | 
 |   return mag; | 
 | } | 
 |  | 
 | /// magicu - calculate the magic numbers required to codegen an integer udiv as | 
 | /// a sequence of multiply, add and shifts.  Requires that the divisor not be 0. | 
 | static mu magicu64(uint64_t d) | 
 | { | 
 |   int64_t p; | 
 |   uint64_t nc, delta, q1, r1, q2, r2; | 
 |   struct mu magu; | 
 |   magu.a = 0;               // initialize "add" indicator | 
 |   nc = - 1 - (-d)%d; | 
 |   p = 63;                   // initialize p | 
 |   q1 = 0x8000000000000000ull/nc;       // initialize q1 = 2p/nc | 
 |   r1 = 0x8000000000000000ull - q1*nc;  // initialize r1 = rem(2p,nc) | 
 |   q2 = 0x7FFFFFFFFFFFFFFFull/d;        // initialize q2 = (2p-1)/d | 
 |   r2 = 0x7FFFFFFFFFFFFFFFull - q2*d;   // initialize r2 = rem((2p-1),d) | 
 |   do { | 
 |     p = p + 1; | 
 |     if (r1 >= nc - r1 ) { | 
 |       q1 = 2*q1 + 1;  // update q1 | 
 |       r1 = 2*r1 - nc; // update r1 | 
 |     } | 
 |     else { | 
 |       q1 = 2*q1; // update q1 | 
 |       r1 = 2*r1; // update r1 | 
 |     } | 
 |     if (r2 + 1 >= d - r2) { | 
 |       if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1; | 
 |       q2 = 2*q2 + 1;     // update q2 | 
 |       r2 = 2*r2 + 1 - d; // update r2 | 
 |     } | 
 |     else { | 
 |       if (q2 >= 0x8000000000000000ull) magu.a = 1; | 
 |       q2 = 2*q2;     // update q2 | 
 |       r2 = 2*r2 + 1; // update r2 | 
 |     } | 
 |     delta = d - 1 - r2; | 
 |   } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0))); | 
 |   magu.m = q2 + 1; // resulting magic number | 
 |   magu.s = p - 64;  // resulting shift | 
 |   return magu; | 
 | } | 
 |  | 
 | /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, | 
 | /// return a DAG expression to select that will generate the same value by | 
 | /// multiplying by a magic number.  See: | 
 | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> | 
 | SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,  | 
 |                                     std::vector<SDNode*>* Created) const { | 
 |   MVT::ValueType VT = N->getValueType(0); | 
 |    | 
 |   // Check to see if we can do this. | 
 |   if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) | 
 |     return SDOperand();       // BuildSDIV only operates on i32 or i64 | 
 |    | 
 |   int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended(); | 
 |   ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d); | 
 |    | 
 |   // Multiply the numerator (operand 0) by the magic value | 
 |   SDOperand Q; | 
 |   if (isOperationLegal(ISD::MULHS, VT)) | 
 |     Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0), | 
 |                     DAG.getConstant(magics.m, VT)); | 
 |   else if (isOperationLegal(ISD::SMUL_LOHI, VT)) | 
 |     Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT), | 
 |                               N->getOperand(0), | 
 |                               DAG.getConstant(magics.m, VT)).Val, 1); | 
 |   else | 
 |     return SDOperand();       // No mulhs or equvialent | 
 |   // If d > 0 and m < 0, add the numerator | 
 |   if (d > 0 && magics.m < 0) {  | 
 |     Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0)); | 
 |     if (Created) | 
 |       Created->push_back(Q.Val); | 
 |   } | 
 |   // If d < 0 and m > 0, subtract the numerator. | 
 |   if (d < 0 && magics.m > 0) { | 
 |     Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0)); | 
 |     if (Created) | 
 |       Created->push_back(Q.Val); | 
 |   } | 
 |   // Shift right algebraic if shift value is nonzero | 
 |   if (magics.s > 0) { | 
 |     Q = DAG.getNode(ISD::SRA, VT, Q,  | 
 |                     DAG.getConstant(magics.s, getShiftAmountTy())); | 
 |     if (Created) | 
 |       Created->push_back(Q.Val); | 
 |   } | 
 |   // Extract the sign bit and add it to the quotient | 
 |   SDOperand T = | 
 |     DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(MVT::getSizeInBits(VT)-1, | 
 |                                                  getShiftAmountTy())); | 
 |   if (Created) | 
 |     Created->push_back(T.Val); | 
 |   return DAG.getNode(ISD::ADD, VT, Q, T); | 
 | } | 
 |  | 
 | /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, | 
 | /// return a DAG expression to select that will generate the same value by | 
 | /// multiplying by a magic number.  See: | 
 | /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> | 
 | SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, | 
 |                                     std::vector<SDNode*>* Created) const { | 
 |   MVT::ValueType VT = N->getValueType(0); | 
 |    | 
 |   // Check to see if we can do this. | 
 |   if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64)) | 
 |     return SDOperand();       // BuildUDIV only operates on i32 or i64 | 
 |    | 
 |   uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue(); | 
 |   mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d); | 
 |    | 
 |   // Multiply the numerator (operand 0) by the magic value | 
 |   SDOperand Q; | 
 |   if (isOperationLegal(ISD::MULHU, VT)) | 
 |     Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0), | 
 |                     DAG.getConstant(magics.m, VT)); | 
 |   else if (isOperationLegal(ISD::UMUL_LOHI, VT)) | 
 |     Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT), | 
 |                               N->getOperand(0), | 
 |                               DAG.getConstant(magics.m, VT)).Val, 1); | 
 |   else | 
 |     return SDOperand();       // No mulhu or equvialent | 
 |   if (Created) | 
 |     Created->push_back(Q.Val); | 
 |  | 
 |   if (magics.a == 0) { | 
 |     return DAG.getNode(ISD::SRL, VT, Q,  | 
 |                        DAG.getConstant(magics.s, getShiftAmountTy())); | 
 |   } else { | 
 |     SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q); | 
 |     if (Created) | 
 |       Created->push_back(NPQ.Val); | 
 |     NPQ = DAG.getNode(ISD::SRL, VT, NPQ,  | 
 |                       DAG.getConstant(1, getShiftAmountTy())); | 
 |     if (Created) | 
 |       Created->push_back(NPQ.Val); | 
 |     NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q); | 
 |     if (Created) | 
 |       Created->push_back(NPQ.Val); | 
 |     return DAG.getNode(ISD::SRL, VT, NPQ,  | 
 |                        DAG.getConstant(magics.s-1, getShiftAmountTy())); | 
 |   } | 
 | } |